diff --git a/index.html b/index.html new file mode 100644 index 0000000..466b62e --- /dev/null +++ b/index.html @@ -0,0 +1,401 @@ + + +
+वर्गात्राणि वर्गेऽवर्गेऽवर्गाताराणी का मौ यः ।
+खद्विनवके स्वरा नव वर्गेऽवर्गे नवान्त्यवर्गे वा ॥
+
Varg Consonants From क्
to म्
denote from 1
to 25
वर्ग: | +क | +ख | +ग | +घ् | +ङ् | +च् | +छ् | +ज् | +झ् | +ञ् | +ट् | +ठ् | +ड् | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
व्यञ्जन | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 | +12 | +13 | +
+ | ढ् | +ण् | +त् | +थ् | +द् | +ध् | +न् | +प् | +फ् | +ब् | +भ् | +म् | ++ |
+ | 14 | +15 | +16 | +17 | +18 | +19 | +20 | +21 | +22 | +23 | +24 | +25 | ++ |
Awarg consonants from य्
to ह्
denote from 3
to 10
अवर्गः | +य् | +र् | +ल् | +व् | +श् | +ष | +स | +ह | +
---|---|---|---|---|---|---|---|---|
व्यञ्जन | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +
Vowels from अ
to औ
denote place-values from 100
to 1017
स्वरः | +अ | +इ | +उ | +ऋ | +लृ | +ए | +ऐ | +ओ | +औ | +
---|---|---|---|---|---|---|---|---|---|
वर्ग: | +100 | +102 | +104 | +106 | +108 | +1010 | +1012 | +1014 | +1016 | +
अवर्गः | +101 | +103 | +105 | +107 | +109 | +1011 | +1013 | +1015 | +1017 | +
ढुविघ्व is the Aryabhatiya Alphabetical Numeral for the number of revolutions of Saturn in 43,20,000 years, and it is 1,46,564.
+ढुङ्विध्व = ( ढ उ ) + (ङ् इ) + (व् इ) + (घ् अ) + (व् अ)
+++= (14×104 ) + (5×102) + (6 ×103) + (4 x 1 ) + (6 x 10 )
+
+=1,46,564.
from AncIndMatAst import AC
+word="जषबिखुछृ"
+value=AC.decode(word)
+print(f"Value of {word} = {value}")
+
Value of जषबिखुछृ = 7022388
+
from AncIndMatAst import AC
+data=AC.encode(364224)
+print(data.get("sabd"))
+print(data.get("length"))
+print(data.get("allSabd"))
+
भखिरिचुयु
+120
+['भखिरिचुयु', 'भखिरियुचु', 'भखिचुरियु', 'भखिचुयुरि', 'भखियुरिचु', 'भखियुचुरि', 'भरिखिचुयु', 'भरिखियुचु', 'भरिचुखियु', 'भरिचुयुखि', 'भरियुखिचु', 'भरियुचुखि', 'भचुखिरियु', 'भचुखियुरि', 'भचुरिखियु', 'भचुरियुखि', 'भचुयुखिरि', 'भचुयुरिखि', 'भयुखिरिचु', 'भयुखिचुरि', 'भयुरिखिचु', 'भयुरिचुखि', 'भयुचुखिरि', 'भयुचुरिखि', 'खिभरिचुयु', 'खिभरियुचु', 'खिभचुरियु', 'खिभचुयुरि', 'खिभयुरिचु', 'खिभयुचुरि', 'खिरिभचुयु', 'खिरिभयुचु', 'खिरिचुभयु', 'खिरिचुयुभ', 'खिरियुभचु', 'खिरियुचुभ', 'खिचुभरियु', 'खिचुभयुरि', 'खिचुरिभयु', 'खिचुरियुभ', 'खिचुयुभरि', 'खिचुयुरिभ', 'खियुभरिचु', 'खियुभचुरि', 'खियुरिभचु', 'खियुरिचुभ', 'खियुचुभरि', 'खियुचुरिभ', 'रिभखिचुयु', 'रिभखियुचु', 'रिभचुखियु', 'रिभचुयुखि', 'रिभयुखिचु', 'रिभयुचुखि', 'रिखिभचुयु', 'रिखिभयुचु', 'रिखिचुभयु', 'रिखिचुयुभ', 'रिखियुभचु', 'रिखियुचुभ', 'रिचुभखियु', 'रिचुभयुखि', 'रिचुखिभयु', 'रिचुखियुभ', 'रिचुयुभखि', 'रिचुयुखिभ', 'रियुभखिचु', 'रियुभचुखि', 'रियुखिभचु', 'रियुखिचुभ', 'रियुचुभखि', 'रियुचुखिभ', 'चुभखिरियु', 'चुभखियुरि', 'चुभरिखियु', 'चुभरियुखि', 'चुभयुखिरि', 'चुभयुरिखि', 'चुखिभरियु', 'चुखिभयुरि', 'चुखिरिभयु', 'चुखिरियुभ', 'चुखियुभरि', 'चुखियुरिभ', 'चुरिभखियु', 'चुरिभयुखि', 'चुरिखिभयु', 'चुरिखियुभ', 'चुरियुभखि', 'चुरियुखिभ', 'चुयुभखिरि', 'चुयुभरिखि', 'चुयुखिभरि', 'चुयुखिरिभ', 'चुयुरिभखि', 'चुयुरिखिभ', 'युभखिरिचु', 'युभखिचुरि', 'युभरिखिचु', 'युभरिचुखि', 'युभचुखिरि', 'युभचुरिखि', 'युखिभरिचु', 'युखिभचुरि', 'युखिरिभचु', 'युखिरिचुभ', 'युखिचुभरि', 'युखिचुरिभ', 'युरिभखिचु', 'युरिभचुखि', 'युरिखिभचु', 'युरिखिचुभ', 'युरिचुभखि', 'युरिचुखिभ', 'युचुभखिरि', 'युचुभरिखि', 'युचुखिभरि', 'युचुखिरिभ', 'युचुरिभखि', 'युचुरिखिभ']
+Value of जषबिखुछृ = 7022388
+
प्रमाणं तृत्तीयेन वर्धयेत् तच्च चतुर्थेनात्म चतुस्त्रिम्शोनेन सविशेष:
+
The measure is to be increased by its third and this (third) again by its own fourth less the thirty fourth part (of that fourth); this is (the value of) the diagonal of a square (whole side is the measure).
