-

vezyne Ecole College

Java Programming

Introduction to Java

Itis a class-based, object-oriented programming language

History

Itis a programming language created in 1991. s -
James Gosling, Mike Sheridan, and Patrick Naughton, a team of é{i’;;r;gfﬁéirs know i'as
the Green team initiated the Java language in 1991. ““‘—“j

In 1995 Java was developed by James Gosling, who is known as the Father of Java.

Sun Microsystems released its first public implementation in 1996 as Java 1.0.

Java programming language is named JAVA. Why?

After the name OAK, the team decided to give a new name to it and the suggested words were Silk,
Jolt, revolutionary, DNA, dynamic, etc. These all names were easy to spell and fun to say, but they
all wanted the name to reflect the essence of technology.

In accordance with James Gosling, Java the among the top names along with Silk, and since java was
a unique name so most of them preferred it.

Java is the name of an island in Indonesia where the first coffee(named java coffee) was produced.
And this name was chosen by James Gosling while having coffee near his office. Note that lava is
just a name, not an acronym.

Java Terminology
gefore learning Java, one must be familiar with these common terms of Java.

1. Java Virtual Machine(JVM): This is generally referred to as JVM. There are three execution
phases of a program. They are written, compile and run the program.

« Writing a program is done by a java programmer like you and me.

« The compilation is done by the JAVAC compiler which is a primary Java compiler
included in the Java development kit (JDK). It takes the Java program as input and
generates bytecode as output.

« In the Running phase of a program, JVM executes the bytecode generated by the
compiler.

Now, we understood that the function of Java Virtual Machine is to execute the bytecode produced
by the compiler. Every Operating System has a different JVM but the output they produce after the

3|PAGE

Java Programming

Dezyne Ecole College
is i is known as
i This is why Java Is
execution of bytecode is the same across all the operating systems.
a platform-independent language.
compiler of IDK compiles the java

: ¢ :
2. Bytecode in the Development process: As discussed, the Ja‘fa ved as .class file by the compiler.
source code into bytecode so that it can be executed by JVM. Itis sa :

n about bytecode
3. Java Development Kit(JDK): While we were using the term JDK whe:‘ “::,a[:?r:cludes everything
and JVM. So, as the name suggests, it is a complete Java development kit

i i , etc. For the program
including compiler, Java Runtime Environment (IRE), java debuggers, java docs i g £
to execute in java, we need to install JDK on our computer in order to create, comp
java program.

: ; the
4. Java Runtime Environment (JRE): JDK includes JRE. JRE installation on our com pute:‘s allowi g
java program to run, however, we cannot compile it. JRE includes a browser, JVM, applet supp s
and plugins. For running the java program, a computer needs JRE.

Primary/Main Features of Java

1. Platform Independent: Com piler converts source code to bytecode and then the JVM executes
the bytecode generated by the compiler. This bytecode can run on any platform be it Windows,
Linux, macOS which means if we compile a program on Windows, then we can run it on Linux and
vice versa. Each operating system has a different JVM, but the output produced by all the OS is the
same after the execution of bytecode. That is why we call java a platform-independent language.

2. Object-Oriented Programming Language: Organizing the program in the terms of collection of
objects is a way of object-oriented programming, each of which represents an instance of the class.
The four main concepts of Object-Oriented programming are:

* Abstraction
* Encapsulation
¢ [Inheritance
* Polymarphism

3. Simple: Java is one of the simple languages as it does not have complex features like pointers,
operator overloading, multiple inheritances, Explicit memory allocation.

4. Robust: Java language is robust which means reliable, It is developed in such a way that it puts a
lot of effort into checking errors as early as possible, that is why the Java compiler is able tg detect
even those errors that are not easy to detect by another programming language. The main features

of java that make it robust are garbage collection, Exception Handling, and memory allocation

5. Secure: In java, we don’t have pointers, so we cannot access out-of-

A bound arrays i.e it
shows ArrayindexOutOfBound Exception if we try to do so.

java programs can be easily distributed on one or more
through an internet connection,

4|PAGE

-

e]

Dezyne Ecole College

Java Programming

7. Multithreading: Java supports multithreading. It is a Java feature that allows concurrent
execution of two or more parts of a program for maximum utilization of CPU.

8. Portable: As we know, java code written on one machine can be run on another machine. The
platform-independent feature of java in which its platform-independent bytecode can be taken to
any platform for execution makes java portable.

10. Dynamic flexibility: Java being completely object-oriented gives us the flexibility to add
classes, new methods to existing classes and even create new classes through sub-classes.

11. Write Once Run Anywhere: As discussed above java application generates a ‘.class’ file which
corresponds to our applications(program) but contains code in binary format. It provides ease to
architecture-neutral ease as bytecode is not dependent on any machine architecture. It is the
primary reason java is used in the enterprising IT industry globally worldwide.

12. Power of compilation and interpretation: Most languages are designed with purpose either
they are compiled language or they are interpreted language. But java integrates arising enormous

power as Java compiler compiles the source code to bytecode and JVM executes this bytecode to
machine OS-dependent executable code.

Differences between Java and C++

Memory
- Management

Virtual Keyword

Multiple
Inheritance

5|PAGE

Java was developed by James Gosling at
Sun Microsystems.

On May 23, 1995

Java SE 14 or IDK 14 was released on
March 17, 2020.

oracle.com/java

Java was Influenced by Ada 83, Pascal,
C++, CH, etc. languages. :

| Java was influenced to develop
| BeanShell, C#, Clojure, Groovy, Hack, J#,
- Kotlin, PHP, Python, Scala, etc. languages.

| Platform independent, Java bytecode

works on any operating system.

| It can run in any OS hence it is portable.

| Java is both Compiled and Interpreted
| Language.
- Memory Management is System

Controlled.

It doesn’t have Virtual Keyword.

It supports only single inheritance.
Multiple inheritances are achieved
partially using interfaces.

C++ was developed by Bjarne
Stroustrup at Bell Labs in 1979 as
an extensjon of the C language.

In October 1985

C++17 was released in December
2017.

isocpp.org

C++ was Influenced by Influenced
by Ada, ALGOL 68, C, ML, Simula,
Smalltalk, etc. languages. ;
C++ was influenced to develop
€99, Java, JS++, Lua, Perl, PHP,
Python, Rust, Seed7, etc.
languages.

Platform dependent, should be
compiled for different platforms.
C++is platform-dependent. Hence
it is not portable.

C++ is only Compiled Language.

Memory Management in C++ is
Manual.

It has Virtual Keyword.

It supports both single and
multiple Inheritance.

L///

= T =Lle Co"ege

1 :::si?frts only method overloading and
et a_llow operator overloading.
: as limited support for pointers.
| It doesn’t support direct native library
calls but only Java Native Interfaces.

lefaries .have a wide range of classes for
Vvarious high-level services.

