Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[new api] add new api paddle.vision.ops.distribute_fpn_proposals #43736

Merged
merged 5 commits into from
Jul 19, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 9 additions & 46 deletions python/paddle/fluid/layers/detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@

from __future__ import print_function

import paddle

from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
from ..layer_helper import LayerHelper
Expand Down Expand Up @@ -3774,52 +3776,13 @@ def distribute_fpn_proposals(fpn_rois,
refer_level=4,
refer_scale=224)
"""
num_lvl = max_level - min_level + 1

if _non_static_mode():
assert rois_num is not None, "rois_num should not be None in dygraph mode."
attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
refer_level, 'refer_scale', refer_scale)
multi_rois, restore_ind, rois_num_per_level = _C_ops.distribute_fpn_proposals(
fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
return multi_rois, restore_ind, rois_num_per_level

check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
'distribute_fpn_proposals')
helper = LayerHelper('distribute_fpn_proposals', **locals())
dtype = helper.input_dtype('fpn_rois')
multi_rois = [
helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
]

restore_ind = helper.create_variable_for_type_inference(dtype='int32')

inputs = {'FpnRois': fpn_rois}
outputs = {
'MultiFpnRois': multi_rois,
'RestoreIndex': restore_ind,
}

if rois_num is not None:
inputs['RoisNum'] = rois_num
rois_num_per_level = [
helper.create_variable_for_type_inference(dtype='int32')
for i in range(num_lvl)
]
outputs['MultiLevelRoIsNum'] = rois_num_per_level

helper.append_op(type='distribute_fpn_proposals',
inputs=inputs,
outputs=outputs,
attrs={
'min_level': min_level,
'max_level': max_level,
'refer_level': refer_level,
'refer_scale': refer_scale
})
if rois_num is not None:
return multi_rois, restore_ind, rois_num_per_level
return multi_rois, restore_ind
return paddle.vision.ops.distribute_fpn_proposals(fpn_rois=fpn_rois,
min_level=min_level,
max_level=max_level,
refer_level=refer_level,
refer_scale=refer_scale,
rois_num=rois_num,
name=name)


@templatedoc()
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -18,6 +18,8 @@
import numpy as np
import math
import sys
import paddle

from op_test import OpTest


Expand Down Expand Up @@ -164,5 +166,62 @@ def init_test_case(self):
self.pixel_offset = False


class TestDistributeFpnProposalsAPI(unittest.TestCase):

def setUp(self):
np.random.seed(678)
self.rois_np = np.random.rand(10, 4).astype('float32')
self.rois_num_np = np.array([4, 6]).astype('int32')

def test_dygraph_with_static(self):
paddle.enable_static()
rois = paddle.static.data(name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(name='rois_num',
shape=[None],
dtype='int32')
multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals(
fpn_rois=rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224,
rois_num=rois_num)
fetch_list = multi_rois + [restore_ind] + rois_num_per_level

exe = paddle.static.Executor()
output_stat = exe.run(paddle.static.default_main_program(),
feed={
'rois': self.rois_np,
'rois_num': self.rois_num_np
},
fetch_list=fetch_list,
return_numpy=False)
output_stat_np = []
for output in output_stat:
output_np = np.array(output)
if len(output_np) > 0:
output_stat_np.append(output_np)

paddle.disable_static()
rois_dy = paddle.to_tensor(self.rois_np)
rois_num_dy = paddle.to_tensor(self.rois_num_np)
multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = paddle.vision.ops.distribute_fpn_proposals(
fpn_rois=rois_dy,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224,
rois_num=rois_num_dy)
output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
output_dy_np = []
for output in output_dy:
output_np = output.numpy()
if len(output_np) > 0:
output_dy_np.append(output_np)

for res_stat, res_dy in zip(output_stat_np, output_dy_np):
self.assertTrue(np.allclose(res_stat, res_dy))


if __name__ == '__main__':
unittest.main()
118 changes: 118 additions & 0 deletions python/paddle/vision/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
'yolo_box',
'deform_conv2d',
'DeformConv2D',
'distribute_fpn_proposals',
'read_file',
'decode_jpeg',
'roi_pool',
Expand Down Expand Up @@ -835,6 +836,123 @@ def forward(self, x, offset, mask=None):
return out


def distribute_fpn_proposals(fpn_rois,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shall we delete function of paddle.fluid.layers.distribute_fpn_proposals and modify paddle.fluid.layers.distribute_fpn_proposals import here, can discuss with @zhiboniu

