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Computer Simulation of the Dynamics of Complicated Mechanisms

of Robot-Manipulators

A, F. VERESHCHA GIN
(Moscow)

A method is suggested for computer simulation of the dynamic behavior of
the tunctional units of robot-manipulators of various constructions, without pre-
liminary derivation of the equations of motion, on the basis of direct implementa-
tion of Gauss's principle of least constraint. The mechanism to be simulated is

matically. Recursion relations, describing the total dynamics of the manipulator
in compact form, are specially derived for linked mechanisms. Based on the
methods developed, a computer program was written to test the efficiency of

the control algorithms of manipulators with arbitrary kinematics.

L

The design of robot-manipulators requires study of a number of complicated multilink mechanical
systems as the control objects. These include mechanical hands, a mechanical human model, etc,
Computer simulation of the dynamic behavior of such systems is a powerful method of arriving at a
rational kinematic design for the mechanism and efficient control algorithms. The answers to questions
arising in the preliminary design stages, in the development, and during tests of robot—mam‘pulators,

 and also during their use, can often be obtained only by simulation,

The variety of possible constructions and the complexity of the mathematical description of the

A method is proposed in this paper for computer simulation of the dynamics of complex mecha-
nisms without deriving the equations of motion, using a direct implementation of Gauss's principle of
least constraint., This method makes it possible to write a comparatively simple simulation program,
the use of which requires specification of 4 minimum amount of information about the kinematics of
the mechanism and the dynamic characteristics of the individual links.

1. STATEMENT OF THE PROBLEM

The mechanism (functional organ of the robot-manipulator) is considered as an ensemble of
bodies (links) and control motors, interconnected in some manner. The connection method is defined

= {mli’ Dop Ogis Vir Vop v3i} (i=1, 2, ..., n), where i is the link number; n is the number of links

. T . . L :
in the mechanism; v, = {Vli’ Vop V3i} is the velocity of the center of mass; o, = {o 1w %9y 0)31} is

We will use the symbol qj to denote the shaft rotation angle of control motor 1G=1, 2, .,., p).
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The possible velocities of the elements of the system being considered for a given configuration satisfy
the coupling equations

Ai+Bg=C, (1.17)

where 5(T ={ 5<1T, vees inT}, (.1T = {511, cees dp} ; A, B, C are matrices depending on the position co-

ordinates and time, with dimensions r X 6n, r x p, rX 1, respectively; and r is the number of coupling
equations,

We divide the active forces on a mechanism with ideal couplings into two classes: external forces,
characterized by the principal force vectors FiT = {Fli’ F2i’ F3i} and principal torques MiT =
= {Mli’ M2i’ 1\I3i} actingonlinki=1, 2, ..., n, and the control torques Qj G=1, 2, ..., p) of the
motors. It is convenient to specify the vectors Ve Fi in a stationary coordinate system, and 0 Mi

in a moving system with axes coinciding with the principal central inertial axes of link i.
Let us introduce the following notations:

W= diag {as, bs, ¢, mi, ms, m}, W=diag {Ws, ..., W.},
7T = {(bi — ¢;) 005 + My (6 — &) 03101+ My (4 — by) 0109 + My
e a; ’ b; ’ G ’

Fy Fy Fy
mg ' my omy§’

Q"={04,..., @z}, =& .. ., £.7},

where m, are the masses, and a; bi’ c, are the principal central moments of inertia, of link i; and
Wi’ W are diagonal matrices with dimensions 6 X 6 and 6n X6n, respectively.

Assume the position and velocity of the system at time t are given, as well as the forces and
torques Fi’ Mi i=1, ..., n) Qj (i=1, ..., p). Letus write the equation

J=1/5(§—2)"W (&-£) — Q"] (1.2)

and consider those acceleration values '}E, q which are possible for a given configuration and velocity.
The possible accelerations of the system satisfy

Az +Bg=D (D=C— Az— Bg). (1.3)

Gauss's principle of least constraint {1] for our mechanical system can be formulated as follows,
In the class of all possible accelerations, the true accelerations provide the only minimum in (1.2).
Actually, this formula differs from the standard equation for the constraint in Gauss's principle by a
quantity that is independent of the accelerations,

When the equations of motion are integrated on a computer by numerical methods, the accelera-
tions for the given coordinates and velocities must be calculated at each step of the integration, once
or several times depending on the integration method. In Gauss's principle, determination of the
accelerations reduces to the algebraic problem of minimizing the quadratic form (1.2) for the linear
restrictions (1. 3).