It supports documentation comments
(e:g., /**.. */) for source code.

Ja\"a_ provides built-in support for
multithreading,

Java is only an
Programming language.

object-oriented

Java uses
class): System.in for
and System.out for output.

Java doesn’t support goto Keyword

lava doesn’t support Structures and
Unions.

. Java supports only the Pass by Value
technique.

It supports no global scope.

the (System

input

Automatic object management with
garbage collection.

Java Basic Syntax

Java ngramm;ng

It supports both method and
operator overloading.

It strongly supperts pointers.

It supports direct system library
calls, making it suitable for
system-level programming.

C++ libraries have comparatively
low-level functionalities.

It doesn’t support documentation
comments for source code.

C++ doesn’t have built-in support
for threads, depends on third-
party threading libraries.

C++ is both a procedural and an
object-oriented programming
language.

C++ uses cin for input and cout for
an output operation.

C++ supports goto keyword.
C++ supports Structures
Unions.

C++ supports both Pass by Value
and pass by reference.

It supports both global scope and
namespace scope.

and

It supports manual object
management using new and
delete.

A Java program is a collection of objects, and these objects communicate through method calls to

each other to work together.

Basic terminologies in Java

1. Class: The class is a blueprint (plan) of the instance of a class (object). it can be defined as a
template which describes the data and behaviour associated with its instance.

e Example: Blueprint of the house is class.

2. Object: The object is an instance of a class. It is an entity which has behaviour and state.
« Example: A car is an object whose states are: brand, colour, number-plate.

- Behaviour: Running on the road.
3. Method: The behaviour of an object is the method.

. Example: The fuel indicator indicates the amount of fuel left in the car.

Example: Steps to compile and run a java program in a console

public class First { .
public static void main (String[] args) {

6|PAGE

——

Dezyne Ecole College Java Programming

System.out.printin("Java Programming");
}

Jjavac First,java
java First

Note: When the class is public, the name of the file has to be the class name.
The Basic Syntax:

1. Comments in Java
There are three types of comments in Java.

i. Single line Comment
// System.out.printin("Java Programming");

ii. Multi-line Comment

!‘
System.out.printin("Java Programming");
System.out.printin{"Alice!");

i 4

iii. Documentation Comment. Also called a doc comment.

/** documentation */

2. Source File Name

The name of a source file should exactly match the public class name with the extension of .java.
The name of the file can be a different name if it does not have any public class. Assume you have
a public class GFG.

First.java // valid syntax
first.java // invalid syntax

3. Case Sensitivity
Java is a case-sensitive language, which means that the identifiers AB, Ab, aB, and ab are different

in Java.
System.out.println{"Alice"); // valid syntax
system.out.printin("Alice"); // invalid syntax

4, Class Names
i. The first letter of the class should be in Uppercase (lowercase is allowed, but not discouraged).

iii. If several words are used to form the name of the class, each inner word's first letter should be

in Uppercase.
Underscores are allowed, but not recommended. Also allowed are numbers and currency symbols,

although the latter are also discouraged because the are used for a special purpose (for inner and
anonymous classes).
class MylavaProgram // valid syntax

class 1Program // invalid syntax

7|PAGE

= ramming
Dezyne Ecole College Java Prog

class My1Program // valid syntax
class SProgram // valid syntax, but discouraged
class MySProgram // valid syntax, but discouraged

class mylavaProgram // valid syntax, but discouraged

5. public static void main(String [] args) i

2 ng starts.
The method main() is the main entry point into a Java program; this is where the process! E
Also allowed is the signature public static void main(String... args).

6. Method Names

i. All the method names should start with a lowercase letter. :
ii. If several words are used to form the name of the method, then each first letter of the in digits
should be in Uppercase. Underscores are allowed, but not recommended. Also allowed are dig
and currency symbols.

public void employeeRecords() // valid syntax

ner word

public void EmployeeRecords() // valid syntax, but discouraged

7. Identifiers in java
Identifiers are the names of local variables, instance and class variables, labels, but also the names
for classes, packages, modules and methods.

i. All identifiers can begin with a letter, a currency symbol or an underscore {_). According to the
convention, a letter should be lower case for variables.

ii. The first character of identifiers can be followed by any combination of letters, digits, currency
symbols and the underscore. The underscore is not recommended for the names of variables.
Constants (static final attributes and enums) should be in all Uppercase letters.

iii. Most importantly identifiers are case-sensitive.

iv. A keyword cannot be used as an identifier since it is a reserved word and has some special
meaning.

Legal identifiers: MinNumber, total, ak74, hello_world, Samount, _under_value
lllegal identifiers: 74ak, -amount

8. White-spaces in Java
A line containing only white-spaces, possibly with the comment, is known as 3 blank line
!

lava compiler totally ignores it. and the

9. Access Modifiers: These modifiers control the scope of class and methods
* Access Modifiers: default, public, protected, private)
* Non-access Modifiers: final, abstract,

10. Java Keywords

process or represent some predefined actions. These
variable names or objects.

8|PAGE

Java Programming

Dezyne Ecole College

abstract assert boolean | break
Byte case catch char
Class const continue | default
Do double else enum
extends final finally float
For goto if implements
Import instanceof int interface
Long native new | package
private | protected public | return
Short static strictfp | super
Switch synchronized | this throw
throws transient try void _
volatile | while

Java Hello World Program

% Javais one of the most popular and widely used programming languages and platforms.

% Java is fast, reliable, and secure.
% Java is used in every nook and corner from desktop to web applications, scientific
supercomputers to gaming consoles, cell phones to the Internet.
The process of Java programming can be simplified in three steps:

« Create the program by typing itinto a text editor and saving it to a file — HelloWorld.java.
« Compile it by typing “javac HelloWorld.java” in the terminal window.
« Execute (or run) it by typing “java HelloWorld” in the terminal window.

// This is a simple Java program.
// FileName : "HelloWorld.java".

class HelloWorld

{
// Your program begins with a call to main().
// Prints "Hello, World" to the terminal window.
public static void main(String args[])
{
system.out.printin("Hello, World");
}
}

1. Class definition
This line uses the keyword class to declare that a new class is being defined.
class HelloWorld

2. HelloWorld
It is an identifier that is the name of the class. The entire class definition, including all of its members,
will be between the opening curly brace { and the closing curly brace }.

9|PAGE

\ _'_________.—-—'—-_'_._-_-__-'___-___'_‘_‘—‘—-._\\‘_\
Java Programming

Dezyne Ecole College

3. main method: d whose signature
:sn the dava Programming language, every application must contain a main metho

Public static void main(String[] args)

* Public: So that JVM can execute the method from anywhere- ifiers public and static
® Static: The main method is to be called without an object. The rodiferp
can be written in either order.

* void: The main method doesn’t return anything.

® main(): Name configured in the JVM.

* String[]: The main rﬁethod accepts a single argument, i.e., an array of elements of type

N String, < tly invoke

Like in C/C++, the main method is the entry point for your application and WSS
all the other methods required by your program.

The next line of code is shown here. Notice that it occurs inside the main{) method.

System.out.println[" Hello, World");

This line outputs the string “Hello, World” followed by a new line on the screen. Outpl.!t is
accomplished by the built-in printin() method. The System is a predefined class that provides
access to the system, and out is the variable of type output stream connected to the console.

4. compiling the program
After successfully setting up the environment, we can open a terminal in both

Windows/Unix and go to the directory where the file — HelloWorld.java is present.
Now, to compile the HelloWorld program, execute the compiler — javac, to specify the

name of the source file on the command line, as shown:
javac HelloWorld.java
The compiler creates a HelloWorld.class (in the current working directory) that contains
the bytecode version of the program. Now, to execute our program, JVM(Java Virtual
Machine) needs to be called using java, specifying the name of the class file on the
command line, as shown:
java HelloWorld
This will print “Hello World" to the terminal screen,

L]
B G SIEC AR eteni? ome eee
F:\»javac HelloWorld.]ava

Fi\»fava HelloWorld
Hello, World

Fiy>

10|PAGE

Dezyne Ecole College Java Programming

Variable

% Avariable is a container which holds the value while the Java program is executed. A variable

is assigned with a data type.
» Variable is a name of memory location.
% There are three types of variables in java: local, instance and static.

A variable is the name of a reserved area allocated in memory. In other words, it is a name of the
memory location. It is a combination of "vary + able" which means its value can be changed.

int data=50;//Here data is variable
How to initialize variables?

It can be perceived with the help of 3 components that are as follows:

. datatype; Type of data that can be stored in this variable.
« variable_name: Name given to the variable.
« value: Itis the initial value stored in the variable.

int age = 20;¢— value

da‘tatv{:e v:\riable_name

Resarved Memary for varizble

RAM

There are three types of variables in Java:

o local variable
o instance variable

o static variable

1) Local Variable
A variable declared inside the body of the method is called local variable. You can use this variable

only within that method and the other methods in the class aren't even aware that the variable exists.
A local variable cannot be defined with "static” keyword.

import java.io.*;
class G {
public static void main({String[] args)

{

int var = 10; // Declared a Local Variable

11 |PAGE

T T

Dezyne Ecole College

é:,:::s variabl‘e is local to this main method only
m.out.printin("Local Variable: " + var);

}
2) Instance Variable

constructor, or block,
L]

the class i
lnstancses ;s created and destroyed when the object is destroyed.
ariable can be accessed only by creating objects.

import java.io.*;
class G {

public String ge; // Declared Instance Variable

public G()
{ // Default Constructor

; this.ge = "Shubham Jain"; // initializing Instance Variable
//Main Method
public static void main(String[] args)

{

// Object Creation
G name = new G();
// Displaying O/P
System.out.printin("name is: " + name.ge);
}
}

3) Static variable
Static variables are also known as Class variables.

These variables are declared simil
variables are declared using the static

Java Programming

Instance vari
ariables : ,
are non-static variables and are declared in a class outside any method,

As instanc i j
€ variables are declared in a class, these variables are created when an object of

arly as instance variables. The difference is that static
keyword within a class outside any method constructor

l’ or block.
f the static variable and share it among all the instances of the

You can create a single copy 0
| class.

I public class A

| itatic int m=100;//static variable
| void method()
| (

12 [PAGE

LCLLe232e 220000 —

Dezyne Ecole College

int n=90;//local variable

}
public static void main(String args[])

{

int data=50;//instance variable
}

}

//end of class

13| PAGE

Java Programming

e ———

, Java Programming
Dezyne Ecole College

Data types in Java

- N
(i’Dat.a Types in Java ’
— S
J‘_rﬂ"‘-fﬂ -““‘“—-_-‘H‘H“—‘“ T
Frimll_l;._:.;‘ MNen. Primitive Data Types
/’ Jr(ll \
SR il
o ee Ny /| \
= /1
e ./ e \
ichmmr\mm | Integral ih: l,r / \\
ol . /
‘ rml-gﬂ | Floating-Point / \
L
| TN / \
. Rl M !)
boolean char byte short int long float double String Array etc. QG

Java has two categories of data: ble
* Primitive Data Type: such as boolean, char, int, short, byte, long, float, and dou
* Non-Primitive Data Type or Object Data type: such as String, Array, etc.

Primitive Data Type

true, false
hyte twos complement integer | 0 8 bits (none} -128 to 127
= e unicode character w0000 16 bits @' WY, VIOV, W, Ve, B character representation
of ASCIl values
0 to 255
short twos complement integer | 0 il | (none) -32,768]
to
=g 32,767
int twos complement integer 0 32 bits 4,-1,0,1,2 -2'14?!‘—3—-5._“__“_
to
2,147 483,847
its 2L, L2
foug T [e et 9.223,372,036,864,775.808
0
= e T007, T TG0 9223.3?2.033.354.??5.30?
t 0.0 hits 1231001, 1.236-1001, .31, 3.14F
float IEEE 754 floating poin BT decing -
154 Hoating point 0.0 64 bits 1.234566300d, -1.23456e 3000, Te1g B e
double IEEE Upto 16 decima) digits
- o —— i i

Non-Primitive Data Type or Reference Data Types

The Reference Data Types will contain a memory address of

. : variable values pe
types won't store the variable value directly in memory, The

' ause the
Y are strings, object reference

S, arrays, et

14 |PAGE

__—_—___\k

Dezyne Ecole College Java Programming

Literals in Java

Literal: Any constant value which can be assigned to the variable is called literal/constant.
In simple words, Literals in Java is a synthetic representation of boolean, numeric, character, or

string data.

// Here 100 is a constant/literal.
int x = 100;

e Integral literals- For Integral data types (byte, short, int, long)
int x=101;
e Floating Point Literals- For Floating-point data types, we can specify literals in only
decimal form.
double d = 123.456;
e Char Literals- We can specify literal to a char data type as a single character within the
single quote.
charch ='a';
e String Literals- Any sequence of characters within double quotes is treated as String

literals.
String s = "Hello";

Boolean literals- Only two values are allowed for Boolean literals, i.e., true and false.
boolean b = true;

Operators in Java

Java provides many types of operators which can be used according to the need. They are classified
based on the functionality they provide. Some of the types are:

Arithmetic Operators
Unary Operators
Assignment Operator
Relational Operators
Logical Operators
Ternary Operator
Bitwise Operators
Shift Operators
instance of operator

RN D WN R

1. Arithmetic Operators: They are used to perform simple arithmetic operations on primitive data
types.

« *: Multiplication

s [/ :Division

e % :Modulo
o +:Addition
= —:Subtraction

15 |PAGE

Java Programming

Dezyne Ecole College

d to increment,

2. Unary Operators: Unary operators need only one operand. They aré usé

decrement or negate a value.

