diff --git a/configs/rec/rec_svtrnet_cppd_base_en.yml b/configs/rec/rec_svtrnet_cppd_base_en.yml index cca1151c42..99885fb066 100644 --- a/configs/rec/rec_svtrnet_cppd_base_en.yml +++ b/configs/rec/rec_svtrnet_cppd_base_en.yml @@ -92,7 +92,7 @@ Train: Eval: dataset: - name: LMDBDataset + name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/evaluation/ transforms: - DecodeImage: # load image diff --git a/doc/doc_ch/algorithm_rec_cppd.md b/doc/doc_ch/algorithm_rec_cppd.md index 0fd2fd04e2..1d48ed3059 100644 --- a/doc/doc_ch/algorithm_rec_cppd.md +++ b/doc/doc_ch/algorithm_rec_cppd.md @@ -37,7 +37,7 @@ CPPD在场景文本识别公开数据集上的精度(%)和模型文件如下: | CPPD Base | 98.2 | 95.5 | 97.6 | 87.9 | 90.0 | 92.7 | 93.80 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar)| | CPPD Base 48*160 | 97.5 | 95.5 | 97.7 | 87.7 | 92.4 | 93.7 | 94.10 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_48_160_en_train.tar) | -* 在英文合成数据集(MJ+ST)训练,在英文Union14M-L benchmark测试结果[U14m](https://github.com/Mountchicken/Union14M/)。 +* 英文合成数据集(MJ+ST)训练,英文Union14M-L benchmark测试结果[U14m](https://github.com/Mountchicken/Union14M/)。 | 模型 |Curve | Multi-
Oriented |Artistic |Contextless| Salient | Multi-
word | General | Avg | 下载链接 | |:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:| @@ -45,14 +45,23 @@ CPPD在场景文本识别公开数据集上的精度(%)和模型文件如下: | CPPD Base | 65.5 | 18.6 | 56.0 | 61.9 | 71.0 | 57.5 | 65.8 | 56.63 | 同上表 | | CPPD Base 48*160 | 71.9 | 22.1 | 60.5 | 67.9 | 78.3 | 63.9 | 67.1 | 61.69 | 同上表 | -* 中文训练集和测试集来自于[Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) 。 +* Union14M-L 训练集训练,英文测试结果。 + +| 模型 |IC13
857 | SVT |IIIT5k
3000 |IC15
1811| SVTP |CUTE80 | Avg | 下载链接 | +|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:| +| CPPD Base 32*128 | 98.7 | 98.5 | 99.4 | 91.7 | 96.7 | 99.7 | 97.44 | [英文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_u14m_train.tar) | + +| 模型 |Curve | Multi-
Oriented |Artistic |Contextless| Salient | Multi-
word | General | Avg | 下载链接 | +|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:| +| CPPD Base 32*128 | 87.5 | 70.7 | 78.2 | 82.9 | 85.5 | 85.4 | 84.3 | 82.08 | 同上表 | + +* 中文训练集和测试集来自于[Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition)。 | 模型 | Scene | Web | Document | Handwriting | Avg | 下载链接 | |:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:| | CPPD Base | 74.4 | 76.1 | 98.6 | 55.3 | 76.10 | [中文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_ch_train.tar) | | CPPD Base + STN | 78.4 | 79.3 | 98.9 | 57.6 | 78.55 | [中文](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_stn_ch_train.tar) | - ## 2. 环境配置 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 @@ -67,7 +76,9 @@ CPPD在场景文本识别公开数据集上的精度(%)和模型文件如下: #### 数据集准备 [英文数据集下载](https://github.com/baudm/parseq) -[Union14M-Benchmark 下载](https://github.com/Mountchicken/Union14M) + +[Union14M-L 下载](https://github.com/Mountchicken/Union14M) + [中文数据集下载](https://github.com/fudanvi/benchmarking-chinese-text-recognition#download) #### 启动训练 diff --git a/doc/doc_en/algorithm_rec_cppd_en.md b/doc/doc_en/algorithm_rec_cppd_en.md index 41315ce2fe..3bc3861988 100644 --- a/doc/doc_en/algorithm_rec_cppd_en.md +++ b/doc/doc_en/algorithm_rec_cppd_en.md @@ -27,7 +27,7 @@ Scene text recognition models based on deep learning typically follow an Encoder The accuracy (%) and model files of CPPD on the public dataset of scene text recognition are as follows:: -* English dataset from [PARSeq](https://github.com/baudm/parseq)。 +* English dataset from [PARSeq](https://github.com/baudm/parseq). | Model |IC13
857 | SVT |IIIT5k
3000 |IC15
1811| SVTP |CUTE80 | Avg | Download | @@ -36,7 +36,7 @@ The accuracy (%) and model files of CPPD on the public dataset of scene text rec | CPPD Base | 98.2 | 95.5 | 97.6 | 87.9 | 90.0 | 92.7 | 93.80 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar)| | CPPD Base 48*160 | 97.5 | 95.5 | 97.7 | 87.7 | 92.4 | 93.7 | 94.10 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_48_160_en_train.tar) | -* Union14M-L benchmark from [U14m](https://github.com/Mountchicken/Union14M/)。 +* Trained on Synth dataset(MJ+ST), Test on Union14M-L benchmark from [U14m](https://github.com/Mountchicken/Union14M/). | Model |Curve | Multi-
Oriented |Artistic |Contextless| Salient | Multi-
word | General | Avg | Download | |:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:| @@ -44,7 +44,17 @@ The accuracy (%) and model files of CPPD on the public dataset of scene text rec | CPPD Base | 65.5 | 18.6 | 56.0 | 61.9 | 71.0 | 57.5 | 65.8 | 56.63 | Same as the table above. | | CPPD Base 48*160 | 71.9 | 22.1 | 60.5 | 67.9 | 78.3 | 63.9 | 67.1 | 61.69 | Same as the table above. | -* Chinese dataset from [Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition) 。 +* Trained on Union14M-L training dataset. + +| Model |IC13
857 | SVT |IIIT5k
3000 |IC15
1811| SVTP |CUTE80 | Avg | Download | +|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:| +| CPPD Base 32*128 | 98.7 | 98.5 | 99.4 | 91.7 | 96.7 | 99.7 | 97.44 | [en](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_u14m_train.tar) | + +| Model |Curve | Multi-
Oriented |Artistic |Contextless| Salient | Multi-
word | General | Avg | Download | +|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:| +| CPPD Base 32*128 | 87.5 | 70.7 | 78.2 | 82.9 | 85.5 | 85.4 | 84.3 | 82.08 | Same as the table above. | + +* Chinese dataset from [Chinese Benckmark](https://github.com/FudanVI/benchmarking-chinese-text-recognition). | Model | Scene | Web | Document | Handwriting | Avg | Download | |:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|