diff --git a/ppdiffusers/examples/community/README.md b/ppdiffusers/examples/community/README.md
index 9e7497c5c..a340f3e90 100644
--- a/ppdiffusers/examples/community/README.md
+++ b/ppdiffusers/examples/community/README.md
@@ -18,6 +18,7 @@
|EDICT Image Editing Pipeline| 一个用于文本引导的图像编辑的 Stable Diffusion Pipeline|[EDICT Image Editing Pipeline](#edict_pipeline)||
|FABRIC - Stable Diffusion with feedback Pipeline| 一个用于喜欢图片和不喜欢图片的反馈 Pipeline|[FABRIC - Stable Diffusion with feedback Pipeline](#fabric_pipeline)||
|Stable Diffusion XL Long Weighted Prompt Pipeline| 一个不限制 prompt 长度的 Pipeline|[Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline)||
+|Checkpoint Merger Pipeline|一个支持合并模型checkpoints的Diffusion Pipeline|[Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)||
## Example usages
@@ -892,3 +893,67 @@ images.save("out.png")
生成的图片如下所示:
+
+### Checkpoint Merger Pipeline
+
+一个支持合并模型checkpoints的Diffusion Pipeline,使用方式如下所示:
+
+``` python
+from ppdiffusers import DiffusionPipeline
+
+# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
+# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
+# merge for convenience
+pipe = DiffusionPipeline.from_pretrained(
+ "CompVis/stable-diffusion-v1-4",
+ custom_pipeline="checkpoint_merger",
+)
+
+# There are multiple possible scenarios:
+# The pipeline with the merged checkpoints is returned in all the scenarios
+
+# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
+merged_pipe = pipe.merge(
+ ["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5"],
+ interp="sigmoid",
+ alpha=0.4,
+)
+
+# Incompatible checkpoints in model_index.json but merge might be possible. Use force = True to ignore model_index.json compatibility
+merged_pipe_1 = pipe.merge(
+ ["CompVis/stable-diffusion-v1-4", "prompthero/openjourney"],
+ force=True,
+ interp="sigmoid",
+ alpha=0.4,
+)
+
+# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
+merged_pipe_2 = pipe.merge(
+ [
+ "CompVis/stable-diffusion-v1-4",
+ "runwayml/stable-diffusion-v1-5",
+ "prompthero/openjourney",
+ ],
+ force=True,
+ interp="add_difference",
+ alpha=0.4,
+)
+
+prompt = "An astronaut riding a horse on Mars"
+
+image = merged_pipe(prompt).images[0]
+image.save("CompVis_runwayml.jpg")
+image = merged_pipe_1(prompt).images[0]
+image.save("CompVis_prompthero.jpg")
+image = merged_pipe_2(prompt).images[0]
+image.save("CompVis_runwayml_prompthero.jpg")
+```
+
+一些示例图片以及合并详细信息如下:
+
+1. "CompVis/stable-diffusion-v1-4" + "runwayml/stable-diffusion-v1-5" ; Sigmoid interpolation; alpha = 0.4
+
+2. "CompVis/stable-diffusion-v1-4" + "prompthero/openjourney" ; Sigmoid interpolation; alpha = 0.4
+
+3. "CompVis/stable-diffusion-v1-4" + "runwayml/stable-diffusion-v1-5" + "prompthero/openjourney" ; Add Difference interpolation; alpha = 0.4
+
diff --git a/ppdiffusers/examples/community/checkpoint_merger.py b/ppdiffusers/examples/community/checkpoint_merger.py
new file mode 100644
index 000000000..7a606d4cf
--- /dev/null
+++ b/ppdiffusers/examples/community/checkpoint_merger.py
@@ -0,0 +1,323 @@
+# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import glob
+import os
+from typing import Dict, List, Union
+
+import paddle
+import safetensors.paddle
+
+from ppdiffusers import DiffusionPipeline
+from ppdiffusers.utils import (
+ DIFFUSERS_CACHE,
+ FROM_AISTUDIO,
+ FROM_HF_HUB,
+ PPDIFFUSERS_CACHE,
+)
+
+
+class CheckpointMergerPipeline(DiffusionPipeline):
+ """
+ A class that supports merging diffusion models based on the discussion here:
+ https://github.com/huggingface/diffusers/issues/877
+
+ Example usage:-
+
+ pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
+
+ merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
+
+ merged_pipe.to('cuda')
+
+ prompt = "An astronaut riding a unicycle on Mars"
+
+ results = merged_pipe(prompt)
+
+ ## For more details, see the docstring for the merge method.