« —:Unary minus, used for negating the values.
hout this, however). It

itive wit
posit char, of short.

+ : Unary plus indicates the positive value (numbers are
s operand is the byte,

performs an automatic conversion to int when the type of it
This is called unary numeric promotion.

rieties of
« ++ :Increment operator, used for incrementing the value by 1. There are two V@

increment operators.
; ented.

e Post-Increment: Value is first used for computing the result and then increm

e Pre-Increment: Value is incremented first, and then the result is computed.

the value by 1. There are tWO varieties of

« — : Decrement operator, used for decrementing

decrement operators.
remented.

« Post-decrement: Value is first used for computing the result and then dec

e Pre-Decrement: Value is decremented first, and then the result is computed.

| : Logical not operator, used for inverting a boolean value.

any variable. It has a
or is assigned to the
re using it or should

3. Assignment Operator: ‘=" Assignment operator is used to assign a value to
right to left associativity, i.e. value given on the right-hand side of the operat
variable on the left, and therefore right-hand side value must be declared befo

be a constant.
The general format of the assignment operator is:

variable = value;

In many cases, the assignment operator can be combined with other operators to build a shorter

version of the statement called a Compound Statement. For example, instead of a = a+5, we can

write a += 5.

e +=, for adding left operand with right operand and then assigning it to the variable on the left.

-=, for subtracting right operand from left operand and then assigning it to the variable on the

left.
*=, for multiplying left operand with right operand and then assigning it to the variable on the

left.
/=, for dividing left operand by right operand and then assigning it to the variable on the left

%=, for assigning modulo of left operand by right operand and then assigning i
, gning it t i
on the left. g it to the variable

4. Relational Operators: These operators are used to check for relations like equality

less than. They return boolean results after the comparison and are extensivel ; gre_ater than,

statements as well as conditional if-else statements. The general format is y used in looping
r

variable relation_operator value
o Some of the relational operators are-
» ==, Equal to: returns true if the left-hand side is equal to the rj
i

» I, Not Equal to: returns true if the left-hand side is not e
e <, less than: returns true if the left-hand side is less tha

ght-hand side.

n the right-hang side,

16 |PAGE

qualto the right-hand side

Dezyne Ecole College Java Programming

o <=, less than or equal to returns true if the left-hand side is less than or equal to the
right-hand side.

e >, Greater than: returns true if the left-hand side is greater than the right-hand side.

« >z, Greater than or equal to: returns true if the left-hand side is greater than or
equal to the right-hand side.

5. Logical Operators: These operators are used to perform “logical AND” and “logical OR”
operations.

Conditional operators are:

* &&, Logical AND: returns true when both conditions are true.

¢ ||, Logical OR: returns true if at least one condition is true.

» |, Logical NOT: returns true when condition is false and vice-versa

6. Ternary operator: Ternary operator is a shorthand version of the if-else statement. It has three
operands and hence the name ternary.
The general format is:

condition ? if true : if false

public class operators {
public static void main(String[] args)

{
inta=20, b= 10, c=30, result;

// result holds max of three
// numbers
result
=((a>b)?(a>c)?a:c:(b>c)?b:c);
System.out.printin("Max of three numbers ="
+ result);
}
}

7. Bitwise Operators: These operators are used to perform the manipulation of individual bits of a

number. They can be used with any of the integer types. They are used when performing update

and query operations of the Binary indexed trees.

« &, Bitwise AND operator: returns bit by bit AND of input values.

« |, Bitwise OR operator: returns bit by bit OR of input values.

« A Bitwise XOR operator: returns bit by bit XOR of input values.

« ~, Bitwise Complement Operator: This is a unary operator which returns the one’s complement
representation of the input value, i.e., with all bits inverted.

8. Shift Operators: These operators are used to shift the bits of a number left or right, thereby
multiplying or dividing the number by two, respectively. They can be used when we have to multiply
or divide a number by two. General format-

number shift_op number_of_places_to_shift;
e <<, Left shift operator: shifts the bits of the number to the left and fills 0 on voids left as a result.

similar effect as of multiplying the number with some power of two.

« >>, Signed Right shift operator: shifts the bits of the number to the right and fills 0 on voids left
as a result. The leftmost bit depends on the sign of the initial number. Similar effect as of dividing
the number with some power of two.

17 |PAGE

Dezyne Ecole College Java Programming

. _ : ids
* >>>, Unsigned Right shift operator: shifts the bits of the number to the right and fills Daave
left as a result. The leftmost bit is set to 0.

_ test
?. Instanceof operator: The instance of the operator is used for type checking. It can be usedto

if an object is an instance of a class, a subclass, or an interface. General format-

object instance of class/subclass/interface

Precedence and Associativity of Operators

Precedence and associative rules are used when dealing with hybrid equations involving more t‘han
one type of operator. In such cases, these rules determine which part of the equation to canldef
first, as there can be many different valuations for the same equation. The below table deplc_tS the
precedence of operators in decreasing order as magnitude, with the top representing the highest
precedence and the bottom showing the lowest precedence.

ciativity
Right to left Unary postfix
Right to left Unary prefix
Left to right Multiplicative
Left to right Additive
Left to right Relational
Left to right Equality
Left to right Boolean Logical AND
Left to right Boolean Logical Exclusive OR
Left to right : : Boolean Logical Inclusive OR
Left to right Conditional AND
Left to right .\ /| 'Conditional OR
Right to left _ Conditional
Right to left " Assignment

Type conversion

e Java provides various data types just likely any other dynamic languages such as boolea
char, int, unsigned int, signed int, float, double, long, etc in tota| Providing 7 types o

e Every datatype acquires different space while storing in memory,
e When you assign a value of one data type to another, the two types might not be compatibl
patible

with each other. If the data types are compatible, then Jaya will perform th :
automatically known as Automatic Type Conversion € conversion

e And if not then they need to be cast or converted ex

plicitly. For ex i
value to a long variable. ample, assigning an int

18 |PAGE

b

—

Java Programming
Dezyne Ecole College

Widening or Automatic Type Conversion . .
Widening %unversion takes place when two data types are automatically converted. This happens
when:

¢ The two data types are compatible. .
* When we assign a value of a smaller data type to a bigger data type.

Byte —> Short —> Int —> Long — > Float —> Double

Widening or Automatic Conversion

class G {

// Main driver method
public static void main(String[] args)
{

int i =100;

// Automatic type conversion
// Integer to long type
long | =i;

// Automatic type conversion
// long to float type
float f=|;

// Print and display commands
System.out.printIn("Int value " + i);
System.out.println("Long value " +1);
System.out.printin("Float value " + f);
}
}

Narrowing or Explicit Conversion
If we want to assign a value of 3 larger data type to a smaller data type we perform explicit type
casting or narrowing.

