diff --git a/README.md b/README.md index ba07df6a0..8f810d2ca 100644 --- a/README.md +++ b/README.md @@ -79,11 +79,10 @@ ml_100k = cornac.datasets.movielens.load_feedback() rs = RatioSplit(data=ml_100k, test_size=0.2, rating_threshold=4.0, seed=123) # initialize models, here we are comparing: Biased MF, PMF, and BPR -models = [ - MF(k=10, max_iter=25, learning_rate=0.01, lambda_reg=0.02, use_bias=True, seed=123), - PMF(k=10, max_iter=100, learning_rate=0.001, lambda_reg=0.001, seed=123), - BPR(k=10, max_iter=200, learning_rate=0.001, lambda_reg=0.01, seed=123), -] +mf = MF(k=10, max_iter=25, learning_rate=0.01, lambda_reg=0.02, use_bias=True, seed=123) +pmf = PMF(k=10, max_iter=100, learning_rate=0.001, lambda_reg=0.001, seed=123) +bpr = BPR(k=10, max_iter=200, learning_rate=0.001, lambda_reg=0.01, seed=123) +models = [mf, pmf, bpr] # define metrics to evaluate the models metrics = [MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(k=10), AUC(), MAP()] @@ -104,6 +103,40 @@ cornac.Experiment(eval_method=rs, models=models, metrics=metrics, user_based=Tru For more details, please take a look at our [examples](examples) as well as [tutorials](tutorials). For learning purposes, this list of [tutorials on recommender systems](https://github.com/PreferredAI/tutorials/tree/master/recommender-systems) will be more organized and comprehensive. +## Simple model serving + +Here, we provide a simple way to serve a Cornac model by launching a standalone web service. While this will not be an optimized service for model deployment in production, it is quite handy for testing or creating a demo application. Supposed that we use the trained BPR from previous example, we first need to save the model: +```python +bpr.save("save_dir") +``` +The model can be deployed easily by triggering Cornac serving module: +```bash +$ python -m cornac.serving --model_dir save_dir/BPR --model_class cornac.models.BPR + +# Serving BPR at port 8080 +``` +Here we go, our model service is now ready. Let's get `top-5` item recommendations for the user `"63"`: +```bash +$ curl -X GET "http://127.0.0.1:8080/recommend?uid=63&k=5&remove_seen=false" + +# Response: {"recommendations": ["50", "181", "100", "258", "286"], "query": {"uid": "63", "k": 5, "remove_seen": false}} +``` +If we want to remove seen items during training, we need to provide `train_set` when starting the serving service. +```bash +$ python -m cornac.serving --help + +usage: serving.py [-h] --model_dir MODEL_DIR [--model_class MODEL_CLASS] [--train_set TRAIN_SET] [--port PORT] + +Cornac model serving + +options: + -h, --help show this help message and exit + --model_dir MODEL_DIR path to directory where the model was saved + --model_class MODEL_CLASS class of the model being deployed + --train_set TRAIN_SET path to pickled file of the train_set (to remove seen items) + --port PORT service port +``` + ## Models The recommender models supported by Cornac are listed below. Why don't you join us to lengthen the list? @@ -117,7 +150,7 @@ The recommender models supported by Cornac are listed below. Why don't you join | | [Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR)](cornac/models/hrdr), [paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231219313207) | [requirements.txt](cornac/models/hrdr/requirements.txt) | [hrdr_example.py](examples/hrdr_example.py) | | [LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation](cornac/models/lightgcn), [paper](https://arxiv.org/pdf/2002.02126.pdf) | [requirements.txt](cornac/models/lightgcn/requirements.txt) | [lightgcn_example.py](examples/lightgcn_example.py) | 2019 | [Embarrassingly Shallow Autoencoders for Sparse Data (EASEá´¿)](cornac/models/ease), [paper](https://arxiv.org/pdf/1905.03375.pdf) | N/A | [ease_movielens.py](examples/ease_movielens.py) -| | [Neural Graph Collaborative