Skip to content

Commit

Permalink
Merge bitcoin-core/secp256k1#1118: Add x-only ecmult_const version wi…
Browse files Browse the repository at this point in the history
…th x specified as n/d

0f86420 Add exhaustive tests for ecmult_const_xonly (Pieter Wuille)
4485926 Add x-only ecmult_const version for x=n/d (Pieter Wuille)

Pull request description:

  This implements a generalization of Peter Dettman's sqrt-less x-only random-base multiplication algorithm from bitcoin#262, using the Jacobi symbol algorithm from bitcoin#979. The generalization is to permit the X coordinate of the base point to be specified as a fraction $n/d$:

  To compute $x(q \cdot P)$, where $x(P) = n/d$:
  * Compute $g=n^3 + 7d^3$.
  * Let $P' = (ng, g^2, 1)$ (the Jacobian coordinates of $P$ mapped to the isomorphic curve $y^2 = x^3 + 7(dg)^3$).
  * Compute the Jacobian coordinates $(X',Y',Z') = q \cdot P'$ on the isomorphic curve.
  * Return $X'/(dgZ'^2)$, which is the affine x coordinate on the isomorphic curve $X/Z'^2$ mapped back to secp256k1.

  This ability to specify the X coordinate as a fraction is useful in the context of x-only [Elligator Swift](https://eprint.iacr.org/2022/759), which can decode to X coordinates on the curve without inversions this way.

ACKs for top commit:
  jonasnick:
    ACK 0f86420
  real-or-random:
    ACK 0f86420

Tree-SHA512: eeedb3045bfabcb4bcaf3a1738067c83a5ea9a79b150b8fd1c00dc3f68505d34c19654885a90e2292ae40ddf40a58dfb27197d98eebcf5d6d9e25897e07ae595
  • Loading branch information
real-or-random committed Apr 10, 2023
2 parents a0f4644 + 0f86420 commit 145078c
Show file tree
Hide file tree
Showing 4 changed files with 263 additions and 4 deletions.
21 changes: 21 additions & 0 deletions src/ecmult_const.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,25 @@
*/
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);

/**
* Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
* only, specified as fraction n/d (numerator/denominator). Only the x coordinate of the result is
* returned.
*
* If known_on_curve is 0, a verification is performed that n/d is a valid X
* coordinate, and 0 is returned if not. Otherwise, 1 is returned.
*
* d being NULL is interpreted as d=1. If non-NULL, d must not be zero. q must not be zero.
*
* Constant time in the value of q, but not any other inputs.
*/
static int secp256k1_ecmult_const_xonly(
secp256k1_fe *r,
const secp256k1_fe *n,
const secp256k1_fe *d,
const secp256k1_scalar *q,
int bits,
int known_on_curve
);

#endif /* SECP256K1_ECMULT_CONST_H */
135 changes: 135 additions & 0 deletions src/ecmult_const_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -228,4 +228,139 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
secp256k1_fe_mul(&r->z, &r->z, &Z);
}

static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int bits, int known_on_curve) {

