diff --git a/paddle/fluid/operators/activation_op_xpu.cc b/paddle/fluid/operators/activation_op_xpu.cc index 0e7136b9f6ce8f..fbd2cc49263ee6 100644 --- a/paddle/fluid/operators/activation_op_xpu.cc +++ b/paddle/fluid/operators/activation_op_xpu.cc @@ -1,4 +1,4 @@ -/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -358,6 +358,52 @@ struct XPULeakyReluGradFunctor : public BaseActivationFunctor { } }; +template +struct XPULogGradFunctor : public BaseActivationFunctor { + using XPUType = typename XPUTypeTrait::Type; + void operator()(const framework::ExecutionContext &ctx) const { + const auto *x = ctx.Input("X"); + auto *dOut = ctx.Input(framework::GradVarName("Out")); + auto *dX = ctx.Output(framework::GradVarName("X")); + const T *x_data = nullptr; + const T *y_grad = nullptr; + if (x != nullptr) x_data = x->data(); + if (dOut != nullptr) y_grad = dOut->data(); + T *x_grad = dX->mutable_data(ctx.GetPlace()); + auto dev_ctx = + ctx.device_context().x_context(); + const auto x_dims = x->dims(); + auto xshape = phi::vectorize(x_dims); + int len = x->dims()[x_dims.size() - 1]; + std::vector yshape(1, len); + + xpu::ctx_guard RAII_GUARD(dev_ctx); + T *y_data = RAII_GUARD.alloc_l3_or_gm(len); + PADDLE_ENFORCE_XDNN_NOT_NULL(y_data); + T *tmp_grad = RAII_GUARD.alloc_l3_or_gm(x->numel()); + PADDLE_ENFORCE_XDNN_NOT_NULL(tmp_grad); + int r = xpu::constant(dev_ctx, y_data, len, static_cast(1.0)); + PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant"); + + // dx.device(d) = dout * (static_cast(1) / x); + r = xpu::broadcast_div(dev_ctx, + reinterpret_cast(y_data), + reinterpret_cast(x_data), + reinterpret_cast(tmp_grad), + yshape, + xshape); + PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_div"); + + r = xpu::broadcast_mul(dev_ctx, + reinterpret_cast(y_grad), + reinterpret_cast(tmp_grad), + reinterpret_cast(x_grad), + xshape, + xshape); + PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_mul"); + } +}; + template struct XPUPowFunctor : public BaseActivationFunctor { void operator()(const framework::ExecutionContext &ctx) const { @@ -584,5 +630,6 @@ REGISTER_OP_XPU_KERNEL(exp, ops::XPUActivationKernel>); REGISTER_OP_XPU_KERNEL(log, ops::XPUActivationKernel>); - +REGISTER_OP_XPU_KERNEL( + log_grad, ops::XPUActivationGradKernel>); #endif // PADDLE_WITH_XPU diff --git a/paddle/fluid/platform/device/xpu/xpu2_op_list.h b/paddle/fluid/platform/device/xpu/xpu2_op_list.h index 1d4a5bf74b8df0..54759049ab817d 100644 --- a/paddle/fluid/platform/device/xpu/xpu2_op_list.h +++ b/paddle/fluid/platform/device/xpu/xpu2_op_list.h @@ -280,6 +280,7 @@ XPUOpMap& get_kl2_ops() { pOpKernelType(vartype::INT32, XPUPlace()), pOpKernelType(vartype::FP32, XPUPlace())})}, {"log", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})}, + {"log_grad", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})}, {"log_softmax", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})}, {"log_softmax_grad", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})}, diff --git a/python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py index 63a0aa2e59b939..561dd43c689e7d 100644 --- a/python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py +++ b/python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py @@ -34,12 +34,15 @@ class TestActivationOPBase(XPUOpTest): def setUp(self): self.place = paddle.XPUPlace(0) self.init_dtype() + self.set_shape() self.set_case() + def set_shape(self): + self.shape = [11, 17] + def set_case(self): self.op_type = 'exp' - - x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) + x = np.random.uniform(-1, 1, self.shape).astype(self.dtype) out = np.exp(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} @@ -313,14 +316,33 @@ class XPUTestLog(TestActivationOPBase): def set_case(self): self.op_type = "log" self.dtype = self.in_type - - x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) + x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype) out = np.log(x) self.attrs = {'use_xpu': True} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} + class TestLogCase1(XPUTestLog): + + def set_shape(self): + self.shape = [1, 11, 17] + + class TestLogCase2(XPUTestLog): + + def set_shape(self): + self.shape = [2, 2, 2] + + class TestLogCase3(XPUTestLog): + + def set_shape(self): + self.shape = [2] + + class TestLogCase4(XPUTestLog): + + def set_shape(self): + self.shape = [1, 2, 3, 4] + support_types = get_xpu_op_support_types('log') for stype in support_types: