We provide the off-the-shelf scripts in the scripts_finetune.
- For example, to fine-tune SIGMA ViT-Base on Something-Something V2 with 8 GPUs, you can run
DATA_PATH='Your_Path/20bn-something-something-v2/something-something-v2-annotations/'
# Set the path to save checkpoints
MODEL_PATH='Your_Path/sigma_final_models/pretrain/ssv2/ssv2_vit_b_sigma_with_dino.pth'
OUTPUT_DIR='Output_Path/finetune_ssv2_pretrained_with_ssv2_vit_b_sigma_with_dino/eval_lr_1e-3_epoch_40_8gpus_no_update_freq/log.txt'
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 \
--master_port 12320 run_class_finetuning.py \
--model vit_base_patch16_224 \
--data_set SSV2 \
--nb_classes 174 \
--data_path ${DATA_PATH} \
--finetune ${MODEL_PATH} \
--log_dir ${OUTPUT_DIR} \
--output_dir ${OUTPUT_DIR} \
--batch_size 4 \
--num_sample 1 \
--input_size 224 \
--short_side_size 224 \
--save_ckpt_freq 100 \
--num_frames 16 \
--opt adamw \
--lr 1e-3 \
--warmup_lr 1e-6 \
--opt_betas 0.9 0.999 \
--weight_decay 0.05 \
--epochs 40 \
--dist_eval \
--test_num_segment 2 \
--test_num_crop 3 \