/* This algorithm is a generalization of Peter Dettman's technique for
* avoiding the square root in a random-basepoint x-only multiplication
* on a Weierstrass curve:
* https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
*
*
* === Background: the effective affine technique ===
*
* Let phi_u be the isomorphism that maps (x, y) on secp256k1 curve y^2 = x^3 + 7 to
* x' = u^2*x, y' = u^3*y on curve y'^2 = x'^3 + u^6*7. This new curve has the same order as
* the original (it is isomorphic), but moreover, has the same addition/doubling formulas, as
* the curve b=7 coefficient does not appear in those formulas (or at least does not appear in
* the formulas implemented in this codebase, both affine and Jacobian). See also Example 9.5.2
* in https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch9.pdf.
*
* This means any linear combination of secp256k1 points can be computed by applying phi_u
* (with non-zero u) on all input points (including the generator, if used), computing the
* linear combination on the isomorphic curve (using the same group laws), and then applying
* phi_u^{-1} to get back to secp256k1.
*
* Switching to Jacobian coordinates, note that phi_u applied to (X, Y, Z) is simply
* (X, Y, Z/u). Thus, if we want to compute (X1, Y1, Z) + (X2, Y2, Z), with identical Z
* coordinates, we can use phi_Z to transform it to (X1, Y1, 1) + (X2, Y2, 1) on an isomorphic
* curve where the affine addition formula can be used instead.
* If (X3, Y3, Z3) = (X1, Y1) + (X2, Y2) on that curve, then our answer on secp256k1 is
* (X3, Y3, Z3*Z).
*
* This is the effective affine technique: if we have a linear combination of group elements
* to compute, and all those group elements have the same Z coordinate, we can simply pretend
* that all those Z coordinates are 1, perform the computation that way, and then multiply the
* original Z coordinate back in.
*
* The technique works on any a=0 short Weierstrass curve. It is possible to generalize it to
* other curves too, but there the isomorphic curves will have different 'a' coefficients,
* which typically does affect the group laws.
*
*
* === Avoiding the square root for x-only point multiplication ===
*
* In this function, we want to compute the X coordinate of q*(n/d, y), for
* y = sqrt((n/d)^3 + 7). Its negation would also be a valid Y coordinate, but by convention
* we pick whatever sqrt returns (which we assume to be a deterministic function).
*
* Let g = y^2*d^3 = n^3 + 7*d^3. This also means y = sqrt(g/d^3).
* Further let v = sqrt(d*g), which must exist as d*g = y^2*d^4 = (y*d^2)^2.
*
* The input point (n/d, y) also has Jacobian coordinates:
*
* (n/d, y, 1)
* = (n/d * v^2, y * v^3, v)
* = (n/d * d*g, y * sqrt(d^3*g^3), v)
* = (n/d * d*g, sqrt(y^2 * d^3*g^3), v)
* = (n*g, sqrt(g/d^3 * d^3*g^3), v)
* = (n*g, sqrt(g^4), v)
* = (n*g, g^2, v)
*
* It is easy to verify that both (n*g, g^2, v) and its negation (n*g, -g^2, v) have affine X
* coordinate n/d, and this holds even when the square root function doesn't have a
* determinstic sign. We choose the (n*g, g^2, v) version.
*
* Now switch to the effective affine curve using phi_v, where the input point has coordinates
* (n*g, g^2). Compute (X, Y, Z) = q * (n*g, g^2) there.
*
* Back on secp256k1, that means q * (n*g, g^2, v) = (X, Y, v*Z). This last point has affine X
* coordinate X / (v^2*Z^2) = X / (d*g*Z^2). Determining the affine Y coordinate would involve
* a square root, but as long as we only care about the resulting X coordinate, no square root
* is needed anywhere in this computation.
*/

secp256k1_fe g, i;
secp256k1_ge p;
secp256k1_gej rj;

/* Compute g = (n^3 + B*d^3). */
secp256k1_fe_sqr(&g, n);
secp256k1_fe_mul(&g, &g, n);
if (d) {
secp256k1_fe b;
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero(d));
#endif
secp256k1_fe_sqr(&b, d);
VERIFY_CHECK(SECP256K1_B <= 8); /* magnitude of b will be <= 8 after the next call */
secp256k1_fe_mul_int(&b, SECP256K1_B);
secp256k1_fe_mul(&b, &b, d);
secp256k1_fe_add(&g, &b);
if (!known_on_curve) {
/* We need to determine whether (n/d)^3 + 7 is square.
*
* is_square((n/d)^3 + 7)
* <=> is_square(((n/d)^3 + 7) * d^4)
* <=> is_square((n^3 + 7*d^3) * d)
* <=> is_square(g * d)
*/
secp256k1_fe c;
secp256k1_fe_mul(&c, &g, d);
if (!secp256k1_fe_is_square_var(&c)) return 0;
}
} else {
secp256k1_fe_add_int(&g, SECP256K1_B);
if (!known_on_curve) {
/* g at this point equals x^3 + 7. Test if it is square. */
if (!secp256k1_fe_is_square_var(&g)) return 0;
}
}

/* Compute base point P = (n*g, g^2), the effective affine version of (n*g, g^2, v), which has
* corresponding affine X coordinate n/d. */
secp256k1_fe_mul(&p.x, &g, n);
secp256k1_fe_sqr(&p.y, &g);
p.infinity = 0;

/* Perform x-only EC multiplication of P with q. */
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_scalar_is_zero(q));
#endif
secp256k1_ecmult_const(&rj, &p, q, bits);
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_gej_is_infinity(&rj));
#endif

/* The resulting (X, Y, Z) point on the effective-affine isomorphic curve corresponds to
* (X, Y, Z*v) on the secp256k1 curve. The affine version of that has X coordinate
* (X / (Z^2*d*g)). */
secp256k1_fe_sqr(&i, &rj.z);
secp256k1_fe_mul(&i, &i, &g);
if (d) secp256k1_fe_mul(&i, &i, d);
secp256k1_fe_inv(&i, &i);
secp256k1_fe_mul(r, &rj.x, &i);

return 1;
}

#endif /* SECP256K1_ECMULT_CONST_IMPL_H */
63 changes: 63 additions & 0 deletions src/tests.c
Original file line number Diff line number Diff line change
Expand Up @@ -4452,6 +4452,68 @@ static void ecmult_const_mult_zero_one(void) {
ge_equals_ge(&res2, &point);
}

static void ecmult_const_mult_xonly(void) {
int i;

