LIKWID

Lightweight performance tools

J. Treibig

Erlangen Regional Computing Center
University of Erlangen-Nuremberg
hpc@rrze.fau.de

BOF, ISC 2013
19.06.2013

Outline

Current state
Overview
Building and installing likwid
likwid-topology and likwid-pin
likwid-powermeter
likwid-bench
likwid-perfctr

Outlook on next release
New features
Current Problems

Plans and Ideas

26.09.2012 (c) RRZE

HI='L

High Performance
Computing

2

Likwid Tool Suite [T &=

Command line tools for Linux:
easy to install
works with standard linux 2.6 kernel
simple and clear to use
supports Intel and AMD CPU

Open source project (GPL v2):
http://code.google.com/p/1ikwid/

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite
for x86 multicore environments. Accepted for
PSTI2010, Sep 13-16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431

T High Perf
26.09.2012 (c) RRZE LI Computing 3

Why? [Ta=

Question: There is tool XY? They can do the same thing. You are
wasting your time.

Possible answers:
LIKWID has an unique feature set
LIKWID has NO external dependencies
LIKWID is easy to build and setup
LIKWID is just COOL (OK this is biased)

If you are still not convinced:
It is always good to have alternatives.
Even in Open Source tools.

So try it and make your own opinion what suits your
needs best.

= High Perf
26.09.2012 () RRZE I'IFIL Cfmpu?in(;rmance 4

What is included in LIKWID? [T &'—

Current release includes
likwid-topology — Query node properties
likwid-pin — Control affinity of serial and threaded programs
likwid-mpirun - Control affinity of MPIl and hybrid MPI/OpenMP
programs
likwid-bench — Microbenchmarking of node characteristics
likwid-memsweeper — Clean up NUMA memory domains

likwid-powermeter — Query Turbo mode steps and measure

energy consumption on Intel SandyBridge systems

likwid-perfctr — Measure Hardware Performance Monitoring

data on X86 processors

b High Perf
26.09.2012 (c) RRZE FIIR'L G e e 5

Many functions in LIKWID are shared [T a'—

Affinity
likwid-pin likwid-perfctr
ﬁ @ likwid-mpirun <:D
Memsweeper Energy
likwid-memsweeper likwid-powermeter

. High Perf
26.09.2012 () RRZE I'IFIL Clc?mpu?in(;rmance 6

Building LIKWID

Configuration
Options for access to hardware performance monitoring

Basics for building (for home use) [T a'—

Download the latest release from
http://code.qooqgle.com/p/likwid/

Read the INSTALL and README files ©

Also consider a look in the Wiki on the LIKWID website

LIKWID has no external dependencies and should build on any
Linux system with a 2.6 or newer kernel

Installing is necessary for the pinning functionality and if you want
to use the accessDaemon

T High Perf
26.09.2012 (c) RRZE FIR'L G e e 8

Access to MSR and PCI Registers [T a'—

likwid-perfctr and likwid-powermeter require access to
MSR (model-specific register) and (on SandyBridge) PCI registers.

MSR registers are accessed on x86 processors via special
instructions which can only be executed in kernel space

The Linux kernel allows reading and writing to these registers via
special device files.

This enables to implement LIKWID completely in user space

The following options are available:

Direct access to device files: The user must have read/write
access to device files.

AccessDaemon: The application starts a proxy application for
access to device files (can be enabled in the Makefile).

SysAccessDaemon: Central daemon with access control enabling
usage of LIKWID as monitoring backend.

b High Perf
26.09.2012 (c) RRZE FIR'L G e ™ 9

Setup direct access (for home use) [T =

All modern Linux distributions support the necessary msr kernel
module

Check if device file exists:
ls -1 /dev/cpu/0/

If msr file is missing, load module (must be root):
modprobe msr

Allow users access to msr device files (various solutions possible,
must be root):
chmod o+rw /dev/cpu/*/msr

Now you can use likwid-perfctr as normal user

You can integrate the necessary steps in a startup script or
configure udev

High Performance

26.09.2012 (c) RRZE HIR'C Computing 10

Scenario 1: Dealing with node properties and
thread affinity

likwid-topology
likwid-powermeter
likwid-pin

likwid-topology —
Single source of node information r r L

Node information is usually scattered in various places

likwid-topology provides all information in a single reliable
source

All information is based directly on cpuid

Features:
Thread topology
Cache topology
NUMA topology
Detailed cache parameters (-c command line switch)
Processor clock (measured)

