diff --git a/examples/jax/encoder/test_model_parallel_encoder.py b/examples/jax/encoder/test_model_parallel_encoder.py index 3855db275..59feb028d 100644 --- a/examples/jax/encoder/test_model_parallel_encoder.py +++ b/examples/jax/encoder/test_model_parallel_encoder.py @@ -213,11 +213,11 @@ def get_datasets(max_seq_len): vocab = {} word_id = 0 - train_ds = load_dataset("glue", "cola", split="train") + train_ds = load_dataset("nyu-mll/glue", "cola", split="train") train_ds.set_format(type="np") train_ds, vocab, word_id = data_preprocess(train_ds, vocab, word_id, max_seq_len) - test_ds = load_dataset("glue", "cola", split="validation") + test_ds = load_dataset("nyu-mll/glue", "cola", split="validation") test_ds.set_format(type="np") test_ds, vocab, word_id = data_preprocess(test_ds, vocab, word_id, max_seq_len) return train_ds, test_ds, word_id diff --git a/examples/jax/encoder/test_multigpu_encoder.py b/examples/jax/encoder/test_multigpu_encoder.py index d6bfddb3e..6ea7e3d94 100644 --- a/examples/jax/encoder/test_multigpu_encoder.py +++ b/examples/jax/encoder/test_multigpu_encoder.py @@ -189,11 +189,11 @@ def get_datasets(max_seq_len): vocab = {} word_id = 0 - train_ds = load_dataset("glue", "cola", split="train") + train_ds = load_dataset("nyu-mll/glue", "cola", split="train") train_ds.set_format(type="np") train_ds, vocab, word_id = data_preprocess(train_ds, vocab, word_id, max_seq_len) - test_ds = load_dataset("glue", "cola", split="validation") + test_ds = load_dataset("nyu-mll/glue", "cola", split="validation") test_ds.set_format(type="np") test_ds, vocab, word_id = data_preprocess(test_ds, vocab, word_id, max_seq_len) return train_ds, test_ds, word_id diff --git a/examples/jax/encoder/test_multiprocessing_encoder.py b/examples/jax/encoder/test_multiprocessing_encoder.py index 420e36ea1..893474c5f 100644 --- a/examples/jax/encoder/test_multiprocessing_encoder.py +++ b/examples/jax/encoder/test_multiprocessing_encoder.py @@ -293,11 +293,11 @@ def get_datasets(max_seq_len): vocab = {} word_id = 0 - train_ds = load_dataset("glue", "cola", split="train") + train_ds = load_dataset("nyu-mll/glue", "cola", split="train") train_ds.set_format(type="np") train_ds, vocab, word_id = data_preprocess(train_ds, vocab, word_id, max_seq_len) - test_ds = load_dataset("glue", "cola", split="validation") + test_ds = load_dataset("nyu-mll/glue", "cola", split="validation") test_ds.set_format(type="np") test_ds, vocab, word_id = data_preprocess(test_ds, vocab, word_id, max_seq_len) return train_ds, test_ds, word_id diff --git a/examples/jax/encoder/test_single_gpu_encoder.py b/examples/jax/encoder/test_single_gpu_encoder.py index 2c5bd7025..e8518a94c 100644 --- a/examples/jax/encoder/test_single_gpu_encoder.py +++ b/examples/jax/encoder/test_single_gpu_encoder.py @@ -185,11 +185,11 @@ def get_datasets(max_seq_len): vocab = {} word_id = 0 - train_ds = load_dataset("glue", "cola", split="train") + train_ds = load_dataset("nyu-mll/glue", "cola", split="train") train_ds.set_format(type="np") train_ds, vocab, word_id = data_preprocess(train_ds, vocab, word_id, max_seq_len) - test_ds = load_dataset("glue", "cola", split="validation") + test_ds = load_dataset("nyu-mll/glue", "cola", split="validation") test_ds.set_format(type="np") test_ds, vocab, word_id = data_preprocess(test_ds, vocab, word_id, max_seq_len) return train_ds, test_ds, word_id diff --git a/examples/jax/mnist/test_single_gpu_mnist.py b/examples/jax/mnist/test_single_gpu_mnist.py index 92baf4b0c..75a41ef6e 100644 --- a/examples/jax/mnist/test_single_gpu_mnist.py +++ b/examples/jax/mnist/test_single_gpu_mnist.py @@ -140,7 +140,7 @@ def eval_model(state, test_ds, batch_size, var_collect): def get_datasets(): """Load MNIST train and test datasets into memory.""" - train_ds = load_dataset("mnist", split="train", trust_remote_code=True) + train_ds = load_dataset("ylecun/mnist", split="train", trust_remote_code=True) train_ds.set_format(type="np") batch_size = train_ds["image"].shape[0] shape = (batch_size, IMAGE_H, IMAGE_W, IMAGE_C) @@ -148,7 +148,7 @@ def get_datasets(): "image": train_ds["image"].astype(np.float32).reshape(shape) / 255.0, "label": train_ds["label"], } - test_ds = load_dataset("mnist", split="test", trust_remote_code=True) + test_ds = load_dataset("ylecun/mnist", split="test", trust_remote_code=True) test_ds.set_format(type="np") batch_size = test_ds["image"].shape[0] shape = (batch_size, IMAGE_H, IMAGE_W, IMAGE_C)