* This is useful for incompatible data types where automatic conversion cannot be done.

nvert the specified value to.

————

Double -> Float > Long —> Int —> Short —> Byte

19| PAGE
___‘__‘_____——-—.____

Dezyne Ecole College

public class G {
public static void main(String[] args)

{

// Double datatype
double d = 100.04;

long | = (long)d;
int i= (int)l;

// Print statements
System.out.println("Double value " +d);

System.out.println("Long value " +1);

System.out.println("lnt value " +i);

T Wl

Java Programimiiiizg

v v v

Dezyne Ecole College Java Programming

Program Control Statements

¢ Decision Making in Java (if, if-else, switch, break, continue, jump)-
A programming language uses control statements to control the flow of execution of a program
based on certain conditions. These are used to cause the flow of execution to advance and branch
based on changes to the state of a program.

Java’s Selection statements:

o jf

s if-else

* nested-if
o jf-else-if

e switch-case
* jump - break, continue, return

1. if: if statement is the most simple decision-making statement. It is used to decide whether a
certain statement or block of statements will be executed or not i.e if a certain condition is true
then a block of statement is executed otherwise not.

Syntax:

if(condition)

{

/[Statements to execute if
/[condition is true

}

Example:

class IfDemo {
public static void main(String args[])

{
inti=10;

if (i > 15)
System.out.printin("10 is less than 15");

}
}

2. if-else: The if statement alone tells us that if a condition is true it will execute a block of
statements and if the condition is false it won’t. But what if we want to do something else if the
condition is false. Here comes the else statement. We can use the else statement with if statement
to execute a block of code when the condition is false.
Syntax:
if (condition)
{

// Executes this block if

// condition is true

21|PAGE

i

Dezyne Ecole College Java Progralfiiiiiind

}

else

{
// Executes this block if

// condition is false

}

Example:
class IfElseDemo {
public static void main(String args[])

{
inti=10;
if (i < 15)
System.out.printIn("i is smaller than 15");
else
System.out.printin("i is greater than 15");
}
}
e. Nested if statements

3. nested-if: A nested if is an if statement that is the target of anotheriforels ment
f statements within if

mean an if statement inside an if statement. Yes, java allows us to nest i
statements. i.e, we can place an if statement inside another if statement.

Syntax:
if (condition1)

{

// Executes when condition1 is true
if (condition2)

{

// Executes when condition2 is true

}
Example:
class NestedIfDemo {
public static void main(String args[])

inti=10;

if (i == 10) {
// First if statement

if (i < 15)
System.out.println("i is smaller than 15");

// Nested - if statement
// Will only be executed if statement above

22 |PAGE

Dezyne Ecole Coliege Java Programming

[/ itis true
if (i < 12)
System.out.printin(
"i is smaller than 12 too");
else

| } System.out.printin("i is greater than 15");
|
}
}

| 4. if-else-if ladder: Here, a user can decide among multiple options.The if statements are executed

from the top down. As soon as one of the conditions controlling the if is true, the statement

_associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions
fs true, then the final else statement will be executed.
if (conditiun)

statement;
else if (condition)

statement;

else

statement;

Example:

class ifelseifDemo {
public static void main(String args[])

{
inti=20;

if (i == 10)
System.out.printIn("i is 10");
else if (i == 15)
System.out.printin("i is 15");
else if (i == 20)
System.out.printin("i is 20");
else
System.out.printin("i is not present");
}
}

5. switch-case: The switch statement is a multiway branch statement. It provides an easy way to
dispatch execution to different parts of code based on the value of the expression.

Syntax:

switch (expression)

{

23 |PAGE

—
Java Programming

Dezyne Ecole College

case valuel:
statementl;
break;

case value2:
statement2;

break;

case valueN:
statementN;
break;

default:

statementDefault;

}
The expression can be of type byte, short, int char, or an enumeration. Beginning with

JDK7, expression can also be of type String.
Duplicate case values aré not allowed.

« The default statement is optional.
« The break statement is used inside the switch to terminate @ statemen

« The break statement is optional. If omitted, execution will continue on

t sequence.
into the next case.

Nested-Switch Statement:
Nested-Switch statements re

Syntax:

fers to Switch statements inside of another Switch Statements.

switch(n)

// code to be executed ifn =1;
case 1:

// Nested switch
switch(num)

J/ code to be executed if num =10

case 10:
statement 1;
break;

// code to be executed if num =20

case 20:
statement 2;
break;

// code to be executed if num =30

24 |PAGE

—
=

TSN

Dezyne Ecole College Java Programming

case 30:
statement 3;
break;

// code to be executed if num
// doesn't match any cases
default:

}

break;

// code to be executed if n = 2;
case 2:

statement 2;

break;

// code to be executed if n = 3;
case 3:

statement 3;

break;

// code to be executed if n doesn't match any cases
default:

}

6. jump: Java supports three jump statements: break, continue and return. These three statements

transfer control to another part of the program.

s Break: In Java, a break is majorly used for:

« Terminate a sequence in a switch statement (discussed above).
« To exit a loop.
» Used as a “civilized” form of goto.

« Continue: Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop but stop processing the remainder of the code in its body for this
particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s end. The
continue statement performs such an action.

class ContinueDemo {
public static void main(String args[])
{
for (inti=0;i<10;i++) {
// If the number is even
// skip and continue
if (i%2==0)
continue;

// if number is odd, print it
System.out.print(i+"");
}
1

25 |PAGE

Java Programming
Dezyne Ecole College

: s
E,It cause
- hod. That
¢ Return-The return statement is used to explicitly return from a met

program control to transfer back to the caller of the method.
Example:

class Return {
public static void main(String args(])
{
booleant = true;
System.out.printin("Before the return.");

if (t)
return;

// Compiler will bypass every statement
// after return

System.out.println("This won't execute.");

* Loopsin Java- =
Looping in lJpmgramming languages is a feature which facilitates the execution of a sitruc:
instructions/functions repeatedly ~ while some condition e\.'aluatffs _to.l baele
Java provides three ways for executing the loops. While all the ways provide similar
functionality, they differ in their syntax and condition checking time.

dl
1. while loop: A while loop is a control flow statement that allows code to be executed repeatedly

based on a given Boolean condition. The while loop can be thought of as a repeating if
statement.

Syntax :
while (boolean condition)

{
loop statements...

}

» While loop starts with the checking of condition, If it evaluated to true, then the loop body

statements are executed otherwise first statement following the loop is executed. For this
reason it is also called Entry control loop

* Once the condition is evaluated to true, the sta
the statements contain an update value for th

tements in the loop body are executed. Normally
* When the condition becomes false, the loop t

© variable being processed for the next iteration.
erminates which marks the end of its life cycle
class whileLoopDemo
{

public static void main(String args|])

{

intx=1;

// Exit when x becomes greater than 4
while (x <= 4)

26 |PAGE

Dezyne Ecole College Java Programming

{

System.out.printin("Value of x:" + x);

// Increment the value of x for
// next iteration

2. for loop: for loop provides a concise way of writing the loop structure. Unlike a while loop, a for
statement consumes the initialization, condition and increment/decrement in one line thereby
providing a shorter, easy to debug structure of looping.