ASCII art output (-g command line switch)

b High Perf
26.09.2012 (c) RRZE FIm'L G e e 12

Output of likwid-topology —-g
on one node of Cray XE6 “Hermit”

CPU type: AMD Interlagos processor
hkkkkkkhkkkhkkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkkhkkkhkhkkkhkkkhkkhkkkhkx

Hardware Thread Topology
khkkhkkkhkkhkhkkhkhkhkhkkhkkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkkhkhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkkhkx

Sockets: 2
Cores per socket: 16
Threads per core: 1

Socket 0: (0123456789 10 11 12 13 14 15)
Socket 1: (16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)

hkkhkkkkhkkhkkhkhkkkhkkhkkhkkhkkhkhkkhkkhkkkhkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkkkkx

Cache Topology

hkkhkkkkkhkkkhkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkkhkkhkkhkhkkhkhkkkhkkhkkkhkx

Level: 1
Size: 16 kB
Cache groups: (0) (1) (2) (3) (4) (5) (6) (7))

(13) (14) (15) (16) (17) (18) (19) (20) (21)
(27) (28) (29) (30) (31)

26.09.2012 (c) RRZE

(11)
(25)

HI='L

High Performance
Computing

(12)
(26)

13

Output of likwid-topology continued

Level 2
Size: 2 MB
Cache groups: (01) (23) (45) (67) (89) (1011) (12 13) (14 15) (16

19) (2021) (22 23) (24 25) (2627) (28 29) (30 31

Level: 3
Size: 6 MB
Cache groups: (01234567) (891011 12 13 14 15)

27 28 29 30 31)

hkkhkkhkkkhkkhkkhkhkkkhkkkhkhkkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkhkkkkk*k

NUMA Topology
hkkhkkkx

NUMA domains: 4

Domain O:

Processors: 01 2 3 45 6 7

Memory: 7837.25 MB free of total 8191.62 MB
Domain 1:

Processors: 8 9 10 11 12 13 14 15
Memory: 7860.02 MB free of total 8192 MB
Domain 2:

Processors: 16 17 18 19 20 21 22 23
Memory: 7847.39 MB free of total 8192 MB
Domain 3:

Processors: 24 25 26 27 28 29 30 31
Memory: 7785.02 MB free of total 8192 MB

26.09.2012 (c) RRZE

)

(16 17 18 19 20 21 22 23)

17) (18

(24 25 26

- High Performance
I'IFIL Computing 14

Output of likwid-topology continued

hhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhkhhkkhhkkhhkkhhkhkhkhhkhkhkhkhhkhhkhkhkkhkhkhkhhkkhhkkk

Graphical:

hkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhhkhkhhkhkhhkhkhkhhhkhhhkhkhkhkhhkhkhkhkhkkhkhkhkhkhkkhhkkk

Socket 0:

2MB

2MB
6MB

2MB 2MB
|

2MB

2MB

6MB

T ittt Tt e Tt T et ¥
|
T ittt Tt e Tt T et ¥

2MB

2MB

Socket 1:

2MB

2MB
6MB

2MB

2MB

2MB

2MB
6MB

2MB

2MB

oo
|
oo

High Performance

Computing

HI='L

(c) RRZE

26.09.2012

Likwid-pin ——
Overview r r
Pins processes and threads to specific cores without touching code
Directly supports pthreads, gcc OpenMP, Intel OpenMP

Based on combination of wrapper tool together with overloaded pthread
library = binary must be dynamically linked!

Can also be used as a superior replacement for taskset

Supports logical core numbering within a node and within an existing CPU
set

Useful for running inside CPU sets defined by someone else, e.g., the MPI
start mechanism or a batch system

Usage examples:

likwid-pin -c 0,2,4-6 ./myApp parameters
likwid-pin -c S0:0-3 ./myApp parameters

b High Perf
26.09.2012 (c) RRZE FIR'L G e e 16

Likwid-pin ——
Example: Intel OpenMP I_ r

Running the STREAM benchmark with likwid-pin:

$ export OMP NUM THREADS=4
$ likwid-pin -c 0,1,4,5 ./stream

[likwid-pin] Main PID -> core 0 - OK Main PID always
—— pinned
Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

[... some STREAM output omitted ...]

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper] PIN MASK: 0->1 1->4 2->5

[pthread wrapper] SKIP MASK: 0x1 Skip shepherd

[pthread wrapper 0] Notice: Using libpthread.so.0) thread
threadid 1073809728 -> SKIP

[pthread wrapper 1] Notice: Using libpthread.so.0
threadid 1078008128 -> core 1 - OK >_

[pthread wrapper 2] Notice: Using libpthread.so.0 \\\

threadid 1082206528 -> core 4 - OK Pin all spawned
[pthread wrapper 3] Notice: Using libpthread.so.0 threads in turn
threadid 1086404928 -> core 5 - OK _/

[... rest of STREAM output omitted ...]

High Performance

26.09.2012 (c) RRZE HIR'C Computing 17

likwid-pin

Using logical core numbering

Core numbering may vary from system to system even with
identical hardware

Likwid-topology delivers this information, which can be fed into likwid-pin

Alternatively, likwid-pin can abstract this variation and provide a

purely logical numbering in so called thread domains (physical
cores first)

Socket 0:

et e e LR +

| +------ + +-—--—- + - + +-—--—- +

10 111 2 311 4 511 6 7] 1|

| +------ + +-—--—- + - + +-—--—- +

| +=====- + = + - + - + 1

| 1 32kB| | Socket 1:

| +------ s +

| === + + | +--—--—- + - + +----—- + - +

| | 256kB| | |1 8 9] |10 11| |12 13| |14 15| |

| +=====- + + | +------ + - + - + - + |

| A== | 4mm——-- + e + e R +

I | | 32kB| | 32kB| | 32kB| | 32kB| |

| A== | +--—--—- + - + +----—- + - +

oo | +-=--—- + - S + - +
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------ + - + +-—--—- + - +
| A +
(I 8MB (I
| A m e +
B e +

Across all cores in the node:
likwid-pin -c N:0-7

./a.out

>

Socket 0:

Across the cores in each socket and across sockets in each node:
likwid-pin -c S0:0-3@S1:0-3 ./a.out

26.09.2012

(c) RRZE

- High Performance
I'IFIL Computing

B e +

| 4=—————- + - + A R + |

|1 0 8/ | 1 9 | 210 | 311] |

| 4= + e S + e + |

| +====-- + - + - + - + 1

I | 32kB| | Socket 1:

| +--—-—- I +

| === + + | +--—--—- + 4---—-- + +--—-—- + 4---—-- + |

| 1 256kB| | | | 412 | 5 13| | 6 14| | 7 15| |

| +=====- + + | +-——-—- + - + - + - + |

| A== | +mm———- 4 e e e +

I | | 32kB| | 32kB| | 32kB| | 32kB| |

| A= | +--—--—- + 4---—-- + +--—-—- + 4---—-- + |

Fommmmm | +----—- S B R + |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| 4=—m——- + 4 R + - + |
| #mmm e e +
I 8MB [
| A e + |
e +

18

likwid-pin

) : . r1"i1::
Using logical core numbering | L —

Possible unit prefixes

N

26.09.2012

Default if —c is not
specified!

node

socket

NUMA domain

- High Performance
(c) RRZE I'IFIL Computing 19

Usage: likwid-pin [T a'=

Many options can be omitted, since 1ikwid-pin has reasonable
defaults

likwid-pin will set OMP NUM THREADS for you with as many
threads as you specify in your pinning expression

With no options 1likwid-pin will use all processors:
likwid-pin ./stream-ICC

OMP_NUM THREADS will be set to 8:
likwid-pin -c S0:0-3@S1:0-3 ./stream-ICC

likwid-pin can set NUMA page placement policy to interleaved
using all NUMA domains used in your pinning expression:

likwid-pin -i -c S0:0-3@S1:0-3 ./stream-ICC

b High Perf
26.09.2012 (c) RRZE I'IFIL Clc?mputiinzrmance 20

Scenario 2: Hardware performance monitoring
and Node performance characteristics

likwid-bench
likwid-perfctr

likwid-bench —
. - . . . I
Microbenchmarking application/platform r r L

Knowledge about the performance capabilities of a machine
is essential for any optimization effort

Microbenchmarking is an important method to gain this
information

likwid-bench ...
is an extensible, flexible benchmarking framework
allows rapid development of low level kernels
already includes many ready to use threaded benchmark kernels

Benchmarking runtime cares for:
Thread management and placement
Data allocation and NUMA aware initialization
Timing and result presentation

b High Perf
26.09.2012 (c) RRZE FIR'L G e e 22

likwid-bench Example [T &=

Implement micro benchmark in abstract assembly

The benchmark file is automatically converted, compiled
and added to the benchmark application

Benchmark files are located in the ./bench directory

$ likwid-bench -t clcopy -g 1 -i 1000 -w S0:1MB:2

$ likwid-bench -t load -g 2 -i 100 -w S1:1GB -w S0:1GB-0:S1,1:S0

STREAMS 2 Data streams
TYPE DOUBLE used in
FLOPS 0 benchmark
BYTES 16
LOOP 32
Flops performed
movaps
Movabs and bytes
P transferred in one
movaps .
operation
movaps
movaps + GPR1 * 8], FPR1 Operations
movaps [STR1 + GPR1 * 8 + 128], FPR3 loop iteration
movaps [STR1 + GPR1 * 8 + 192], FPR4

High Performance

26.09.2012 (c) RRZE HIR'C Computing 23

likwid-bench command line syntax [T &'—

likwid-bench -h
likwid-bench -a list available benchmarks

Required options:
likwid-bench -t copy -g 1 -w S1:1GB
-t <benchmark case>
-g <# thread groups> need equivalent # working groups
-w <thread domain>:<working set size (kB, MB or GB)>

Specify number of threads (Default: all processors in thread domain):
likwid-bench -t copy g 1 -w S1:1GB:2

Specify data placement (Default: in same NUMA domain as threads):
likwid-bench -t copy g 1 -w S1:1GB:2-0:S0,1:S1

High Performance

26.09.2012 (c) RRZE HIR'C Computing 24

Intel Nehalem EX 4-socket system ——
ccNUMA bandwidth map -

0 1 2 3

15.5 GB/s

10.5 GB/s

Bandwidth map data measured with likwid-bench. All cores used in
one NUMA domain, memory is placed in a different NUMA domain.

Test case: simple copy A(:)=B(:), large arrays

b High Perf
26.09.2012 (c) RRZE I'IFIL Clcs);lmputiinzrmance oe

AMD Magny Cours 4-socket system — —
Topology at its best? I_ I-

0 1 2 3 a4 5 6 7

8.7 GB/s
5.1 GB/s

4.3 GB/s

3.7GB/s. . N .

/
2.7 GB/s
2.0 GB/s \
PR\
\ \|
\ \
NN ST |
N
/

-o4—%

T High Perf
26.09.2012 (c) RRZE LI Computing 26

likwid-perfctr l_I__l_
Probing performance behavior

A coarse overview of hardware performance monitoring data is
often sufficient

likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AlX, “lipfpm” on
Linux/Altix, “craypat” on Cray systems)

Simple end-to-end measurement of hardware performance metrics
Operating modes:

Wrapper

Stethoscope

Timeline [BRANCH: Branch prediction miss rate/ratio
Marker API CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores
DATA: Load to store ratio

tri list with FLOPS_SP: Single Precision MFlops/s
MEtric groups, list wi FLOPS_X87: X87 MFlops/s

likwid-perfctr -a ~< L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
\ TLB: TLB miss rate/ratio

High Performance

26.09.2012 (c) RRZE HIR'C Computing 27

likwid-perfctr —
Basic approach to performance analysis r r E —

Runtime profile / Call graph (gprof)

Instrument those parts which consume a significant part of
runtime

Find performance signatures

Possible signatures:
Bandwidth saturation
Instruction throughput limitation (real or language-induced)
Latency impact (irregular data access, high branch ratio)
Load imbalance
ccNUMA issues (data access across ccNUMA domains)
Pathologic cases (false cacheline sharing, expensive operations)