+
+ """
+
+ def __init__(self):
+ self.register_to_config()
+ super().__init__()
+
+ def _convert_dict(self, ori_dict):
+ del_flag = False
+ for key, value in ori_dict.items():
+ if isinstance(value, list):
+ for item in value:
+ if item in ["ppdiffusers", "ppdiffusers.transformers"]:
+ ori_dict[key] = item
+ elif item == "diffusers" or item == "diffusers_paddle":
+ ori_dict[key] = "ppdiffusers"
+ elif item == "transformers" or item == "paddlenlp.transformers":
+ ori_dict[key] = "ppdiffusers.transformers"
+ if key == "requires_safety_checker":
+ del_flag = True
+ if del_flag:
+ del ori_dict["requires_safety_checker"]
+ return ori_dict
+
+ def _compare_model_configs(self, dict0, dict1):
+ print(dict0)
+ print(dict1)
+ if dict0 == dict1:
+ return True
+ else:
+ config0, meta_keys0 = self._remove_meta_keys(dict0)
+ config1, meta_keys1 = self._remove_meta_keys(dict1)
+ if config0 == config1:
+ print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
+ return True
+ return False
+
+ def _remove_meta_keys(self, config_dict: Dict):
+ meta_keys = []
+ temp_dict = config_dict.copy()
+ for key in config_dict.keys():
+ if key.startswith("_"):
+ temp_dict.pop(key)
+ meta_keys.append(key)
+ return (temp_dict, meta_keys)
+
+ @paddle.no_grad()
+ def merge(
+ self,
+ pretrained_model_name_or_path_list: List[Union[str, os.PathLike]],
+ **kwargs,
+ ):
+ """
+ Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
+ in the argument 'pretrained_model_name_or_path_list' as a list.
+
+ Parameters:
+ -----------
+ pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
+
+ **kwargs:
+ Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
+
+ cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, paddle_dtype, device_map.
+
+ alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
+ would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
+
+ interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None.
+ Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported.
+
+ force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
+
+ variant - which variant of a pretrained model to load, e.g. "fp16" (None)
+
+ """
+ # Default kwargs from DiffusionPipeline
+ from_hf_hub = kwargs.pop("from_hf_hub", FROM_HF_HUB)
+ from_aistudio = kwargs.pop("from_aistudio", FROM_AISTUDIO)
+ cache_dir = kwargs.pop("cache_dir", None)
+ resume_download = kwargs.pop("resume_download", False)
+ force_download = kwargs.pop("force_download", False)
+ proxies = kwargs.pop("proxies", None)
+ local_files_only = kwargs.pop("local_files_only", False)
+ token = kwargs.pop("token", None)
+ variant = kwargs.pop("variant", None)
+ revision = kwargs.pop("revision", None)
+ paddle_dtype = kwargs.pop("paddle_dtype", None)
+ device_map = kwargs.pop("device_map", None)
+
+ alpha = kwargs.pop("alpha", 0.5)
+ interp = kwargs.pop("interp", None)
+
+ print("Received list", pretrained_model_name_or_path_list)
+ print(f"Combining with alpha={alpha}, interpolation mode={interp}")
+
+ checkpoint_count = len(pretrained_model_name_or_path_list)
+ # Ignore result from model_index_json comparision of the two checkpoints
+ force = kwargs.pop("force", False)
+
+ # If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
+ if checkpoint_count > 3 or checkpoint_count < 2:
+ raise ValueError(
+ "Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
+ " passed."
+ )
+
+ print("Received the right number of checkpoints")
+ # chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
+ # chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None
+
+ # Validate that the checkpoints can be merged
+ # Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
+ config_dicts = []
+ for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
+ config_dict = DiffusionPipeline.load_config(
+ pretrained_model_name_or_path,
+ cache_dir=cache_dir,
+ resume_download=resume_download,
+ force_download=force_download,
+ proxies=proxies,
+ local_files_only=local_files_only,
+ token=token,
+ revision=revision,
+ )
+ config_dict = self._convert_dict(config_dict)
+ config_dicts.append(config_dict)
+
+ comparison_result = True
+ for idx in range(1, len(config_dicts)):
+ comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
+ if not force and comparison_result is False:
+ raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
+ print("Compatible model_index.json files found")
+ # Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
+ cached_folders = []
+ for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
+ if os.path.isdir(pretrained_model_name_or_path):
+ cached_folder = pretrained_model_name_or_path
+ else:
+ DiffusionPipeline.from_pretrained(
+ pretrained_model_name_or_path,
+ cache_dir=cache_dir,
+ resume_download=True,
+ proxies=proxies,
+ local_files_only=local_files_only,
+ revision=revision,
+ safety_checker=None,
+ use_safetensors=True,
+ )
+ if from_aistudio:
+ cached_folder = None # TODO, check aistudio cache
+ elif from_hf_hub:
+ cached_folder = os.path.join(DIFFUSERS_CACHE, pretrained_model_name_or_path)
+ else:
+ cached_folder = os.path.join(PPDIFFUSERS_CACHE, pretrained_model_name_or_path)
+
+ print("Cached Folder", cached_folder)
+ cached_folders.append(cached_folder)
+
+ # Step 3:-
+ # Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place
+ final_pipe = DiffusionPipeline.from_pretrained(
+ cached_folders[0],
+ paddle_dtype=paddle_dtype,
+ device_map=device_map,
+ variant=variant,
+ safety_checker=None,
+ )
+ final_pipe.to(self.device)
+
+ checkpoint_path_2 = None
+ if len(cached_folders) > 2:
+ checkpoint_path_2 = os.path.join(cached_folders[2])
+
+ if interp == "sigmoid":
+ theta_func = CheckpointMergerPipeline.sigmoid
+ elif interp == "inv_sigmoid":
+ theta_func = CheckpointMergerPipeline.inv_sigmoid
+ elif interp == "add_diff":
+ theta_func = CheckpointMergerPipeline.add_difference
+ else:
+ theta_func = CheckpointMergerPipeline.weighted_sum
+
+ # Find each module's state dict.
