From 0ed915fa5a4628b5796b08e1950d75b56dbb60e1 Mon Sep 17 00:00:00 2001 From: Will Shanks Date: Sun, 20 Oct 2024 16:03:48 -0400 Subject: [PATCH] Add support for noise model and level 1 data to local sampler This change passes through the `simulator.noise_model` option to the `BackendSamplerV2` as a `noise_model` option under `run_options` if the primitive supports the `run_options` option (support was added in Qiskit 1.3). Additionally, this change translates the `execution.meas_type` option into `meas_level` and `meas_return` options under `run_options` for the `BackendSamplerV2` if it supports `run_options`. This change allows support for level 1 data in local testing mode, where otherwise the default is only to return classified data. --- .../fake_provider/local_service.py | 37 +++++- release-notes/unreleased/1990.feat.rst | 13 ++ test/unit/test_sampler.py | 113 ++++++++++++++++++ 3 files changed, 162 insertions(+), 1 deletion(-) create mode 100644 release-notes/unreleased/1990.feat.rst diff --git a/qiskit_ibm_runtime/fake_provider/local_service.py b/qiskit_ibm_runtime/fake_provider/local_service.py index 438c60ad7..73ae40d7b 100644 --- a/qiskit_ibm_runtime/fake_provider/local_service.py +++ b/qiskit_ibm_runtime/fake_provider/local_service.py @@ -216,11 +216,43 @@ def _run_backend_primitive_v2( options_copy = copy.deepcopy(options) prim_options = {} - if seed_simulator := options_copy.pop("simulator", {}).pop("seed_simulator", None): + sim_options = options_copy.get("simulator", {}) + if seed_simulator := sim_options.pop("seed_simulator", None): prim_options["seed_simulator"] = seed_simulator if primitive == "sampler": + # Create a dummy primitive to check which options it supports + dummy_prim = BackendSamplerV2(backend=backend) + use_run_options = hasattr(dummy_prim.options, "run_options") + + run_options = {} + if use_run_options and "run_options" in options_copy: + run_options = options_copy.pop("run_options") + if use_run_options and "noise_model" in sim_options: + run_options["noise_model"] = sim_options.pop("noise_model") + if default_shots := options_copy.pop("default_shots", None): prim_options["default_shots"] = default_shots + if use_run_options and ( + meas_type := options_copy.get("execution", {}).pop("meas_type", None) + ): + if meas_type == "classified": + run_options["meas_level"] = 2 + elif meas_type == "kerneled": + run_options["meas_level"] = 1 + run_options["meas_return"] = "single" + elif meas_type == "avg_kerneled": + run_options["meas_level"] = 1 + run_options["meas_return"] = "avg" + else: + # Put unexepcted meas_type back so it is in the warning below + options_copy["execution"]["meas_type"] = meas_type + + if not options_copy["execution"]: + del options_copy["execution"] + + if run_options: + prim_options["run_options"] = run_options + primitive_inst = BackendSamplerV2(backend=backend, options=prim_options) else: if default_shots := options_copy.pop("default_shots", None): @@ -229,6 +261,9 @@ def _run_backend_primitive_v2( prim_options["default_precision"] = default_precision primitive_inst = BackendEstimatorV2(backend=backend, options=prim_options) + if not sim_options: + # Pop to avoid warning below if all contents were popped above + options_copy.pop("simulator", None) if options_copy: warnings.warn(f"Options {options_copy} have no effect in local testing mode.") diff --git a/release-notes/unreleased/1990.feat.rst b/release-notes/unreleased/1990.feat.rst new file mode 100644 index 000000000..2bb42614b --- /dev/null +++ b/release-notes/unreleased/1990.feat.rst @@ -0,0 +1,13 @@ +Add support for noise model and level 1 data to local sampler + +The ``simulator.noise_model`` option of :class:`~.SamplerV2` is now passed +through to the :class:`~qiskit.primitives.BackendSamplerV2` as a `noise_model` +option under `run_options` if the primitive supports the `run_options` option +(support was added in Qiskit 1.3). + +Similarly, the ``execution.meas_type`` option of :class:`~.SamplerV2` is now +translated into ``meas_level`` and ``meas_return`` options under +``run_options`` of the :class:`~qiskit.primitives.BackendSamplerV2` if it +supports ``run_options``. This change allows support for level 1 data in local +testing mode, where previously the only level 2 (classified) data was +supported. diff --git a/test/unit/test_sampler.py b/test/unit/test_sampler.py index 07ff895ae..8f94d5222 100644 --- a/test/unit/test_sampler.py +++ b/test/unit/test_sampler.py @@ -15,12 +15,18 @@ from unittest.mock import MagicMock from ddt import data, ddt, named_data +from packaging.version import Version, parse as parse_version import numpy as np +from qiskit.version import get_version_info as get_qiskit_version_info from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.primitives.containers.sampler_pub import SamplerPub from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes +from qiskit.providers import BackendV2, Options +from qiskit.result import Result +from qiskit.result.models import ExperimentResult, ExperimentResultData +from qiskit.transpiler import Target from qiskit_ibm_runtime import Session, SamplerV2, SamplerOptions, IBMInputValueError from qiskit_ibm_runtime.fake_provider import FakeFractionalBackend, FakeSherbrooke, FakeCusco @@ -315,3 +321,110 @@ def test_rzz_validates_only_for_fixed_angles(self): circ.rzz(2 * param, 0, 1) # Should run without an error SamplerV2(backend).run(pubs=[(circ, [0.5])]) + + @data( + "classified", + "kerneled", + "avg_kerneled", + ) + def test_backend_run_options(self, meas_type): + """Test translation of sampler options into backend run options""" + + # This test is checking that meas_level, meas_return, and noise_model + # get through the backend's run() call when SamplerV2 falls back to + # BackendSamplerV2 in local mode. To do this, it creates a dummy + # backend class that returns a result of the right format so that the + # sampler execution completes successfully. + + if parse_version(get_qiskit_version_info()) < Version("1.3.0rc1"): + self.skipTest("Feature not supported on this version of Qiskit") + + class DummyJob: + """Enough of a job class to return a result""" + + def __init__(self, run_options): + self.run_options = run_options + + def result(self): + """Return result object""" + shots = self.run_options["shots"] + + if self.run_options["meas_level"] == 1: + counts = None + if self.run_options["meas_return"] == "single": + memory = [[[0.0, 0.0]] * shots] + else: + memory = [[0.0, 0.0]] + else: + counts = {"0": shots} + memory = ["0"] * shots + result = Result( + backend_name="test_backend", + backend_version="0.0", + qobj_id="xyz", + job_id="123", + success=True, + results=[ + ExperimentResult( + shots=100, + success=True, + data=ExperimentResultData(memory=memory, counts=counts), + ) + ], + ) + return result + + class DummyBackend(BackendV2): + """Test backend that saves run options into the result""" + + max_circuits = 1 + # The backend gets cloned inside of the sampler execution code, so + # it is difficult to get a handle on the actual backend used to run + # the job. Here we save the run options into a class level variable + # that can be checked after run() is called. + used_run_options = {} + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + self._target = Target() + + @classmethod + def _default_options(cls): + return Options() + + @property + def target(self): + return self._target + + def run(self, run_input, **run_options): + nonlocal used_run_options + DummyBackend.used_run_options = run_options + return DummyJob(run_options) + + backend = DummyBackend() + + circ = QuantumCircuit(1, 1) + circ.measure(0, 0) + + sampler = SamplerV2(mode=backend) + sampler.options.simulator.noise_model = {"name": "some_model"} + sampler.options.execution.meas_type = meas_type + + job = sampler.run([circ], shots=100) + result = job.result() + + used_run_options = DummyBackend.used_run_options + self.assertDictEqual(used_run_options["noise_model"], {"name": "some_model"}) + + if meas_type == "classified": + self.assertEqual(used_run_options["meas_level"], 2) + self.assertDictEqual(result[0].data.c.get_counts(), {"0": 100}) + elif meas_type == "kerneled": + self.assertEqual(used_run_options["meas_level"], 1) + self.assertEqual(used_run_options["meas_return"], "single") + self.assertTrue(np.array_equal(result[0].data.c, np.zeros((1, 100)))) + else: # meas_type == "avg_kerneled" + self.assertEqual(used_run_options["meas_level"], 1) + self.assertEqual(used_run_options["meas_return"], "avg") + self.assertTrue(np.array_equal(result[0].data.c, np.zeros((1,))))