T High Perf
26.09.2012 (c) RRZE LI Computing | 28

likwid-perfctr —r
Example usage for Wrapper mode r r

$ likwid-perfctr(-C N:0-3 - FLOPS DP ./stream.exe It::mlr:img
_________________ ::::::::::;?______r__________________________ uild in

CPU type: Intel Core Lynnfield processor
CPU clock: 2.93 GHz

Measuring group FLOPS DP AIways Configured metrics

--- measured [-- (this group)
YOUR PROGRAM OUTPUT

e et e o d-— - d-—m - +
| | core 1 | core 2 | core 3 |
T e Fom - o - o - +
.	2.31001e+08	2.30963e+08	2.31885e+08
.56999e+08	9.58401e+08	9.58637e+08	9.57338e+08
4.00294e+07	3.08927e+07	3.08866e+07	3.08904e+07
FP COMP OPS	EXE __SSE__ FP SCALAR 882	0	0
FP COMP OPS EXE SSE SINGLE PRECISION 0	0	0	0
Y 4.00303e+07	3.08927e+07	3.08866e+07	3.08904e+07
e e e e — Fom - Fom - o - o - +			
e e e Tt $o— - - - $-—m - +			
Metric	core 0	corel	core 2
- o - - - e +
| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |
| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 | Derived
| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 | >~///// metrics
| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |
| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |
| SP MUOPS/s | 0 | 0 | 0 | 0 |
| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |)
e e LT TPt $o—— - $-—— - - $-—— - +
r | High Performance
26.09.2012 (c) RRZE L[= L Computing 29

likwid-perfctr —
Stethoscope mode r r L

likwid-perfctr measures on core base and has no notion what runs
on the cores

Use stethoscope mode to listen on what currently happens

without any overhead:
likwid-perfctr -c N:0-11 -g FLOPS DP -S 10

It can be used as cluster/server monitoring tool

A frequent use is to measure a certain part of a long running
parallel application from outside

b High Perf
26.09.2012 (c) RRZE FIR'L G e ™ 30

likwid-perfctr -
[T

Timeline mode

likwid-perfctr supports time resolved measurements of full node:
likwid-perfctr -c N:0-11 -g MEM -t 50ms > out. txt

80 1 «—= unblocked 8T - I L 15
- 0—0 unblocked 12T SMT
#—+ 4-way blocked 6T

=—=a 4-way blocked 12T SMT

n
o

10

~J
o

Y ST '._,.-»'—-h...I | e |

Tlllllllll

I
0F 300 400 500 8b0 700
runtime [ms]

-
(o))

SP GFlops/s
s & 2B
memory bandwidth [GB/s]

o—o unblocked 8T
o—0 unblocked 12T SMT
+— 4-way blocked 6T

=—=a 4-way blocked 12T SMT

@
o

(o)

n
o

-
o

ol L v 1 | ol | | |
1545 155 1555 175 176

runtime [s] runtime [s]

High Performance

26.09.2012 (c) RRZE HIR'C Computing 31

likwid-perfctr —
Marker AP [T ==
To measure only parts of an application a marker API is available

The API only turns counters on/off. The configuration of the
counters is still done by the 1ikwid-perfctr application

Multiple named regions can be measured
Results on multiple calls are accumulated
Inclusive and overlapping regions are possible

#include <likwid.h>
likwid markerInit(); // must be called from serial region

Likwid markerThreadInit(); //Only if used in threaded setting
likwid markerStartRegion (“Compute”) ;

likwid markerStopRegion (“Compute”) ;

likwid markerStartRegion (“postprocess”) ;
likwid markerStopRegion (“postprocess”) ;

likwid markerClose(); // must be called from serial region

High Performance

26.09.2012 (c) RRZE HIR'C Computing 32

likwid-perfctr —
Marker APl convenience C preprocessor macros r r

To enable easy toggling of instrumentation there is a set of macros

To enable LIKWID instrumentation define LIKWID PERFMON
If LIKWID PERFMON is undefined instrumentation will not be built

#define LIKWID PERFMON // comment to disable
#include <likwid.h>

LIKWID MARKER INIT;

LIKWID MARKER THREADINIT;
LIKWID MARKER START (“Compute”) ;

LIKWID MARKER STOP (“Compute”) ;

LIKWID MARKER START (“postprocess”);
LIKWID MARKER STOP (“postprocess”) ;

LIKWID MARKER CLOSE;

- High Performance

26.09.2012 (c) RRZE HIR'C Computing 33

likwid-perfctr
Group files

SHORT PSTI . . gn
vENTSET * Groups are architecture specific

FIXCO INSTR RETIRED_ANY * They are defined in simple text files
FIXC1l CPU_CLK UNHALTED_ CORE . _ _
FIXC2 CPU_CLK_UNHALTED REF * The code is generated at compile time

PMCO FP_COMP_OPS_EXE SSE_FP_PACKED
PMC1 FP_COMP_OPS_EXE SSE_FP_SCALAR

. prints a list of

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION available groups

PMC3 FP_COMP_OPS_EXE SSE DOUBLE_PRECISION . o .
UBMCO UNC_OMC NORMAL_ READS ANY Information about a specific group is

UPMC1 UNC_QOMC WRITES_FULL ANY available with switch
UPMC2 UNC_QHL REQUESTS REMOTE_ READS

UPMC3 UNC_QHL REQUESTS LOCAL READS
METRICS

Runtime [s] FIXCl*inverseClock

CPI FIXC1l/FIXCO

Clock [MHz] 1.E-06*(FIXC1l/FIXC2)/inverseClock

DP MFlops/s (DP assumed) 1.0E-06* (PMCO*2.0+PMC1l)/time

Packed MUOPS/s 1.0E-06*PMCO/time

Scalar MUOPS/s 1.0E-06*PMCl/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06* (UPMCO+UPMC1) *64/time;

Remote Read BW [MBytes/s] 1.0E-06* (UPMC2)*64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP OPS_EXE SSE FP PACKED*2 + FP COMP OPS _EXE SSE FP SCALAR)/ runtime.

= High Perf
26.09.2012 () RRZE I'IFIL Cfmpu?in(;rmance 34

likwid-perfctr command line syntax [T &'—

likwid-perfctr -a lists available performance groups
likwid-perfctr —-g <group> -H performance group specific help
likwid-perfctr —-e [|less] list available counters and raw events

Wrapper mode (with pinning):
likwid-perfctr -C N:0-3 -g L3 ./a.out

Wrapper mode (without pinning, application must pin itself):
likwid-perfctr -c N:0-3 -g L3 ./a.out

Stethoscope mode (duration in seconds):
likwid-perfctr -c S1:0-5 -g FLOPS DP -S 4

Timeline mode (ms or s, output to stdout, must be further processed):
likwid-perfctr —-c N:0-15 -g L2 -t 250ms [>out. txt]

Using instrumented binary (error if binary not instrumented):
likwid-perfctr -C N:0-3 -g L2 -m ./a.out

. High Perf
26.09.2012 () RRZE I'IFIL Clc?mpu?in(;rmance 35

Remarks on likwid-perfctr [T &'—

likwid-perfctr performs simple start/stop measurements

It does not know anything about the code running on the cores

The connection between the measurement and your code is
through pinning of processes and threads on the cores

This enables:

Very accurate, low overhead measurements of even small code
regions (using the Marker API)

Usage as monitoring/profiling without the need to have access to
the code or executable

Notice:

For an example on how timeline mode can be used to get a live monitoring tool
have a look on 1likwid-perfscope.

b High Perf
26.09.2012 (c) RRZE FIR'L G e 36

Example: likwid-perfctr (1) —
Identify load imbalance... I_ r

Instructions retired / CPI may not be a good indication of
useful workload — at least for numerical / FP intensive codes....

Floating Point Operations Executed is often a better indicator
Waiting / “Spinning” in barrier generates a high instruction count

R e e G L e B L e e LT e +
| Event core O core 1 | core 2 core 4 | core 5 |
e B R EEE EE e el S B e +
INSTR RETIRED ANY 2.10045e+10	1.90983e+10	1.729e+10 . 1.67958e+10	1.84689e+10			
CPU CLK UNHALTED CORE . 1.81203e+10	1.81802e+10	1.82084e+10	1.82334e+10	1.82484e+10		
CPU CLK UNHALTED REF	1.66053e+10	1.6473e+10	1.65274e+10	1.65531e+10	1.65758e+10	1.65894e+10
FP_COMP OPS EXE SSE FP PACKED	2.77016e+08	7.83476e+08	1.39355e+09	1.94365e+09	2.38059e+09	2.85981e+09
FP COMP OPS EXE SSE FP SCALAR	1.70802e+08	2.64065e+08	2.23153e+08	2.60835e+08	2.30434e+08	2.07293e+08
FP_COMP OPS EXE SSE SINGLE PRECISION r_____;g______1 0	0	0	0 t______ﬂ______1			
FP_COMP OPS EXE SSE DOUBLE PRECISION	4.47818e+08	1.04754e+09	1.61671e+09	2.20448e+09	2.61102e+09	3.0671e+09
. e e T .

892.857

e e TR R R R +
| Metric | core © | corel | core2 | core3 | core4 | core5 |
---------------- R e e e e e
!SOMP PARALLEL DO | Runtime [s] | 6.84594 | 6.79471 | 6.81716 | 6.82773 | 6.83711 | 6.84274 |
DOI =1. N | Clock [MHz] | 2933.51 | 2933.51 |29 2933.51 | 2933.51 |
’ | CPI | 0.869191 J| 0.948789 | 1.05148 1.08559 | ©.988061 |
I I I I

DP MFlops/s | 109.192 | 275.833 453.48 | 624.893 | 751.96

DO J =1, I
x(I) = x(I) + A(J,I) * y(J)
ENDDO
ENDDO
'$OMP END PARALLEL DO

b High Perf
26.09.2012 (c) RRZE FIR'L G e e a7

L e Fo-mmmme Fo-mmmme R e R e Fommmmmme R e +
| Event | core ® | corel | core 2 | core 3 | core 4 | cores5 |
L e R e R R e e Fommmmmee Fommmmee R e Fommmmm e Fommmmmme +
INSTR RETIRED ANY	1.83124e+10	1.74784e+10	1.68453e+10	1.66794e+10	1.76685e+10	1.91736e+10
CPU CLK UNHALTED CORE	2.24797e+10	2.23789%e+10	2.23802e+10	2.23808e+10	2.23799e+10	2.23805e+10
CPU CLK UNHALTED REF	2.04416e+10	2.03445e+10	2.03456e+10	2.03462e+10	2.03453e+10	2.03459%e+10
FP_COMP OPS EXE SSE FP PACKED	3.45348e+09	3.43035e+09	3.37573e+09	3.39272e+09	3.26132e+09	3.2377e+09
FP_COMP OPS EXE SSE FP SCALAR	2.93108e+07	3.06063e+07	2.9704e+07	2.96507e+07	2.41141e+07	2. 37397e+07
FP_ COMP OPS EXE SSE SINGLE PRECISION	19 0 0 0 0					
FP COMP OPS EXE SSE DOUBLE PRECISION ﬂ 3.48279e+09	3.46096e+09	3.40543e+09	3.42237e+09	3.28543e+09	3. 26144e+09	
f ++ ---------------- e F--------- o F--------- +------- e eeae- ++

| Metric | core© | corel | core2 | core3 | core4 | core5 |

H e T et e e F--------- F--------- R +

ngher CPI bUt Runtime [s] | 8.42938 | 8.39157 | 8.39206 | 8.3923

Example: likwid-perfctr (2)
. and load-balanced codes

env OMP_NUM THREADS=6 likwid-perfctr -t intel -C S0:0-5

|
better performance |

| Scalar MUOPS/s | 3. 59494 | 3. 75383
SOMP PARALLEL DO | SP MUOPS/s | 2.33033e-06 | 0
DOI =1, N L S S
DO J =1, N
x(I) = x(I) + A(J,I) * y(J)
ENDDO
ENDDO

1SOMP END PARALLEL DO

26.09.2012 (c) RRZE

1. 22757
850 727

1. 28037
845. 212

| 1.32857
| 831.703

LIS

| 1.34182
| 835.865

Computlng

— ngh Performance

| 8.39193 | 8.39218 |
1 | 2933.51

38

Measuring energy consumption
with LIKWID

Measuring energy consumption

likwid-powermeter and likwid-perfctr -g ENERGY
Implements Intel RAPL interface (Sandy Bridge)
RAPL = “Running average power limit”