If the inertia of the rotor of motor j, attached to link i, exerts a significant effect on the dynamics

of the mechanism, then the term 1/2dj lo; + ejaj + flj(mi ><:sj)]2 - 1/2dj(c'oi)2 must be added to (1.2),
where d. is the moment of inertia of the rotor with respect to the rotation axis, and &, is the unit vector
of this axis in the associated coordinate system. In this situation, 2, bi’ ¢, m;are calculated for the

motor rotor attached to this link.

Thus, to simulate the control motion of a specific mechanism, two nonstandard procedures must
be included in the general simulation program operating in accordance with the above-described method,
The first of these produces the restriction matrix systems A, B, D of (1.3) from the given configura-
tion and velocity, and the second calculates the control torques Q in accordance with a specific control
algorithm. The control algorithm can be formulated from the feedback principle since the torques Q
can depend on the position and velocity of the mechanism.

An analytic solution can be written for the minimization problem being considered; however,
when a computer is used, iteration methods are advisable because of the large possible dimensions of
the matrices involved with a low number density [2]. In addition, when continuous processes are
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simulated, their characteristics change little from interval to interval. Taking as a first approximation
the accelerations of the mechanism which occurred in the previous interval, one can obtain a suffic-
iently accurate result in the following interval after several iterations.

2. SIMULATION OF THE DYNAMICS OF A MANIPULATOR HAND

In special cases the above simulation scheme can be refined and modified, based on the specific
characteristics of the mechanisms being studied. For example, the functional organs of manipulators
are generally three-dimensional mechanisms containing several links, connected into a chain with one
degree of mobility between the links (see Fig. 1).

Assume the links of the chain are numbered 1, 2, ..., n and the link with number i is connected
to link i - 1 by either a cylindrical or telescoping joint, providing, in the first case, rotational relative
motion, and in the second case, translational relative motion. An important feature of such mechanisms
is the recursive nature of the restrictions (1.1) and (1,3), which in this case have the form

0, =L,Li o, + qie; (1 —8), v, =0, + LT, (0;_; X rig) — LM (0 % p;+q
@; = LLL 0y + (g,¢,+ ¢, (0; X ) (1—8)),
2= vy + LI (@ X Ty + @5y X (@ X 1)) = LT (@, X p, + 0, X (o X P+
+ (g, 24, (0; X €)),),

py=r"+4qebd (=1,2,..,n).

.e.0.),

111

(2.1)

Here 6i = 0 if the joint is cylindrical, and éi = 1 for a telescoping joint; in the first case, 9 is the
rotation angle of link i with respect to link i - 1, while in the second case q; is the relative linear dis-
placement; Li is the matrix of direction cosines (3 x 3) of the associated coordinate system with axes
along the principal inertia axes and with origin at the center of mass of the link; e is the unit vector
along joint axis i; ri—l" r'"" are vectors joining the centers of mass of links i - 1 and i with points on

the joint axes that are stationary with respect to the links themselves, and the ends of the vectors ri—l'
and o5 coincide (see Fig. 2).

After simple manipulations the function (1.2) to be minimized can be represented in the form

J=C — iQi*}ji_f_...:

i=1

n
= Z % my (0174 0% 4237 -5 (2,002 + b0y 4 ¢;05.) —
=1

= (b €) 0g; 05,0y, — (¢, — 0,) 05,01, — (3; — b)) 005,05 + o — Qg <0

Fig. 1, Typical design of
functional organ of a

Fig. 2, Kinematic scheme of an open
manipulator,

mechanism,
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where Qi* are the generalized forces created by the external forces and the torques of the control

motors, and G is the Gibbs-Appel function (the acceleration energy). The terms which do not depend
on the accelerations, and consequently do not affect the result of the minimization, are not included in
the last formulas .