Syntax:
for (initialization condition; testing condition;

increment/decrement)

statement(s)

e Initialization condition: Here, we initialize the variable in use. It marks the start of a for
loop. An already declared variable can be used or a variable can be declared, local to loop
only.

e Testing Condition: It is used for testing the exit condition for a loop. It must return a boolean
value. It is also an Entry Control Loop as the condition is checked prior to the execution of
the loop statements.

¢ Statement execution: Once the condition is evaluated to true, the statements in the loop
body are executed.

e Increment/ Decrement: It is used for updating the variable for next iteration.

 Loop termination:When the condition becomes false, the loop terminates marking the end

of its life cycle.

class forLoopDemo

{

public static void main(String args(])
{
// for loop begins when x=2
// and runs till x <=4
for (int x = 2; x <= 4; x++)
System.out.printin{"Value of x:" + x);
}
}

Enhanced For loop
Java also includes another version of for loop introduced in Java 5. Enhanced for loop provides a
simpler way to iterate through the elements of a collection or array. It is inflexible and should be

27 |PAGE

Java Progr amming

Dezyne Ecole College

ithout
5equential manner with

tsina
used only when there is a need to iterate through the elemen
knowing the index of the currently processed element.

Syntax:
for (T element:Collection obj/array)

{

statement(s)

Example-

public class enhancedforloop

{
public static void main(String args[])
{

String array[] = {"Ron", "Harry", "Hermoine"};

//enhanced for loop
for (String x:array)
{

System.out.printin(x);

}

/* for loop for same function
for (int i = 0; i < array.length; i++)
{

System.out.printIn{arrayl[i]);

}
gl
}
}

3. do while: do while loop is similar to while loop with only difference
after executing the statements, and therefore
Syntax:

that it checks for condition
is an example of Exit Control Loop.

do
{

statements..

}

while (condition);

¢ When the condition becomes false, the lo
* Itisimportant to note that the do-whij|
any condition is checked, and therefor

28 |PAGE

mmm College

class dowhileloopDemo

Public static void main(String args[])
{

int x=21;

do

{
// The line will be printed even
/1 if the condition is false

Svstem.out.println(“Va!ue of x:" +x);
X++:

} r
while (x < 20);
}

Nested loop means a

loop statement inside another loo
also called as

“loop inside loop”,
Syntax for Nested For loop:
for (initialization; condition; increment R

for (initialization; condition; increment) {

// statement of inside loop

}

// statement of outer loop

}

class G{
public static void

Print2D(int mat(][])
{
// Loop through all rows

for (inti=0;i< mat.length; i++) {

// Loop through all ele

ments of current row
for (intj =

0;j< mat(il.length; j++)
Svstem.out.print(mat[i]|j] +1),

System.out.printin();

}
public static voig main(String args[]) throws IOException
{

int mat(]] = { {1, 2, 3,4},
{5,6,7,8 I3

‘ 29 |PAGE

——— e

\

Java Programming

P statement. That is why nested loops are

I

Dezyne Ecole College Java Programming

{9,10,11,12}}
print2D(mat);

}

Output:
1234

5678
9101112

Input from the keyboard

® InJava, there are many ways to read strings from input.

* The simplest one is to make use of the class Scanner, whi
has been newly introduced in Java 5.0. :

* Using this class, we can create an object to read input from the standard input
channel System.in (typically, the keyboard), as follows:

ch is part of the java.util library and

Scanner scanner = new Scanner(System.in);

Then, we can use the nextLine() method of the Scanner class to get from standard input the next line
(a sequence of characters delimited by a newline character), according to the following schema:

import java.util.Scanner;

public class KeyboardInput {
public static void main (String[] args) {

Scanner scanner = new Scanner(System.in);
String inputString = scanner.nextLine();

System.out.println(inputString};

import java.util.Scanner; - imports the class Scanner from the library java.util
Scanner scanner = new Scanner(System.in); - creates a new Scanner object, that is connected
to standard input (the keyboard)

String inputString = scanner.nextlLine();

We can also read in a single word (i.e., a sequence of characters delimited by a WhiteSpa{:e
character) by making use of the next() method of the Scanner class,

Java Scanner class provides nextint() method for reading an integer value, nextDouble)
method for reading a double value, nextLong() method for reading a long value, etc

30 |PAGE

[

Dezyne Ecole College Java Programming

OOPs (Object-Oriented Programming System)

Object-Oriented Programming is a methodology or paradigm to design a program using classes and
objects. It simplifies software development and maintenance by providing some concepts:

e Object

e Class

e Inheritance

s Polymorphism
» Abstraction

e Encapsulation

1. Object

Any entity that has state and behavior is known as an object. For example, a chair, pen, table,
keyboard, bike, etc. It can be physical or logical.

An Object can be defined as an instance of a class. An object contains an address and takes up some
space in memory.

An object has three characteristics:
o State: represents the data (value) of an object.
o Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc.

o Identity: An object identity is typically implemented via a unique ID. The value of the ID is not
visible to the external user. However, it is used internally by the JVM to identify each object

uniquely.

31|PAGE

|

[

Java Progr amming

Dezyne Ecole College
te. It is used to

. ’ ;i P s its sta
For Example, Pen is an object. Its name is Reynolds; color is white, known a
write, so writing is its behavior.

- created.
)) ich ob. ects are
An object is an instance of a class. A class is a template or blueprint from which 09)
So, an object is the instance(result) of a class.

2. Class te or blueprint from
A class is a group of objects which have common properties. It is a template
which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

o Fields

o Methods

o Constructors
o Blocks

o Nested class and interface

Syntax to declare a class:

1. class <class_name>{
field; _

method;

3. Inheritance
When one object acquires all the properties and behaviors of a parent object, it is known as

inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

4. Polymorphism

If one task is performed in different ways, it is known as polymorphism. For exa mple: to convince th
customer differently, to draw something, for example, shape, triangle, rectan gle, etc e the

In Java, we use method overloading and method overriding to achieve poiymorphism

5. Abstraction

don't know the internal processing.

In Java, we use abstract class and interface to achieve abstraction

32|PAGE

izyne Ecole College Java Programming

6. Encapsulation

Binding (or wrapping) code and data together into a single unit are known as encapsulation. For
example, a capsule, it is wrapped with different medicines.

A java class is the example of encapsulation.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and name. We are
creating the object of the Student class by new keyword and printing the object's value.

Here, we are creating a main() method inside the class.

