diff --git a/vllm/platforms/rocm.py b/vllm/platforms/rocm.py index eccea7523ada..0f472d6bce83 100644 --- a/vllm/platforms/rocm.py +++ b/vllm/platforms/rocm.py @@ -296,16 +296,8 @@ def get_attn_backend_cls( f"does not support block size {block_size}." ) if selected_backend == _Backend.ROCM_AITER_MLA: - if block_size == 1: - logger.info("Using AITER MLA backend on V1 engine.") - return ( - "vllm.v1.attention.backends.mla.rocm_aiter_mla.AiterMLABackend" # noqa: E501 - ) - raise ValueError( - f" The selected backend, {selected_backend.name}," - f"does not support block size {block_size}." - "(currently only supports block size 1)" - ) + logger.info("Using AITER MLA backend on V1 engine.") + return "vllm.v1.attention.backends.mla.rocm_aiter_mla.AiterMLABackend" # noqa: E501 raise ValueError( f" The selected backend, {selected_backend.name}," f"is not MLA type while requested for MLA backend." diff --git a/vllm/v1/attention/backends/mla/rocm_aiter_mla.py b/vllm/v1/attention/backends/mla/rocm_aiter_mla.py index d935c02243bd..9630fe8aaee6 100644 --- a/vllm/v1/attention/backends/mla/rocm_aiter_mla.py +++ b/vllm/v1/attention/backends/mla/rocm_aiter_mla.py @@ -78,9 +78,6 @@ def __init__( super().__init__( kv_cache_spec, layer_names, vllm_config, device, AiterMLAMetadata ) - assert self.kv_cache_spec.block_size == 1, ( - "AITER MLAonly supports block size 1." - ) self.compilation_config = vllm_config.compilation_config max_num_pages_per_req = cdiv( @@ -94,6 +91,11 @@ def __init__( # so we can only use the persistent buffer if a cudagraph is actually # being used. if self.compilation_config.cudagraph_mode.has_full_cudagraphs(): + self.block_table_remapping = torch.zeros( + [max_num_reqs, max_num_pages_per_req * self.kv_cache_spec.block_size], + dtype=torch.int32, + device=device, + ) self.paged_kv_indptr = torch.zeros( max_num_reqs + 1, dtype=torch.int32, device=device ) @@ -119,13 +121,29 @@ def _build_decode( dcp_tot_seq_lens_device: torch.Tensor | None, ) -> AiterMLADecodeMetadata: page_size = self.kv_cache_spec.block_size - block_table_bounds = (seq_lens_device + page_size - 1) // page_size device = self.device num_reqs = seq_lens_device.size(0) + bs, _ = block_table_tensor.shape + block_table_tensor = ( + block_table_tensor.unsqueeze(-1).expand(-1, -1, page_size) * page_size + ) + block_table_tensor = ( + block_table_tensor + + torch.arange( + 0, + page_size, + device=block_table_tensor.device, + dtype=block_table_tensor.dtype, + )[None, None, :] + ) + block_table_tensor = block_table_tensor.view(bs, -1) + # after remapping, we assume the block size already equals to 1 + + max_blk_size_per_req = block_table_tensor.shape[-1] mask = torch.arange( block_table_tensor.size(1), dtype=block_table_tensor.dtype, device=device - ).unsqueeze(0) < block_table_bounds.unsqueeze(1) + ).unsqueeze(0) < seq_lens_device.unsqueeze(1) paged_kv_indices = block_table_tensor[mask] paged_kv_last_page_len = seq_lens_device % page_size @@ -135,13 +153,19 @@ def _build_decode( paged_kv_indptr = torch.cat( [ - torch.zeros(1, dtype=block_table_bounds.dtype, device=device), - block_table_bounds.cumsum(dim=0, dtype=torch.int32), + torch.zeros(1, dtype=seq_lens_device.dtype, device=device), + seq_lens_device.cumsum(dim=0, dtype=torch.int32), ] ) if self.compilation_config.cudagraph_mode.has_full_cudagraphs(): num_actual_pages = paged_kv_indices.size(0) + self.block_table_remapping[:num_reqs, :max_blk_size_per_req].copy_( + block_table_tensor, non_blocking=True + ) + block_table_tensor = self.block_table_remapping[ + :num_reqs, :max_blk_size_per_req + ] self.paged_kv_indices[:num_actual_pages].copy_( paged_kv_indices, non_blocking=True