Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add gelu and erf primitive operators for new autograd #45338

Merged
merged 2 commits into from
Sep 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion paddle/fluid/operators/prim_ops/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,17 @@ set(PRIM_OP_SRCS
div_p_op.cc
sqrt_p_op.cc
tanh_p_op.cc
sin_p_op.cc
cos_p_op.cc
exp_p_op.cc
matmul_p_op.cc
fill_constant_p_op.cc
log_p_op.cc
select_p_op.cc
eq_p_op.cc
pow_p_op.cc
max_p_op.cc)
max_p_op.cc
erf_p_op.cc)

cc_test(
prim_op_test
Expand Down
78 changes: 78 additions & 0 deletions paddle/fluid/operators/prim_ops/erf_p_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

namespace paddle {
namespace framework {
class InferShapeContext;
class VarDesc;
} // namespace framework
} // namespace paddle

namespace paddle {
namespace operators {
class ErfPrimOp : public framework::OperatorBase {
public:
ErfPrimOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"Prim operator erf_p should not be excuted directly"));
}
};

class ErfPrimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of erf_p op.");
AddOutput("Y", "(Tensor), The output tensor of erf_p op.");
AddComment(R"DOC(Autograd primitive erf_p operator.)DOC");
}
};

class ErfPrimOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0];
framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0];
framework::VarDesc *x_var = PADDLE_GET(framework::VarDesc *, x_var_ptr);
PADDLE_GET(framework::VarDesc *, y_var_ptr)->SetShape(x_var->GetShape());
}
};

class ErfPrimOpVarTypeInference
: public framework::StaticGraphVarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {
auto x_name = Input(ctx, "X")[0];
auto y_name = Output(ctx, "Y")[0];
SetType(ctx, y_name, GetType(ctx, x_name));
SetDataType(ctx, y_name, GetDataType(ctx, x_name));
}
};

} // namespace operators
} // namespace paddle

REGISTER_OPERATOR(erf_p,
paddle::operators::ErfPrimOp,
paddle::operators::ErfPrimOpMaker,
paddle::operators::ErfPrimOpShapeInference,
paddle::operators::ErfPrimOpVarTypeInference);
20 changes: 20 additions & 0 deletions paddle/fluid/operators/prim_ops/prim_op_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ USE_OP_ITSELF(select_p);
USE_OP_ITSELF(eq_p);
USE_OP_ITSELF(pow_p);
USE_OP_ITSELF(max_p);
USE_OP_ITSELF(erf_p);

namespace paddle {
namespace framework {
Expand Down Expand Up @@ -710,5 +711,24 @@ TEST(PrimOp, max_p) {
ASSERT_EQ(shapes[2], 4L);
}

TEST(PrimOp, erf_p) {
ProgramDesc program;
auto *block = program.MutableBlock(0);
std::vector<int64_t> shape{3, 4, 5};

std::string x0 = "x0";
std::string x1 = "x1";

NewVar(block, x0, shape);
AppendOp(block, "erf_p", {{"X", {x0}}}, {{"Y", {x1}}}, {});
ASSERT_EQ(block->Var("x1")->GetType(), proto::VarType::LOD_TENSOR);
ASSERT_EQ(block->Var("x1")->GetDataType(), proto::VarType_Type_FP32);
auto shapes = block->Var("x1")->GetShape();
ASSERT_EQ(shapes.size(), 3UL);
ASSERT_EQ(shapes[0], 3L);
ASSERT_EQ(shapes[1], 4L);
ASSERT_EQ(shapes[2], 5L);
}

} // namespace framework
} // namespace paddle
Original file line number Diff line number Diff line change
Expand Up @@ -364,6 +364,42 @@ def init_data(self):
]


class TestErfPJVPAndTranspose(TestAddPJVPAndTranspose):

def init_data(self):
# Set prim op
self.op_type = 'erf_p'
X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
self.prim_input = {
'X': X,
}
self.prim_output = {
'Y':
self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
}
self.prim_attrs = {}