CPU name: Intel Core SandyBridge processor
CPU clock: 3.49 GHz
Base clock: 3500.00 MHz

Minimal clock: 1600.00 MHz
Turbo Boost Steps:

Cl 3900.00 MH=z

C2 3800.00 MHz

C3 3700.00 MHz

C4 3600.00 MH=z

Thermal Spec Power: 95 Watts
Minimum Power: 20 Watts
Maximum Power: 95 Watts

Maximum Time Window: 0.15625 micro sec

High Performance

26.09.2012 (c) RRZE LI Computing 40

Example:
A medical image reconstruction code on Sandy Bridge

- N\
~— __\ R\ ce
~

Sandy Bridge EP (8 cores, 2.7 GHz base freq.)

Test case Runtime [s] Power [W] Energy [J]
8 cores, plain C 90.43 90 M 3 8110

D ®»
8 cores, SSE 29,63 93 8| 2750

= O
8 cores (SMT), SSE 22.61 102 28| 2300

<~ <£° =

8 cores (SMT), AVX 18.42 111 N\ 2040

N
26.09.2012 (c) RRZE FITR'L G e e 41

Outlook on upcoming release

Overview of new features

Support for Intel Haswell processor (Core events)

Full Xeon Phi support (likwid-bench)

likwid-pin can be used to convert logical to physical numberings
New expression based syntax for processor lists in likwid-pin

New workgroup syntax in likwid-bench (using compact placement)

Many Bug Fixes (Fortran Marker API, Atom support, groups,
NUMA thread groups, and many more)

= High Perf
26.09.2012 () RRZE I'IFIL C?mpu?in(;rmance 43

New syntax in likwid-pin rr_|_

Default behaves the same as in old implementation:
likwid-pin -c S0:0-3 using physical cores first

New expression based syntax:
likwid-pin -c E:S0:4 using compact ordering

likwid-pin -c E:S0:122:2:4 with chunk size and stride

] Stride from
stride start of each
chunk
== High Perf
26.09.2012 () RRZE I'IFIL Cfmpu?in(;rmance 44

New syntax in likwid-bench

Old syntax (using physical cores first ordering):
likwid-bench -w S0:1GB:4

New syntax (using compact ordering):
likwid-bench -w S0:1GB:4

New syntax options

likwid-bench -w S0:1GB:4:1:2

Useful on systems with more than 2 SMT threads.

26.09.2012 (c) RRZE

using processor 0,1, 2, 3

using processor0,8,1,9

using processor 0,1, 2, 3

Socket 0:

e e e +
| +-————- + - + +---=== + === + |
|1 O 8] | 1 91 | 210| | 3 11 |
| +------ S + - + ---——- + |
| +---—-—- + - + - + - + |
| | 32kB| | 32kB| | 32kB| | 32kB]| |
| +-————- + - + +---=== + === + |
| +----—- + - + - + H---——- + |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +---—-- S + - + +---——- + |
| = - + |
[8MB [
| Ammm e + |
B e e e E L T e +

- High Performance
I'IFIL Computing 45

Known Problems —
=

likwid-mpirun needs much more work to be useful
Missing documentation (Intel Xeon Phi Uncore, Haswell events)

Multiplexing is missing (Xeon Phi has only 2 counters)

PCI device based interface to Uncore on SandyBridge-EP is fragile
and causes many problems

New AMD architecture support is lagging behind (missing test
machines)

Kernel interface to MSR interface in the Linux kernel got more
restrictive (no solution to this with NFS file systems)

= High Perf
26.09.2012 () RRZE I'IFIL Cl?mpu?in(;rmance 46

Plans and New Ideas p—
=

Planned features:
Multiplexing support
More robust Uncore support on SandyBridge-EP
Simple external locking mechanism for system monitoring

Round robin option for likwid-pin

Plans:
Measurement of overhead in LIKWID, PAPI and PERF
Measurement of overhead for different counters/events

Better validation of performance groups

Options:
Alternative backend to perf kernel interface

= High Perf
26.09.2012 () RRZE I'IFIL C?mpu?in(;rmance 47