Filtering](cornac/models/ngcf), [paper](https://arxiv.org/pdf/1905.08108.pdf) | [requirements.txt](cornac/models/ngcf/requirements.txt) | [ngcf_example.py](examples/ngcf_example.py) +| | [Neural Graph Collaborative Filtering (NGCF)](cornac/models/ngcf), [paper](https://arxiv.org/pdf/1905.08108.pdf) | [requirements.txt](cornac/models/ngcf/requirements.txt) | [ngcf_example.py](examples/ngcf_example.py) | 2018 | [Collaborative Context Poisson Factorization (C2PF)](cornac/models/c2pf), [paper](https://www.ijcai.org/proceedings/2018/0370.pdf) | N/A | [c2pf_exp.py](examples/c2pf_example.py) | | [Graph Convolutional Matrix Completion (GCMC)](cornac/models/gcmc), [paper](https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_32.pdf) | [requirements.txt](cornac/models/gcmc/requirements.txt) | [gcmc_example.py](examples/gcmc_example.py) | | [Multi-Task Explainable Recommendation (MTER)](cornac/models/mter), [paper](https://arxiv.org/pdf/1806.03568.pdf) | N/A | [mter_exp.py](examples/mter_example.py) diff --git a/cornac/serving.py b/cornac/serving.py new file mode 100644 index 000000000..b1225d2e8 --- /dev/null +++ b/cornac/serving.py @@ -0,0 +1,128 @@ +# Copyright 2018 The Cornac Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""CLI entry point for model serving. +""" + +import argparse +import sys +import json +import pickle +import http.server +import socketserver + +from urllib.parse import urlparse, parse_qs + + +class ModelRequestHandler(http.server.BaseHTTPRequestHandler): + def _set_response(self, status_code=200, content_type="application/json"): + self.send_response(status_code) + self.send_header("Content-type", content_type) + self.end_headers() + + def do_GET(self): + if self.path == "/": + self._set_response() + response_data = {"message": "Cornac model serving."} + self.wfile.write(json.dumps(response_data).encode()) + elif self.path.startswith("/recommend"): + parsed_query = parse_qs(urlparse(self.path).query) + + # TODO: input validation + user_id = str(parsed_query["uid"][0]) + k = -1 if "k" not in parsed_query else int(parsed_query["k"][0]) + remove_seen = ( + False + if "remove_seen" not in parsed_query + else parsed_query["remove_seen"][0].lower() == "true" + ) + + response_data = { + "recommendations": self.server.model.recommend( + user_id=user_id, + k=k, + remove_seen=remove_seen, + train_set=self.server.train_set, + ), + "query": {"uid": user_id, "k": k, "remove_seen": remove_seen}, + } + + self._set_response() + self.wfile.write(json.dumps(response_data).encode()) + else: + self.send_error(404, "Endpoint not found") + + +def import_model_class(model_class): + components = model_class.split(".") + mod = __import__(".".join(components[:-1]), fromlist=[components[-1]]) + klass = getattr(mod, components[-1]) + return klass + + +def parse_args(): + parser = argparse.ArgumentParser(description="Cornac model serving") + parser.add_argument( + "--model_dir", + type=str, + required=True, + help="path to directory where the model was saved", + ) + parser.add_argument( + "--model_class", + type=str, + default="cornac.models.Recommender", + help="class of the model being deployed", + ) + parser.add_argument( + "--train_set", + type=str, + default=None, + help="path to pickled file of the train_set (to remove seen items)", + ) + parser.add_argument( + "--port", + type=int, + default=8080, + help="service port", + ) + + return parser.parse_args(sys.argv[1:]) + + +def main(): + args = parse_args() + + # Load model/train_set if provided + httpd = socketserver.TCPServer(("", args.port), ModelRequestHandler) + httpd.model = import_model_class(args.model_class).load(args.model_dir) + httpd.train_set = None + if args.train_set is not None: + with open(args.train_set, "rb") as f: + httpd.train_set = pickle.load(f) + + # Start service + try: + print(f"Serving {httpd.model.name} at port {args.port}") + httpd.serve_forever() + except KeyboardInterrupt: + pass + + httpd.server_close() + print("Server stopped.") + + +if __name__ == "__main__": + main()