You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[aotd] Support mutations of the same input in fw and bw (pytorch#155354)
Original issue: pytorch#154820
The issue happens when there is a mutation for the same input in forward AND in backward.
AOTD emited copy_ after joint_function tracing. This made this fx-node to correspond to the side effects of both mutations (in forward and in backward).
After that partitioner can put it either in forward or in backward.
The fix:
1/ Introduce joint_function.handle that allows to set "post_forward" callback, to be able to check inputs state after forward
We do not want to apply the mutation after joint, if we already applied it in forward. For that we need "mutation_counter" and memorize the version of mutation that we applied for forward mutation.
2/ Exposing mutation_counter to python
We want to keep invariant that copy_ exist only in the end of joint graph.
3/ We memorize mutation_counter and state of the inputs after forward, using the handle post_forward.
Emit post_forward mutations after joint graph fully traced.
add for post_forward mutations "must_be_in_forward" tag (similar to existing "must_be_in_backward") to keep them in forward.
4/ Ban recompute of the source of mutation. Recompute can apply the same op (e.g. add) in forward and backward.
For this set MUST_SAVE for the source of mutation in forward.
proxy_tensor changes:
By default proxy tensor updates tensor_tracker. In this case applied mutations will be chained.
But we want that this copy_ will be independent and applied just to primals.
For this introducing a contextmanager to be able to disable update of tensor_tracker for adding forward mutations.
Pull Request resolved: pytorch#155354
Approved by: https://github.com/bdhirsh
0 commit comments