diff --git a/README.md b/README.md index eb70f6f..f430b98 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ This is the official PyTorch implementation for the paper: > Zihan Lin*, Changxin Tian*, Yupeng Hou* Wayne Xin Zhao. Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning. WWW 2022. -# Overview +## Overview We propose a contrastive learning paradigm, named Neighborhood-enriched Contrastive Learning (**NCL**), to explicitly capture potential node relatedness into contrastive learning for graph collaborative filtering. @@ -11,7 +11,7 @@ We propose a contrastive learning paradigm, named Neighborhood-enriched Contrast -# Requirements +## Requirements ``` recbole==1.0.0 @@ -20,7 +20,7 @@ pytorch==1.7.1 faiss-gpu==1.7.1 ``` -# Quick Start +## Quick Start ```bash python main.py --dataset ml-1m @@ -28,7 +28,7 @@ python main.py --dataset ml-1m You can replace `ml-1m` to `yelp`, `amazon-books`, `gowalla-merged` or `alibaba` to reproduce the results reported in our paper. -# Datasets +## Datasets For `alibaba`, you can download `alibaba.zip` from [Google Drive](https://drive.google.com/file/d/1Th7ii_Z0l6AjGq8zWsKuLVCsacIO1AQJ/view?usp=sharing). Then, ```bash @@ -43,11 +43,11 @@ For others, they will be downloaded automatically via RecBole once you run the m python main.py --dataset yelp ``` -# Acknowledgement +## Acknowledgement The implementation is based on the open-source recommendation library [RecBole](https://github.com/RUCAIBox/RecBole). -Please cite the following papers as the reference if you use our codes or the processed datasets. +Please cite the following papers as the references if you use our codes or the processed datasets. ``` @inproceedings{lin2022ncl,