# Set JVP
X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64')
self.jvp_args = (X_DOT, )
self.jvp_out_shape_map = {0: self.prim_output['Y']}

self.all_ops = [
# prim op:
'erf_p',
# jvp op:
'exp_p',
'fill_constant_p',
'fill_constant_p',
'fill_constant_p',
'mul_p',
'mul_p',
'pow_p',
'sub_p',
# transpose op:
]


class TestLogPJVPAndTranspose(TestAddPJVPAndTranspose):

def init_data(self):
Expand Down
65 changes: 65 additions & 0 deletions python/paddle/fluid/tests/unittests/autograd/test_orig2prim.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,26 @@ def init_data(self):
self.out_map = {0: self.output['Out']}


class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):

def init_data(self):
self.op_type = 'erf'
X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

self.input = {
'X': X,
}
self.output = {
'Out':
self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
}
self.attrs = {}

self.orig2prim_args = (X, )
self.all_ops = ['erf', 'erf_p']
self.out_map = {0: self.output['Out']}


class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):

def init_data(self):
Expand Down Expand Up @@ -559,5 +579,50 @@ def init_data(self):
self.out_map = {0: self.output['Out']}


class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):

def init_data(self):
self.op_type = 'gelu'
X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

self.input = {'X': X}
self.output = {
'Out':
self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
}
self.attrs = {'approximate': False}

self.orig2prim_args = (X, )
self.all_ops = [
'gelu', 'add_p', 'erf_p', 'fill_constant_p', 'fill_constant_p',
'fill_constant_p', 'mul_p', 'mul_p', 'mul_p'
]
# { prim_op_output_index: orig_op_output_var }
self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):

def init_data(self):
self.op_type = 'gelu'
X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

self.input = {'X': X}
self.output = {
'Out':
self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
}
self.attrs = {'approximate': True}

self.orig2prim_args = (X, )
self.all_ops = [
'add_p', 'add_p', 'fill_constant_p', 'fill_constant_p',
'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'gelu',
'mul_p', 'mul_p', 'mul_p', 'mul_p', 'pow_p', 'tanh_p'
]
# { prim_op_output_index: orig_op_output_var }
self.out_map = {0: self.output['Out']}


if __name__ == '__main__':
unittest.main()
20 changes: 20 additions & 0 deletions python/paddle/fluid/tests/unittests/autograd/test_prim2orig.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,26 @@ def init_data(self):
self.out_map = {self.output['Y']: 0}


class TestErfPPrim2Orig(TestAddPPrim2Orig):

def init_data(self):
self.op_type = 'erf_p'
X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

self.input = {
'X': X,
}
self.output = {
'Y':
self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
}
self.attrs = {}

self.prim2orig_args = (X, )
self.all_ops = ['erf_p', 'erf']
self.out_map = {self.output['Y']: 0}


class TestLogPPrim2Orig(TestAddPPrim2Orig):

def init_data(self):
Expand Down
55 changes: 38 additions & 17 deletions python/paddle/fluid/tests/unittests/autograd/test_primapi.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,11 @@
import unittest

import numpy as np
import autograd
import autograd.numpy as np_autograd

import paddle

import autograd
import autograd.numpy as anp
import autograd.scipy as ascipy
import config
import utils

Expand Down Expand Up @@ -278,6 +278,11 @@ def test_illegal_param(self):
np.array([1, 2, 3]),
np.array([2, 2, 2]),
), None, 'float32'),
('erf', paddle.erf, (np.random.rand(300, 288), ), None, 'float32'),
('gelu', paddle.nn.functional.gelu,
(np.random.rand(200, 189), ), None, 'float32'),
('gelu_approximate', lambda x: paddle.nn.functional.gelu(x, True),
(np.random.rand(200, 189), ), None, 'float32'),
))
class TestGrad(unittest.TestCase):