The recursion relations (2.1) make it possible to calculate the value of G directly as a function of
q, 61, q Based on a given motion of the base of the manipulator hand { o Vo © 4 VO}, we determine
from (2.1) the values of the vectors o ¢ Vi (:)i’ \.fi successively fori=1, 2, ..., n; the components of
these vectors enter into the acceleration energy formula.

In one version of the simulation program for the dynamics of the manipulator control motion,
implemented on a BESM-4 computer, we made use of the ability to compute the Gibbs-Appel function

n
.o

inthe following manner. This function is quadratic with respect to al’ '(iz, ey qn: G= %Zaﬁ?}i 'éj +

i=1
=1

+ Zﬁ{q’i +7v, and it yields the equations of motion of the mechanical system in the simplest form (Gibbs-

i=1 .o
Appel form): 5G/6qi =Q*({@=12, ..., m), or

Zaﬁ}ji—f—ﬁi:()i' (i=1,2,..., n. (2.2)

i=1

To calculate G the acceleration vector q must also be specified, in addition to the coordinate g
and velocity q The first two vectors ¢ and q define the actual instantaneous position and motion of the

mechanism, and the components of the vector q in the program are selected with the goal of rapid ' ; the link
identification of the instantaneous values of the elements of the symmetric matrix « = [aij], the vector 1 |

p={B o Bn}', and the quantity 1. L

If, for example, the three values 4, = {0, ..., 0}, @, = (0, ..., 0,1,0,..., 0}, ¢_=1{0, ...,

wee, 0, =1, 0, ..., 0}, where the unity stands in place i, correspond to three acceleration energies

GO’ G+, and G, then o= G+ +G_ - ZGO, B, = (G, - G )/2. The nondiagonal elements of the matrix

are calculated similarly. '

Formulation of the equations of motion in the form (2.2) requires 1 +n + n(n + 1)/2 applications T¢
of the procedure for calculating the Gibbs-Appel function, for different specially chosen values of the ; 3], We
acceleration vector. Individual blocks of the procedure are also used for calculating the generalized ~ y
force components created by the force of gravity and by other external forces.

After identification of the elements of the matrix « and vector 3 we have to return to the non-
standard procedure, implementing the specific control algorithm, which finally establishes the instan-
taneous values of all the generalized forces. The calculated accelerations are integrated by the Runge-

Kutta method or some other method.

The corresponding block diagram of the simulation is given in Fig. 3.

With this approach, the simulation program has minimum dimensions and is extremely simple to .
implement; however, the computer time expended in the simulation increases quadratically with an in- for whic
crease in the number of links in the mechanism. In practice, this program can be used on BESM-4 and
M-220 computers for mechanisms with 5-7 links. Therefore, in order to speed up the simulation pro-
cess, the problem of minimizing the extent of the constraint is solved below by means of dynamic pro-
gramming, making it possible to represent all necessary algorithms in a recursive form convenient for
computer use.

3. DYNAMIC PROGRAMMING AND THE MANIPULATOR DYNAMICS ¥ is valid,
Using the previous notations, let us represent the acceleration relations (2,1) in matrix form as mmlm%ﬁ
F=AF B+ (i=1,2,...,n), 3.1)
where Ai’ Bi’ fi are matrices that depend on the system position and velocity, and have dimensions of »
6% 6, 6 X1, 6X1, respectively. The vector .};0 is given if the column motion is given (if the mecha- where P1
nism is attached to a stationary column, then 5{0 =X 0 0). Here it is also easy to take into considera- of this fu

tion the case when the column is not kinematically connected to any inertial coordinate system and, like the coeff

68




Enter initial informa-~
snd tion about mechanism
d in

!
ion of t:=0
9(0):=go
mine §0):=4qo
its of ] %_,1
Integration
, t4h
ion 2 (+n =g+ \ d(o)ax
t
TR o
. 1¢+n =10+ \ §@a
: t
Gibbs-
_I ti==t+h |
!

