forked from triton-lang/triton
-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Rahul Batra
committed
Sep 5, 2024
1 parent
177d0bd
commit 7368404
Showing
1 changed file
with
219 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
import argparse | ||
import torch | ||
import sys | ||
import pytest | ||
|
||
import triton | ||
import triton.language as tl | ||
from triton.runtime import driver | ||
|
||
|
||
def is_cuda(): | ||
return triton.runtime.driver.active.get_current_target().backend == "cuda" | ||
|
||
|
||
def is_hip(): | ||
return triton.runtime.driver.active.get_current_target().backend == "hip" | ||
|
||
|
||
def is_cdna(): | ||
return is_hip() and triton.runtime.driver.active.get_current_target().arch in ('gfx940', 'gfx941', 'gfx942', | ||
'gfx90a', 'gfx908') | ||
|
||
|
||
def get_cuda_autotune_config(): | ||
return [ | ||
triton.Config({}, num_warps=4, num_stages=1), | ||
triton.Config({}, num_warps=8, num_stages=1), | ||
triton.Config({}, num_warps=16, num_stages=1), | ||
] | ||
|
||
|
||
def get_hip_autotune_config(): | ||
return [ | ||
triton.Config({'waves_per_eu': 1}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 1}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 1}, num_warps=16, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=16, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=16, num_stages=1), | ||
] | ||
|
||
|
||
def get_autotune_config(): | ||
if is_cuda(): | ||
return get_cuda_autotune_config() | ||
else: | ||
return get_hip_autotune_config() | ||
|
||
|
||
@triton.autotune(configs=get_autotune_config(), key=['n_rows', 'n_cols'], use_cuda_graph=True) | ||
@triton.jit | ||
def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, | ||
BLOCK_SIZE: tl.constexpr): | ||
row_start = tl.program_id(0) | ||
row_step = tl.num_programs(0) | ||
col_offsets = tl.arange(0, BLOCK_SIZE) | ||
mask = col_offsets < n_cols | ||
for row_idx in tl.range(row_start, n_rows, row_step): | ||
row_start_ptr = input_ptr + row_idx * input_row_stride | ||
input_ptrs = row_start_ptr + col_offsets | ||
input_ptrs = tl.multiple_of(input_ptrs, (16, )) | ||
row = tl.load(input_ptrs, mask=mask, other=-float('inf'), cache_modifier=".cg") | ||
row_minus_max = row - tl.max(row, axis=0) | ||
numerator = tl.exp(row_minus_max) | ||
denominator = tl.sum(numerator, axis=0) | ||
softmax_output = numerator / denominator | ||
output_row_start_ptr = output_ptr + row_idx * output_row_stride | ||
output_ptrs = output_row_start_ptr + col_offsets | ||
output_ptrs = tl.multiple_of(output_ptrs, (16, )) | ||
tl.store(output_ptrs, softmax_output, mask=mask) | ||
|
||
|
||
device = torch.cuda.current_device() | ||
properties = driver.active.utils.get_device_properties(device) | ||
NUM_SM = properties["multiprocessor_count"] | ||
|
||
|
||
def softmax(x): | ||
n_rows, n_cols = x.shape | ||
BLOCK_SIZE = triton.next_power_of_2(n_cols) | ||
|
||
y = torch.empty_like(x) | ||
|
||
#Persistent kernel. Simply, set num of programs equal to number of streaming multi-processors | ||
num_programs = min(NUM_SM, n_rows) | ||
|
||
grid = lambda meta: (num_programs, ) | ||
softmax_kernel[grid]( | ||
y, | ||
x, | ||
x.stride(0), | ||
y.stride(0), | ||
n_rows, | ||
n_cols, | ||
BLOCK_SIZE, | ||
) | ||
|
||
return y | ||
|
||
|
||
def run_softmax(M, N): | ||
print(f"Running Softmax on shape ({M},{N})") | ||