Expand Down Expand Up @@ -397,25 +402,41 @@ def multiply_pd(x):


multiply_ag = lambda xs: xs[0] * xs[0] * xs[0] * xs[0] * xs[0]
sin_ag = lambda xs: np_autograd.sin(xs[0])
cos_ag = lambda xs: np_autograd.cos(xs[0])
exp_ag = lambda xs: np_autograd.exp(xs[0])
sin_ag = lambda xs: anp.sin(xs[0])
cos_ag = lambda xs: anp.cos(xs[0])
exp_ag = lambda xs: anp.exp(xs[0])
pow_ag = lambda xs: xs[0]**xs[1]
log_ag = lambda xs: np_autograd.log(xs[0])
log_ag = lambda xs: anp.log(xs[0])
erf_ag = lambda xs: ascipy.special.erf(xs[0])


def gelu_ag(x, approximate=False):
if approximate:
sqrt_2_over_pi = np.sqrt(2 / np.pi).astype(x.dtype)
cdf = 0.5 * (1.0 + anp.tanh(sqrt_2_over_pi * (x + 0.044715 * (x**3))))
return x * cdf
else:
return x * (ascipy.special.erf(x / np.sqrt(2)) + 1) / 2


@utils.place(config.DEVICES)
@utils.parameterize(
(utils.TEST_CASE_NAME, 'fun_pd', 'fun_ag', 'xs', 'v', 'dtype'), (
('multiply', multiply_pd, multiply_ag,
(np.random.rand(3, 5), ), None, 'float32'),
('sin', paddle.sin, sin_ag, (np.random.rand(2, 3), ), None, 'float32'),
('cos', paddle.cos, cos_ag, (np.random.rand(3, 4), ), None, 'float32'),
('exp', paddle.exp, exp_ag, (np.random.rand(2, 3), ), None, 'float32'),
('pow', paddle.pow, pow_ag,
(np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float32'),
('log', paddle.log, log_ag, (np.random.rand(3, 8), ), None, 'float32'),
))
(utils.TEST_CASE_NAME, 'fun_pd', 'fun_ag', 'xs', 'v', 'dtype'),
(('multiply', multiply_pd, multiply_ag,
(np.random.rand(3, 5), ), None, 'float32'),
('sin', paddle.sin, sin_ag, (np.random.rand(2, 3), ), None, 'float32'),
('cos', paddle.cos, cos_ag, (np.random.rand(3, 4), ), None, 'float32'),
('exp', paddle.exp, exp_ag, (np.random.rand(2, 3), ), None, 'float32'),
('pow', paddle.pow, pow_ag,
(np.random.rand(2, 3), np.random.rand(2, 3)), None, 'float32'),
('log', paddle.log, log_ag, (np.random.rand(3, 8), ), None, 'float32'),
('erf', paddle.erf, erf_ag, (np.random.rand(100, 200), ), None, 'float32'),
('gelu', paddle.nn.functional.gelu, lambda xs: gelu_ag(xs[0]),
(np.random.rand(10, 20, 30), ), None, 'float32'),
('gelu_approximate',
lambda x: paddle.nn.functional.gelu(x, approximate=True),
lambda xs: gelu_ag(xs[0], approximate=True),
(np.random.rand(10, 20, 30), ), None, 'float32')))
class TestGradWithHigherOrder(unittest.TestCase):

def setUp(self):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
('sin', primops.sin, randn(2, 3), {}, (2, 3), 'float64'),
('cos', primops.cos, randn(2, 3), {}, (2, 3), 'float64'),
('exp', primops.exp, randn(2, 3), {}, (2, 3), 'float64'),
('erf', primops.erf, randn(2, 3), {}, (2, 3), 'float64'),
('log', primops.log, randn(2, 3), {}, (2, 3), 'float64'),
('reshape', primops.reshape, randn(2, 3), {
'shape': (3, 2)
Expand Down
5 changes: 5 additions & 0 deletions python/paddle/incubate/autograd/primops.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,3 +355,8 @@ def pow(x, y, out=None):
@REGISTER_FN('max_p', 'X', 'Y', 'Z')
def max(x, y, out=None):
return _simple_binop(LayerHelper('max_p', **locals()))


@REGISTER_FN('erf_p', 'X', 'Y')
def erf(x, out=None):
return _simple_unop(LayerHelper('erf_p', **locals()))
Loading