+ for attr in final_pipe.config.keys():
+ if not attr.startswith("_"):
+ checkpoint_path_1 = os.path.join(cached_folders[1], attr)
+ if os.path.exists(checkpoint_path_1):
+ files = [
+ *glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
+ *glob.glob(os.path.join(checkpoint_path_1, "*.pdprams")),
+ ]
+ checkpoint_path_1 = files[0] if len(files) > 0 else None
+ if len(cached_folders) < 3:
+ checkpoint_path_2 = None
+ else:
+ checkpoint_path_2 = os.path.join(cached_folders[2], attr)
+ if os.path.exists(checkpoint_path_2):
+ files = [
+ *glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
+ *glob.glob(os.path.join(checkpoint_path_2, "*.pdprams")),
+ ]
+ checkpoint_path_2 = files[0] if len(files) > 0 else None
+ # For an attr if both checkpoint_path_1 and 2 are None, ignore.
+ # If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
+ if checkpoint_path_1 is None and checkpoint_path_2 is None:
+ print(f"Skipping {attr}: not present in 2nd or 3d model")
+ continue
+ try:
+ module = getattr(final_pipe, attr)
+ if isinstance(module, bool): # ignore requires_safety_checker boolean
+ continue
+ theta_0 = getattr(module, "state_dict")
+ theta_0 = theta_0()
+
+ update_theta_0 = getattr(module, "load_state_dict")
+ theta_1 = (
+ safetensors.paddle.load_file(checkpoint_path_1)
+ if (checkpoint_path_1.endswith(".safetensors"))
+ else paddle.load(checkpoint_path_1, map_location="cpu")
+ )
+ theta_2 = None
+ if checkpoint_path_2:
+ theta_2 = (
+ safetensors.paddle.load_file(checkpoint_path_2)
+ if (checkpoint_path_2.endswith(".safetensors"))
+ else paddle.load(checkpoint_path_2, map_location="cpu")
+ )
+
+ if not theta_0.keys() == theta_1.keys():
+ print(f"Skipping {attr}: key mismatch")
+ continue
+ if theta_2 and not theta_1.keys() == theta_2.keys():
+ print(f"Skipping {attr}:y mismatch")
+ except Exception as e:
+ print(f"Skipping {attr} do to an unexpected error: {str(e)}")
+ continue
+ print(f"MERGING {attr}")
+
+ for key in theta_0.keys():
+ if theta_2:
+ theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
+ else:
+ theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)
+
+ del theta_1
+ del theta_2
+ update_theta_0(theta_0)
+
+ del theta_0
+ return final_pipe
+
+ @staticmethod
+ def weighted_sum(theta0, theta1, theta2, alpha):
+ return ((1 - alpha) * theta0) + (alpha * theta1)
+
+ # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
+ @staticmethod
+ def sigmoid(theta0, theta1, theta2, alpha):
+ alpha = alpha * alpha * (3 - (2 * alpha))
+ return theta0 + ((theta1 - theta0) * alpha)
+
+ # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
+ @staticmethod
+ def inv_sigmoid(theta0, theta1, theta2, alpha):
+ import math
+
+ alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
+ return theta0 + ((theta1 - theta0) * alpha)
+
+ @staticmethod
+ def add_difference(theta0, theta1, theta2, alpha):
+ return theta0 + (theta1 - theta2) * (1.0 - alpha)