//Java Program to illustrate how to define a class and fields
//Defining a Student class.

class Student{

//defining fields

int id;//field or data member or instance variable

String name;

//creating main method inside the Student class

public static void main(String args[I{

//Creating an object or instance

Student s1=new Student();//creating an object of Student
//Printing values of the object
System.out.println(s1.id);//accessing member through reference variable
System.out.println(s1.name);

}

Object and Class Example: main outside the class

In real time development, we create classes and use it from another class. It is a better approach than
previous one.

class Student{
intid;

String name;
E

//Creating another class TestStudent1 which contains the main method

33| PAGE

- ogramming
Dezyne Ecole College Java Prog

class TestStudentl{

public static void main(String args[]|
Student s1=pew Student();
System.out.print]n(sl.id};

System.out.println(sl.name};

}
}

3 Ways to initialize object

There are 3 ways to initialize object in Java.
1. By reference variable
2. By method

3. By constructor

Object and Class Example: Initialization through reference
Initializing an object means storin

g data into the object. Let's see a simple example where we are going
to initialize the object through a

reference variable.

class Student(
intid;
String name;

}

class TestStudent2{

public static void main(String args[]){
Student s1=new Studenty();
sl.id=101;
sl.name="Jack";
System.out.printin(s1.id+" "
}

}

+sl.name);//printing members With a white space

34 |PAGE

Dezyne Ecole College J
ava Programming

Creating Objects Using New Keyword

1. Using new keyword

e an object. This is the most common

Usi inj
sing the new keyword in java is the most basic way to creat
ted in this way. By using this method

e ..
way to create an object in java. Almost 99% of objects are crea
e can call any constructor we want to call

class G {
String name = "Java Programming";

public static void main(String(] args)

{

// using new keyword
G obj = new G();

// Print and display the object
System.out.println{obj.name);

}
}
Methods
e A method in Java or Java Method is a collection of statements that perform some specific
task and return the result to the caller.
e AJava methodcan perform some specific task without returning anything.
se the code without retyping the code.

Methods in Java allow us to reu

Method Declaration

In general, method declarations has five components :
e it can be accessed in your

es the access type of the method i.e. from wher

here 4 types of access specifiers.
public: It is accessible in all classes in your application.
defined and inits subclass/es

. protected: It is accessible within the class in which it is
private: It is accessible only within the class in which it is defined.
me class

default: It is declared/defined without using any modifier. It is accessible within the sa
and package within which its class is defined.
2. The return type: The data type of the value returned by the method or void if does not r

value.
3. Method Name:t

little different.

1. Modifier: It defin
application. In Java, t

®
eturn @

mes as well, but the convention is @

he rules for field names apply to method na

35 |PAGE
[—_

: I

5 ngrammf ng
Dezyne Ecole College Java

with their
4. Parameter list: Comma-separated list of the input parameters is defined, preceud;:duse empty
data type, within the enclosed parenthesis. If there are no parameters, you M
parentheses (). perform your
5. Method body: it is enclosed between braces, The code you need to be executed t0

intended operations.

return-type method-name parameter-list

™

modifier *——— m int
{
if (x>vy)
return x; ——» body of the met!rod
else
returmny;
: =

Types of Methods in Java

There are two types of methods in Java:

1. Predefined Method: In Java, predefined methods are the method that is already defined in the
Java class libraries is known as predefined methods. It is also known as the standard library
method or built-in method. We can directly use these methods just by calling them in the program
at any point.

2. User-defined Method: The method written by the user or programmer is known as a user-
defined method. These methods are modified according to the requirement.

Rules to Name a Method

* While defining a method, remember that the me
a lowercase letter.

* In the multi-word method name, the first letter of each word m
first word. For example, findSum, computeMax, setX and getX.

thod name must be a verb and start with

ust be in Uppercase except the

Method Calling
The method needs to be called for using its functionality,

Let's see an example of the predefined method:

36 |PAGE

Dezyne Ecole College

Public class Demo

{

Public static void main(String(] args)

{
// using the max() method of Math class

System.out.print("The maximum number is: " + Math.max(9,7))

}
}

How to Create 3 User-defined Method:

Example1:

import java.util.Scanner;

public class Even0Odd

{

public static void main (String args[])

{

//creating Scanner class object
Scanner scan=new Scanner(System.in);
System.out.print("Enter the number: %;
//reading value from user

int num=scan.nextint();

//method calling

findEvenOdd(num);

}

//user defined method

public static void findEvenOdd|(int num)
{

//method body

if(num%2==0)
System.out.printin(num+" is even");
else

System.out.printin(num+" is odd");

}
}

Example 2:

public class Addition
{

public static void main(String[] args)

{

inta=19;
intb=5;
//method calling

37 |PAGE

’

Java Programming

T——

= ogramming
Dezyne Ecole College Java Prog

int c=add(a, b); //aand b are actual parameters
System.out.printin("The sum of a and bis= " + c);

}
//user defined method
Public static int add(int n1, int n2) //n1 and n2 are formal parameters

{

ints;
s=nl+n2;
return s; //returning the sum

}
}

Method Overloading

. 3 : ters (different
* InlJava, two or more methods may have the same name if they differ in parame

number of parameters, different types of parameters, or both}.- o auerIsEAING,
* These methods are called overloaded methods and this feature is called me

void func() { ... }
void func(inta){...}
float func(double a) { ... }

float func(int a, float b) { ... }

Here, the func() method is overloaded. These methods have the same name but accept different

arguments.

Why method overloading?

Suppose, you have to perform the addition of given numbers but there can be any number of

L]
arguments (let’s say either 2 or 3 arguments for simplicity).

In order to accomplish the task, you can create two methods sum2num(int,
int) and sum3num(int, int, int) for two and three parameters respectively. However, other
programmers, as well as you in the future may get confused as the behavior of both methods
are the same but they differ by name.

The better way to accomplish this task is by overloading methods. And, depending upon the
argument passed, one of the overloaded methods is called. This helps to increase the

readability of the program.

How to perform method overloading in Java?

1. Overloading by changing the number of parameters:

38 |PAGE

[\

class MethodOverloading {
private static void display(int a){
System.out.printin("Arguments: " + a);

}

private static void display(int a, int b){
System.out.printin("Arguments: " +a +"and " + b);

}

public static void main(String[] args) {
display(1);
display(1, 4);
y o
}

2. Method Overloading by changing the data type of parameters:

class MethodOverloading {

/[this method accepts int
private static void display(int a){
System.out.printin("Got Integer data.");

}

// this method accepts String object
private static void display(String a){
System.out.printIn("Got String object.");

}
public static void main(String[] args) {
display(1);
display("Hello");
}
}
Constructors
e A constructor in Java is a special method that is used to initialize objects.
e The constructor is called when an object of a class is created.
e At the time of calling the constructor, memory for the object is allocated in the memory
® Every time an object is created using the new() keyword, at least one constructor is called.
39|PAGE

Dezyne Ecole College Java Programming

£ programming
Dezyne Ecole College Java

How Constructors are Different from Methods in Java?

g ile it is not

: o ned while i

* Constructors must have the same name as the class within which it 1$ defi
necessary for the method in Java .