+from AncIndMatAst import BA
+num=200
+sq=BA.squareRoot(num)
+print("Square Root By Bodhaayana Approximation Method = ",sq)
+
Square Root By Bodhaayana Approximation Method = 14.1421356237469
+
Tyaktvaamtyaat Vishamaat kritim
+ Dvigunayenmulam same taddhrite
+Tyaktvaa labdhakritim tadaadya vishamaat
+ Labdham dvinighnam nyaset
+
+Panktyaam panktihrite samenyavishamaat
+ Tyaktvaptavargam phalam
+Panktyaam taddvigumam nyasediti muhuh
+ Pankterdalam syaatpadam
+
from AncIndMatAst import BM
+num=144
+sq=BM.squareRoot(num)
+print("Square Root By Bhaskara Method = ",sq)
+
Square Root By Bhaskara Method = 12
+
Adyam ghanasthanamathaaghane dve
+ Punastathantyaat ghanto visodhya
+Ghanam prithakstham padamasya krityan
+ Trighnyaa tadaadyam vibhajet phalam tu
+
+Panktyaam nyaset tatkritimantyanighneem
+ Trighneem tyajet tatprathamaat phalasya
+Ghanam tadaadyaat ghanamulamevam
+Panktirbhavedevamatah punasca
+
To Find the cube root of 9261:
+1. Start observing the given number from RHS
+2. Put dots on the digits appearing at 1st and 4th places starting from RHS, viz., or 1 and 9.
+3. Start processing the given number from LHS
+4. Remember that the terms of (a + b)^3 = a ^ 3 + 3a ^ 2 * b + 3a * b ^ 2 + b ^ 1 formula will be used in find the cube root
+5. Select the leftmost set of digits having the dot and call it XI.
+6. X1=9
+7. Identity a value of a ^ 3 * (- 8) which is the biggest value that can be subtracted from XI.
+8. keep the corresponding value of ^ * a' (=2) in the result location.
+9 Subtract that a from X1 and call the resultant value X2.
+10. X2 = 9 - 8 = 1
+11. Append the next digit of the given number to X2 for continuing the processing Call it as X3.
+12. X3 = 12
+13. Divide X3 by 3*a ^ 2 (=12)
+14. Identify the quotient as "b".
+15. b=1
+16. Subtract 3 ab from X3 and call the resultant value X4
+17. X4 = 12 - 12 = 0
+18. Append the next digit of the given number to X4 for continuing the processing Cal it as X5.
+19. X5 = 06
+20. Subtract 3^ * a^ * b ^ 2 from X5 and call the resultant value X6.
+21. X6=06-6-0
+22. Append the next digit of the given minber to X6 for continuing the processing. Call it us XT.
+23. X7=01
+24. Subtract b' from X7 and call the resultant value X8
+25. X8=01-1-0
+26. Concatenate the values of 'a' and 'b. Call it as ab 27, ab21
+28. This value 21 is the cube root of the given number 9261
+Result = 21
+
from AncIndMatAst import BM
+num=175616
+sq=BM.cubeRoot(num)
+print("Cube Root By Bhaskara Method = ",sq)
+
Cube Root By Bhaskara Method = 56
+
from AncIndMatAst import Eclipse
+date = (2006, 10, 7)
+time = (24,12,0)
+trueMoon=(321,3,27)
+trueRahu=(331,21,11)
+Eclipse.LunarEclipse(date,time,trueMoon,trueRahu)
+
Lunar Eclipse Detail of 07 October 2006
+Eclipse Type : Partial
+Magnitude of Eclipse : 0.18
+Timings of Eclipse :
+Beginnig of Eclipse : 23h 35m 23s
+Middle of Eclipse : 24h 21m 24s
+End of Eclipse : 25h 7m 25s
+
from AncIndMatAst import Eclipse
+date = (2008, 8, 1)
+iONMoon=(15,42,0)
+trueMoon=(105,33,0)
+trueRahu=(294,37,26)
+Eclipse.SolarEclipse(date,iONMoon,trueMoon,trueRahu)
+
Solar Eclipse Detail of 01 August 2008
+Eclipse Type : Total
+Magnitude of Eclipse : 1.34
+Timings of Solar Eclipse :
+Beginnig of Eclipse : 13h 31m 13s
+Beginnig of Totality : 14h 45m 14s
+Middle of Eclipse : 15h 50m 15s
+End of Totality : 16h 55m 16s
+End of Eclipse : 18h 8m 18s
+