torch.manual_seed(0) | ||
x = torch.randn(M, N, device='cuda') | ||
y_triton = softmax(x) | ||
|
||
return y_triton | ||
|
||
|
||
#pytest | ||
@pytest.mark.parametrize('M, N', [ | ||
(1823, 781), | ||
(1, 1), | ||
(128, 1), | ||
(1, 128), | ||
(8192, 8192), | ||
(4096, 8192), | ||
(359, 1), | ||
(1, 359), | ||
(1, 131072), | ||
]) | ||
def test_softmax(M, N): | ||
torch.manual_seed(0) | ||
x = torch.randn(M, N, device='cuda') | ||
y_triton = softmax(x) | ||
y_torch = torch.softmax(x, axis=1) | ||
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch) | ||
|
||
|
||
#Benchmark | ||
arg_to_torch_dtype = {'fp16': torch.float16, 'bf16': torch.bfloat16, 'fp32': torch.float32} | ||
|
||
|
||
def run_benchmark(args): | ||
config = [] | ||
if (args.M_benchmark): | ||
val = args.M_start | ||
x_vals_list = [] | ||
while val <= args.M_end: | ||
x_vals_list.append(val) | ||
val *= args.M_step | ||
mn_args = {'N': args.N_start} | ||
plot_name = str("softmax-performance_" + args.dtype + "_N" + str(args.N_start) + "_M" + str(args.M_start) + | ||
"-" + str(args.M_end) + "-" + str(args.M_step)) | ||
x_names = ['M'] | ||
else: | ||
x_vals_list = [i for i in range(args.N_start, args.N_end, args.N_step)] | ||
mn_args = {'M': args.M_start} | ||
plot_name = str("softmax-performance_" + args.dtype + "_M" + str(args.M_start) + "_N" + str(args.N_start) + | ||
"-" + str(args.N_end) + "-" + str(args.N_step)) | ||
x_names = ['N'] | ||
dtype = arg_to_torch_dtype[args.dtype] | ||
|
||
print(plot_name) | ||
config.append( | ||
triton.testing.Benchmark( | ||
x_names=x_names, | ||
x_vals=x_vals_list, | ||
line_arg='provider', | ||
line_vals=['triton', 'torch'], | ||
line_names=[ | ||
"Triton", | ||
"Torch", | ||
], | ||
styles=[('blue', '-'), ('green', '-')], | ||
ylabel="GB/s", | ||
plot_name=plot_name, | ||
args=mn_args, | ||
)) | ||
|
||
@triton.testing.perf_report(config) | ||
def benchmark(M, N, provider): | ||
x = torch.randn(M, N, device='cuda', dtype=dtype) | ||
stream = torch.cuda.Stream() | ||
torch.cuda.set_stream(stream) | ||
if provider == 'torch': | ||
ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=-1)) | ||
if provider == 'triton': | ||
ms = triton.testing.do_bench(lambda: softmax(x)) | ||
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3) | ||
return gbps(ms) | ||
|
||
benchmark.run(save_path=".", show_plots=True, print_data=True) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
prog="Benchmark Softmax", | ||
allow_abbrev=False, | ||
) | ||
|
||
parser.add_argument('-M', "--M_start", default="1", type=int) | ||
parser.add_argument('-Ms', "--M_step", default="2", type=int) | ||
parser.add_argument('-Me', "--M_end", default="512", type=int) | ||
parser.add_argument('-Mb', "--M_benchmark", default=False, type=bool) | ||
|
||
parser.add_argument('-N', "--N_start", default="8192", type=int) | ||
parser.add_argument('-Ns', "--N_step", default="1024", type=int) | ||
parser.add_argument('-Ne', "--N_end", default="65536", type=int) | ||
|
||
parser.add_argument('-d', "--dtype", default="fp16") | ||
parser.add_argument('-nb', "--no_benchmark", default=False, type=bool) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
if args.no_benchmark: | ||
run_softmax(args.M_start, args.N_start) | ||
else: | ||
run_benchmark(args) | ||
|
||
|
||
if __name__ == "__main__": | ||
sys.exit(main()) |