-
Notifications
You must be signed in to change notification settings - Fork 0
/
info_nce.py
126 lines (100 loc) · 5.59 KB
/
info_nce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn.functional as F
from torch import nn
__all__ = ['InfoNCE', 'info_nce']
class InfoNCE(nn.Module):
"""
Calculates the InfoNCE loss for self-supervised learning.
This contrastive loss enforces the embeddings of similar (positive) samples to be close
and those of different (negative) samples to be distant.
A query embedding is compared with one positive key and with one or more negative keys.
References:
https://arxiv.org/abs/1807.03748v2
https://arxiv.org/abs/2010.05113
Args:
temperature: Logits are divided by temperature before calculating the cross entropy.
reduction: Reduction method applied to the output.
Value must be one of ['none', 'sum', 'mean'].
See torch.nn.functional.cross_entropy for more details about each option.
negative_mode: Determines how the (optional) negative_keys are handled.
Value must be one of ['paired', 'unpaired'].
If 'paired', then each query sample is paired with a number of negative keys.
Comparable to a triplet loss, but with multiple negatives per sample.
If 'unpaired', then the set of negative keys are all unrelated to any positive key.
Input shape:
query: (N, D) Tensor with query samples (e.g. embeddings of the input).
positive_key: (N, D) Tensor with positive samples (e.g. embeddings of augmented input).
negative_keys (optional): Tensor with negative samples (e.g. embeddings of other inputs)
If negative_mode = 'paired', then negative_keys is a (N, M, D) Tensor.
If negative_mode = 'unpaired', then negative_keys is a (M, D) Tensor.
If None, then the negative keys for a sample are the positive keys for the other samples.
Returns:
Value of the InfoNCE Loss.
Examples:
>>> loss = InfoNCE()
>>> batch_size, num_negative, embedding_size = 32, 48, 128
>>> query = torch.randn(batch_size, embedding_size)
>>> positive_key = torch.randn(batch_size, embedding_size)
>>> negative_keys = torch.randn(num_negative, embedding_size)
>>> output = loss(query, positive_key, negative_keys)
"""
def __init__(self, temperature=0.1, reduction='mean', negative_mode='unpaired'):
super().__init__()
self.temperature = temperature
self.reduction = reduction
self.negative_mode = negative_mode
def forward(self, query, positive_key, negative_keys=None):
return info_nce(query, positive_key, negative_keys,
temperature=self.temperature,
reduction=self.reduction,
negative_mode=self.negative_mode)
def info_nce(query, positive_key, negative_keys=None, temperature=0.1, reduction='mean', negative_mode='unpaired'):
# Check input dimensionality.
if query.dim() != 2:
raise ValueError('<query> must have 2 dimensions.')
if positive_key.dim() != 2:
raise ValueError('<positive_key> must have 2 dimensions.')
if negative_keys is not None:
if negative_mode == 'unpaired' and negative_keys.dim() != 2:
raise ValueError("<negative_keys> must have 2 dimensions if <negative_mode> == 'unpaired'.")
if negative_mode == 'paired' and negative_keys.dim() != 3:
raise ValueError("<negative_keys> must have 3 dimensions if <negative_mode> == 'paired'.")
# Check matching number of samples.
if len(query) != len(positive_key):
raise ValueError('<query> and <positive_key> must must have the same number of samples.')
if negative_keys is not None:
if negative_mode == 'paired' and len(query) != len(negative_keys):
raise ValueError("If negative_mode == 'paired', then <negative_keys> must have the same number of samples as <query>.")
# Embedding vectors should have same number of components.
if query.shape[-1] != positive_key.shape[-1]:
raise ValueError('Vectors of <query> and <positive_key> should have the same number of components.')
if negative_keys is not None:
if query.shape[-1] != negative_keys.shape[-1]:
raise ValueError('Vectors of <query> and <negative_keys> should have the same number of components.')
# Normalize to unit vectors
query, positive_key, negative_keys = normalize(query, positive_key, negative_keys)
if negative_keys is not None:
# Explicit negative keys
# Cosine between positive pairs
positive_logit = torch.sum(query * positive_key, dim=1, keepdim=True)
if negative_mode == 'unpaired':
# Cosine between all query-negative combinations
negative_logits = query @ transpose(negative_keys)
elif negative_mode == 'paired':
query = query.unsqueeze(1)
negative_logits = query @ transpose(negative_keys)
negative_logits = negative_logits.squeeze(1)
# First index in last dimension are the positive samples
logits = torch.cat([positive_logit, negative_logits], dim=1)
labels = torch.zeros(len(logits), dtype=torch.long, device=query.device)
else:
# Negative keys are implicitly off-diagonal positive keys.
# Cosine between all combinations
logits = query @ transpose(positive_key)
# Positive keys are the entries on the diagonal
labels = torch.arange(len(query), device=query.device)
return F.cross_entropy(logits / temperature, labels, reduction=reduction)
def transpose(x):
return x.transpose(-2, -1)
def normalize(*xs):
return [None if x is None else F.normalize(x, dim=-1) for x in xs]