/* Test correspondence between secp256k1_ecmult_const and secp256k1_ecmult_const_xonly. */
for (i = 0; i < 2*COUNT; ++i) {
secp256k1_ge base;
secp256k1_gej basej, resj;
secp256k1_fe n, d, resx, v;
secp256k1_scalar q;
int res;
/* Random base point. */
random_group_element_test(&base);
/* Random scalar to multiply it with. */
random_scalar_order_test(&q);
/* If i is odd, n=d*base.x for random non-zero d */
if (i & 1) {
do {
random_field_element_test(&d);
} while (secp256k1_fe_normalizes_to_zero_var(&d));
secp256k1_fe_mul(&n, &base.x, &d);
} else {
n = base.x;
}
/* Perform x-only multiplication. */
res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, 256, i & 2);
CHECK(res);
/* Perform normal multiplication. */
secp256k1_gej_set_ge(&basej, &base);
secp256k1_ecmult(&resj, &basej, &q, NULL);
/* Check that resj's X coordinate corresponds with resx. */
secp256k1_fe_sqr(&v, &resj.z);
secp256k1_fe_mul(&v, &v, &resx);
CHECK(check_fe_equal(&v, &resj.x));
}

/* Test that secp256k1_ecmult_const_xonly correctly rejects X coordinates not on curve. */
for (i = 0; i < 2*COUNT; ++i) {
secp256k1_fe x, n, d, c, r;
int res;
secp256k1_scalar q;
random_scalar_order_test(&q);
/* Generate random X coordinate not on the curve. */
do {
random_field_element_test(&x);
secp256k1_fe_sqr(&c, &x);
secp256k1_fe_mul(&c, &c, &x);
secp256k1_fe_add(&c, &secp256k1_fe_const_b);
} while (secp256k1_fe_is_square_var(&c));
/* If i is odd, n=d*x for random non-zero d. */
if (i & 1) {
do {
random_field_element_test(&d);
} while (secp256k1_fe_normalizes_to_zero_var(&d));
secp256k1_fe_mul(&n, &x, &d);
} else {
n = x;
}
res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 256, 0);
CHECK(res == 0);
}
}

static void ecmult_const_chain_multiply(void) {
/* Check known result (randomly generated test problem from sage) */
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
Expand Down Expand Up @@ -4483,6 +4545,7 @@ static void run_ecmult_const_tests(void) {
ecmult_const_random_mult();
ecmult_const_commutativity();
ecmult_const_chain_multiply();
ecmult_const_mult_xonly();
}

typedef struct {
Expand Down
48 changes: 44 additions & 4 deletions src/tests_exhaustive.c
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,19 @@ static void random_fe(secp256k1_fe *x) {
}
} while(1);
}

static void random_fe_non_zero(secp256k1_fe *nz) {
int tries = 10;
while (--tries >= 0) {
random_fe(nz);
secp256k1_fe_normalize(nz);
if (!secp256k1_fe_is_zero(nz)) {
break;
}
}
/* Infinitesimal probability of spurious failure here */
CHECK(tries >= 0);
}
/** END stolen from tests.c */

static uint32_t num_cores = 1;
Expand Down Expand Up @@ -174,10 +187,37 @@ static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_ge
secp256k1_ecmult(&tmp, &groupj[r_log], &na, &ng);
ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp);

if (i > 0) {
secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
}
}
}
}

for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
int ret;
secp256k1_gej tmp;
secp256k1_fe xn, xd, tmpf;
secp256k1_scalar ng;

if (skip_section(&iter)) continue;

secp256k1_scalar_set_int(&ng, j);

/* Test secp256k1_ecmult_const. */
secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);

if (j != 0) {
/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, and xd=NULL. */
ret = secp256k1_ecmult_const_xonly(&tmpf, &group[i].x, NULL, &ng, 256, 0);
CHECK(ret);
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));

/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, with random xd. */
random_fe_non_zero(&xd);
secp256k1_fe_mul(&xn, &xd, &group[i].x);
ret = secp256k1_ecmult_const_xonly(&tmpf, &xn, &xd, &ng, 256, 0);
CHECK(ret);
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
}
}
}
Expand Down

0 comments on commit 145078c

Please sign in to comment.