From 2d56a0a953e185fda181b3f8c0716498994a34c4 Mon Sep 17 00:00:00 2001 From: Jeremy Bejarano Date: Tue, 5 May 2020 13:58:38 -0500 Subject: [PATCH] Fix transpose typos in additive functional lecture --- source/rst/additive_functionals.rst | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/source/rst/additive_functionals.rst b/source/rst/additive_functionals.rst index 950a42f..6afde85 100644 --- a/source/rst/additive_functionals.rst +++ b/source/rst/additive_functionals.rst @@ -159,7 +159,7 @@ Next we construct a linear system \begin{bmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ - \nu & D' & 1 + \nu & D & 1 \end{bmatrix} \begin{bmatrix} 1 \\ @@ -167,7 +167,7 @@ Next we construct a linear system y_t \end{bmatrix} + \begin{bmatrix} - 0 \\ B \\ F' + 0 \\ B \\ F \end{bmatrix} z_{t+1} @@ -763,9 +763,9 @@ functionals defined by :eq:`old1_additive_functionals` and :eq:`old2_additive_fu .. math:: \begin{aligned} - H & := F + B'(I - A')^{-1} D + H & := F + D (I - A)^{-1} B \\ - g & := D' (I - A)^{-1} + g & := D (I - A)^{-1} \end{aligned} @@ -814,7 +814,7 @@ definitions just given, 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & A & 0 & 0 \\ - \nu & 0 & D' & 1 & 0 \\ + \nu & 0 & D & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} @@ -828,8 +828,8 @@ definitions just given, 0 \\ 0 \\ B \\ - F' \\ - H' + F \\ + H \end{bmatrix} z_{t+1} @@ -934,7 +934,7 @@ Corresponding to the additive decomposition described above we have a multiplica .. math:: \frac{M_t}{M_0} - = \exp (t \nu) \exp \Bigl(\sum_{j=1}^t H \cdot Z_j \Bigr) \exp \biggl( D'(I-A)^{-1} x_0 - D'(I-A)^{-1} x_t \biggr) + = \exp (t \nu) \exp \Bigl(\sum_{j=1}^t H \cdot Z_j \Bigr) \exp \biggl( D(I-A)^{-1} x_0 - D(I-A)^{-1} x_t \biggr) or @@ -957,7 +957,7 @@ and .. math:: - \tilde e(x) = \exp[g(x)] = \exp \bigl[ D' (I - A)^{-1} x \bigr] + \tilde e(x) = \exp[g(x)] = \exp \bigl[ D (I - A)^{-1} x \bigr] An instance of class ``AMF_LSS_VAR`` (:ref:`above `) includes this associated multiplicative functional as an attribute. @@ -1041,7 +1041,7 @@ As we have seen, it has representation \widetilde M_t = \exp \biggl( \sum_{j=1}^t \biggl(H \cdot z_j -\frac{ H \cdot H }{2} \biggr) \biggr), \quad \widetilde M_0 =1 -where :math:`H = [F + B'(I-A')^{-1} D]`. +where :math:`H = [F + D(I-A)^{-1} B]`. It follows that :math:`\log {\widetilde M}_t \sim {\mathcal N} ( -\frac{t H \cdot H}{2}, t H \cdot H )` and that consequently :math:`{\widetilde M}_t` is log normal.