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.
Through the discusstion with @zhiboniu , current now we change implement of the corresponding fluid api to using paddle.vision.ops.distribute_fpn_proposals. And we still keep this fluid api to avoid potential incompatibilities.

min_level,
max_level,
refer_level,
refer_scale,
pixel_offset=False,
rois_num=None,
name=None):
r"""
In Feature Pyramid Networks (FPN) models, it is needed to distribute
all proposals into different FPN level, with respect to scale of the proposals,
the referring scale and the referring level. Besides, to restore the order of
proposals, we return an array which indicates the original index of rois
in current proposals. To compute FPN level for each roi, the formula is given as follows:

.. math::
roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
where BBoxArea is a function to compute the area of each roi.

Args:
fpn_rois (Tensor): The input fpn_rois. 2-D Tensor with shape [N, 4] and data type can be
float32 or float64.
min_level (int): The lowest level of FPN layer where the proposals come
from.
max_level (int): The highest level of FPN layer where the proposals
come from.
refer_level (int): The referring level of FPN layer with specified scale.
refer_scale (int): The referring scale of FPN layer with specified level.
pixel_offset (bool, optional): Whether there is pixel offset. If True, the offset of
image shape will be 1. 'False' by default.
rois_num (Tensor, optional): 1-D Tensor contains the number of RoIs in each image.
The shape is [B] and data type is int32. B is the number of images.
If rois_num not None, it will return a list of 1-D Tensor. Each element
is the output RoIs' number of each image on the corresponding level
and the shape is [B]. None by default.
name (str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.

Returns:
multi_rois (List) : The proposals in each FPN level. It is a list of 2-D Tensor with shape [M, 4], where M is
and data type is same as `fpn_rois` . The length is max_level-min_level+1.
restore_ind (Tensor): The index used to restore the order of fpn_rois. It is a 2-D Tensor with shape [N, 1]
, where N is the number of total rois. The data type is int32.
rois_num_per_level (List): A list of 1-D Tensor and each Tensor is
the RoIs' number in each image on the corresponding level. The shape
is [B] and data type of int32, where B is the number of images.

Examples:
.. code-block:: python

import paddle

fpn_rois = paddle.rand((10, 4))
rois_num = paddle.to_tensor([3, 1, 4, 2], dtype=paddle.int32)

multi_rois, restore_ind, rois_num_per_level = paddle.vision.ops.distribute_fpn_proposals(
fpn_rois=fpn_rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224,
rois_num=rois_num)
"""
num_lvl = max_level - min_level + 1

if _non_static_mode():
assert rois_num is not None, "rois_num should not be None in dygraph mode."
attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level',
refer_level, 'refer_scale', refer_scale, 'pixel_offset',
pixel_offset)
multi_rois, restore_ind, rois_num_per_level = _C_ops.distribute_fpn_proposals(
fpn_rois, rois_num, num_lvl, num_lvl, *attrs)
return multi_rois, restore_ind, rois_num_per_level

else:
check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'],
'distribute_fpn_proposals')
helper = LayerHelper('distribute_fpn_proposals', **locals())
dtype = helper.input_dtype('fpn_rois')
multi_rois = [
helper.create_variable_for_type_inference(dtype)
for i in range(num_lvl)
]

restore_ind = helper.create_variable_for_type_inference(dtype='int32')

inputs = {'FpnRois': fpn_rois}
outputs = {
'MultiFpnRois': multi_rois,
'RestoreIndex': restore_ind,
}

if rois_num is not None:
inputs['RoisNum'] = rois_num
rois_num_per_level = [
helper.create_variable_for_type_inference(dtype='int32')
for i in range(num_lvl)
]
outputs['MultiLevelRoIsNum'] = rois_num_per_level
else:
rois_num_per_level = None

helper.append_op(type='distribute_fpn_proposals',
inputs=inputs,
outputs=outputs,
attrs={
'min_level': min_level,
'max_level': max_level,
'refer_level': refer_level,
'refer_scale': refer_scale,
'pixel_offset': pixel_offset
})
return multi_rois, restore_ind, rois_num_per_level


def read_file(filename, name=None):
"""
Reads and outputs the bytes contents of a file as a uint8 Tensor
Expand Down