diff --git a/environment.yml b/environment.yml index 7852bcbf..219188ce 100644 --- a/environment.yml +++ b/environment.yml @@ -2,8 +2,8 @@ name: lecture-datascience channels: - default dependencies: - - python=3.8 - - anaconda=2021.05 + - python=3.9 + - anaconda=2021.11 - pip - pip: - jupyter-book>=0.12.1,<0.13 @@ -13,7 +13,6 @@ dependencies: - joblib - interpolation - sphinx-tojupyter - - fiona - geopandas - pyLDAvis >= 3.3.0 - gensim @@ -38,3 +37,6 @@ dependencies: - lxml - conda: - python-graphviz + - fiona + - llvmlite + - nltk diff --git a/lectures/_config.yml b/lectures/_config.yml index 2eb21f74..66c1d1dc 100644 --- a/lectures/_config.yml +++ b/lectures/_config.yml @@ -11,7 +11,7 @@ html: baseurl: https://datascience.quantecon.org/ sphinx: - extra_extensions: [sphinx_multitoc_numbering, sphinx_exercise, sphinx_tojupyter] + extra_extensions: [sphinx_multitoc_numbering, sphinx_tojupyter] config: html_favicon: _static/lectures-favicon.ico html_static_path: ['_static'] diff --git a/lectures/pandas/merge.md b/lectures/pandas/merge.md index 7f67d946..15602fef 100644 --- a/lectures/pandas/merge.md +++ b/lectures/pandas/merge.md @@ -660,7 +660,7 @@ avg_delays The one issue with this dataset is that we don't know what all those two letter carrier codes are! -Thankfully, we have a second dataset that maps the two letter code +Thankfully, we have a second dataset that maps the two-letter code into the full airline name. ```{code-cell} python @@ -673,7 +673,7 @@ Let's merge these names so we know which airlines we should avoid flying... ```{code-cell} python -avg_delays_w_code = avg_delays.join(carrier_code) +avg_delays_w_code = avg_delays.join(carrier_code.set_index("Code")) avg_delays_w_code.sort_values("CarrierDelay", ascending=False) ```