Output of motion

(2 2) information

f the
1 ¢ the links, has an inertia characterized by the matrix WO . Then the vector x 0 must be determined,
ector
Let us represent the function (1.2) to be minimized in additive form as
ies J= Z % @; — .z.i)TWi (@ _Ei) - Qi('].i' (3.2)
trix pruary
ions To sum up, we have a multistep dynamic programming problem for determining bil, ‘q'z, .oe, ;in
t:; B]. We determine the minimal function
z
- . T T T R
stan- Ties (o) = min{ D" - (5 — 2 Wil — ) — Y0, is)
Runge- 9;  isk—1 =
G=*kEk+1,...,n),
1ple to
an in- for which the basic dynamic programming recursion relation
[-4 and
n pro- . . .. .. ..
> pro- Iy () = n}in {2 (Tr1 — Zpa Wiy (o1 — Zp1) — Qrlp +
ent for Tk - .
+ I (Apdpey + Brin—+ 1)), (3.3)
is valid, and :ik is determined from the necessary condition that the right side of this formula be a
minimum.
rm as The solution of the basic equation can be represented in the form
(3.1)
L&) =& Poiit Rt S, (k=0, 1,..., n), (3.4)
ons of
echa- where Pk is a symmetric 6 X 6 matrix, Rk is a 6 X 1 vector, and Sk is a scalar quantity. Substitution
sidera- of this function into (3.3), taking into consideration the necessary condition for a minimum, and equating
d, like the coefficients of like powers of the components of the vector 3';1(_1 make it possible to obtain a solution
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by means of the following recursion formulas:

@ = (Q; — (Bia"4" 4 17) Py + RBT) B) (Bi™PiBy) ™, (3.5)
Py = Wi, + A (P; — P.B,(B;*P:B))™ B"P;) A;, (3.5a)

Riym = — 3 "Wy + (B + fi7P3) A -+ (Qs — (B + ["P;) By) X
X (B P;By)™ Byt P A, (3.5b)

Pn=Wn, RnT=—2nTWn (l=1, 2, ey n)

The solution yields the equations of motion of the mechanism, written in algorithmic form and
solved for the accelerations, and the solution is achieved without formal use of matrix inversion

[(BiTPiBi)-1 is a scalar quantity]. The amount of work involved in calculations with the stated re-

cursion formulas increases linearly with an increase in the number of links in the mechanism, There-
fore relations (3.5)-(3.5b) make it possible to write an efficient program to simulate the dynamic be-
havior of a multilink manipulator hand in the control process. In this program the acceleration calcu-
lation algorithm for given mechanism configuration and velocity consists of the following steps.

1. Calculation of the matrices Pi successively for i=n, n -1, ... by means of (3.5a).

2, Calculation of the control torques Qi (i=1, 2, ...) of the motors by means of the procedure

that implements the specific control algorithm,
3. Calculation of the vectors Ri successively fori=n, n -1, ... by means of (3.5b).

4, Calculation of the accelerations of the relative displacements q1 and the accelerations of the
links :ﬁ (i=1, 2, ..., n) by means of (3.5) and (3.1). If no restrictions are imposed on the value of
.220, i.e,, 320 is also an argument that minimizes (3.2), then the extremum value, as follows from (3.4),
. . . -1
is determined from X4 = —P0 RO'

The recursion relations on which these steps are based are easily programmed for a computer,
and make it possible to increase the simulation speed by a factor of 10-12 compared with the above-

described program based on calculating the acceleration energy.
Based on the method discussed, we wrote and successfully used an ALGOL program for automatic
formulation and integration of the equations of the controlled motion of a multilink manipulator with an

arbitrary kinematic design.
The program is used for studying and testing the functioning of the control algorithms being

developed.
The method of simulation by direct implementation of Gauss's least constraint principle can serve

as the basis for a systematic approach to programming the motions of complicated mechanisms, elimi-
nating the necessity of writing special programs for each special problem.

Submitted June 4, 1974
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