diff --git a/monai/transforms/smooth_field/dictionary.py b/monai/transforms/smooth_field/dictionary.py index 4eca541fcc..c129d14f32 100644 --- a/monai/transforms/smooth_field/dictionary.py +++ b/monai/transforms/smooth_field/dictionary.py @@ -50,7 +50,6 @@ class RandSmoothFieldAdjustContrastd(RandomizableTransform, MapTransform): align_corners: if True align the corners when upsampling field prob: probability transform is applied gamma: (min, max) range for exponential field - apply_same_field: if True, apply the same field to each key, otherwise randomize individually device: Pytorch device to define field on """ @@ -66,13 +65,11 @@ def __init__( align_corners: Optional[bool] = None, prob: float = 0.1, gamma: Union[Sequence[float], float] = (0.5, 4.5), - apply_same_field: bool = True, device: Optional[torch.device] = None, ): RandomizableTransform.__init__(self, prob) MapTransform.__init__(self, keys) - self.apply_same_field = apply_same_field self.mode = ensure_tuple_rep(mode, len(self.keys)) self.trans = RandSmoothFieldAdjustContrast( @@ -108,9 +105,6 @@ def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Mapping[Hashable d = dict(data) for idx, key in enumerate(self.key_iterator(d)): - if not self.apply_same_field: - self.randomize() # new field for every key - self.trans.set_mode(self.mode[idx % len(self.mode)]) d[key] = self.trans(d[key], False) @@ -134,7 +128,6 @@ class RandSmoothFieldAdjustIntensityd(RandomizableTransform, MapTransform): align_corners: if True align the corners when upsampling field prob: probability transform is applied gamma: (min, max) range of intensity multipliers - apply_same_field: if True, apply the same field to each key, otherwise randomize individually device: Pytorch device to define field on """ @@ -150,13 +143,11 @@ def __init__( align_corners: Optional[bool] = None, prob: float = 0.1, gamma: Union[Sequence[float], float] = (0.1, 1.0), - apply_same_field: bool = True, device: Optional[torch.device] = None, ): RandomizableTransform.__init__(self, prob) MapTransform.__init__(self, keys) - self.apply_same_field = apply_same_field self.mode = ensure_tuple_rep(mode, len(self.keys)) self.trans = RandSmoothFieldAdjustIntensity( @@ -190,9 +181,6 @@ def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Mapping[Hashable d = dict(data) for idx, key in enumerate(self.key_iterator(d)): - if not self.apply_same_field: - self.randomize() # new field for every key - self.trans.set_mode(self.mode[idx % len(self.mode)]) d[key] = self.trans(d[key], False) @@ -220,7 +208,6 @@ class RandSmoothDeformd(RandomizableTransform, MapTransform): grid_mode: interpolation mode used for sampling input using deformation grid grid_padding_mode: padding mode used for sampling input using deformation grid grid_align_corners: if True align the corners when sampling the deformation grid - apply_same_field: if True, apply the same field to each key, otherwise randomize individually device: Pytorch device to define field on """ @@ -240,7 +227,6 @@ def __init__( grid_mode: Union[GridSampleModeType, Sequence[GridSampleModeType]] = GridSampleMode.NEAREST, grid_padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER, grid_align_corners: Optional[bool] = False, - apply_same_field: bool = True, device: Optional[torch.device] = None, ): RandomizableTransform.__init__(self, prob) @@ -248,7 +234,6 @@ def __init__( self.field_mode = ensure_tuple_rep(field_mode, len(self.keys)) self.grid_mode = ensure_tuple_rep(grid_mode, len(self.keys)) - self.apply_same_field = apply_same_field self.trans = RandSmoothDeform( rand_size=rand_size, @@ -285,9 +270,6 @@ def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Mapping[Hashable d = dict(data) for idx, key in enumerate(self.key_iterator(d)): - if not self.apply_same_field: - self.randomize() # new field for every key - self.trans.set_field_mode(self.field_mode[idx % len(self.field_mode)]) self.trans.set_grid_mode(self.grid_mode[idx % len(self.grid_mode)])