: or vol

» Constructors do not return any type while method(s) have the return type
return any value. _

» Constructors are called only once at the time of Object creation whi

any number of times.

d if does not

le method|(s) can be called

Types of Constructors in Java

Primarily there are two types of constructors in java:

¢ No-argument constructor
¢ Parameterized Constructor

1. No-argument constructor

A constructor that has no parameter is known as the default constru .
constructor in a class, then the compiler creates a default constructor(wi
class. And if we write a constructor with arguments or no-arguments then the com
create a default constructor.

ctor. If we don’t define a
th no arguments) for the
piler does not

class G {
int num;
String name;

// this would be invoked while an object
/[of that class is created.
G()
{ System.out.printIn("Constructor called");

}

class GF {
public static void main(String[] args)
{
// this would invoke default constructor.
G gl =new G();

// Default constructor provides the default
// values to the object like 0, null
System.out.println{geekl.name};
Svstem.out.printlntgeekl.num);
N
2. Parameterized Constructor
A constructor that has parameters is known as parameterized constructo

r. If we want to initial:
fields of the class with our own values, then use a parameterized construc to initialize

tor.

class G {
// data members of the class.
String name;
int id;

40 |PAGE

P
Dezyne Ecole College Java Programming

// Constructor would initialize data members
// With the values of passed arguments while
// Object of that class created

G(String name, int id)

this.name = name;
this.id = id;
}
}

// Class 2
class GF {
// main driver method
public static void main(String[] args)

{

// This would invoke the parameterized constructor.
G gl = new G("adam", 1);
System.out.printin("Name :" + gl.name

+"and Id:" +gl.id);

Constructors Overloading

Similar to Java method overloading, we can also create two or more constructors with different
parameters. This is called constructors overloading.

class Main {
String language;

// constructor with no parameter
Main() {
this.language = "Java";

}

// constructor with a single parameter
Main(String language) {
this.language = language;

}

public void getName() {
System.out.printIn("Programming Langauage: " + this.language);

}

public static void main(String[] args) {

// call constructor with no parameter
Main obj1 = new Main();

// call constructor with a single parameter
Main obj2 = new Main("Python");

41 |PAGE

I

Dezyne Ecole College

objl.getName();
obj2.getName();
}
}

The new operator

The new operator is used in Java to create new objects. It can also

Let us first see the steps when creating an object from a class -

Java Programming

be used to create an array object.

» Declaration - A variable declaration with a variable name with an object type.

e Instantiation — The 'new' keyword is used to create the object.

. -
* Initialization - The 'new' keyword is followed by a call to a constructor. This call initiali

new object.

Syntax
NewExample obj=new NewExample();

Points to remember
» Itis used to create the object.
e [t allocates the memory at runtime.

o All objects occupy memory in the heap area.
s Itinvokes the object constructor.
e Now, let us see an example -

Example
public class NewExamplel {

void display()

{
System.out.printin("Invoking Method");

}

public static void main(String[] args) {
NewExamplel obj=new NewExample1();

obj.display();
}
}

Recursion
 Recursion is the technique of making a function call itself

e This technique provides a way to break complicated
which are easier to solve.

42 |PAGE

s the

Problems down into simple problems

-__-____—_—

Dezyne Ecole College Java Programming

How Recursion works?

public static void main(String[] args) {

recurse() -
}
Normal
static void recurse() {<- Method Call
! Recursive

mae 8¢ Ass ca"
recurse ()

e In order to stop the recursive call, we need to provide some conditions inside the method.

Otherwise, the method will be called infinitely.

o Hence, we use the if...else statement (or similar approach) to terminate the recursive call

inside the method.
class Factorial {
static int factorial(int n) {
if (n 1=0) // termination condition
return n * factorial(n-1); // recursive call
else
return 1; }
public static void main(String([] args) {
int number = 4, result;
result = factorial(number);

System.out.println{number+ " factorial = " + result); }}

43 |PAGE

—

Java Programming

Dezyne Ecole College

Arrays in Java

% o name.
e Anarray in Java is a group of like-typed variables referred to by 2 commof

nning from 0.

e The variables in the array are ordered, and each has an index begi .
gth using the object

e Length Property:-Since arrays are objects in Java, we can find their len

property length.

® The direct superclass of an array type is Object. /
2 55 les l17 [22 Jes |80 [97 |¥

o 1 5 Fe——— —6—-——-—'—"""'7"”"3] <- Array Indices
Array Length=9
First Index=0
Last Index=8

e Creating, Initializing, and Accessing an Array

1. One-Dimensional Arrays:
The general form of a one-dimensional array declaration is

type var-namel[];
OR
type[] var-name;
e An array declaration has two components: the type and the name.

e type declares the element type of the array. The element type determines the data type of
each element that comprises the array.

e Like an array of integers, we can also create an array of other primitive data types like char
float, double, etc. ’

Example:
// both are valid declarations
int intArray(];
or int[] intArray;

byte byteArray[];

short shortsArray(];
boolean booleanArray(];
long longArrayl[];

float floatArrayl];

44| PAGE

Dezyne Ecole College Java Programming

double doubleArray[];
char charArray[];

Instantiating an Array in Java

e When an array is declared, only a reference of an array is created. To create or give memory
to the array, you create an array like this:
e The general form of new as it applies to one-dimensional arrays appears as follows:

var-name = new type [size];

e Here, type specifies the type of data being allocated,
e size determines the number of elements in the array,
e and var-name is the name of the array variable that is linked to the array.
e To use new to allocate an array, you must specify the type and number of elements to
allocate.
Example:
int intArray[]; //declaring array
intArray = new int[20]; // allocating memory to array
OR
int[] intArray = new int[20]; // combining both statements in one

Accessing Java Array Elements using for Loop

Each element in the array is accessed via its index. The index begins with 0 and ends at (total array
size)-1. All the elements of array can be accessed using Java for Loop.

// accessing the elements of the specified array
for (inti=0;i<arr.length; i++)
System.out.printIn("Element at index" +i+
" "+ arri]);
Example:

class G

{

public static void main (String[] args)

{
// declares an Array of integers.
int[] arr;

// allocating memory for 5 integers.
arr = new int[5];

// initialize the first elements of the array
arr[0] = 10;

// initialize the second elements of the array
arr[1] = 20;

45 |PAGE

Dezyne Ecole College Java Programming

//so on...

arr[2] = 30;
arr[3] = 40;
arr(4] = 50;

// ac_ces.sing the elements of the specified array
for (inti=0;i< arr.length; i++)
System.out.printIn("Element at index" +i+

"n,n

L+ arrli]);

2. Multidimensional Arrays:

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in Java

I dataTypel][] arrayRefVar; (or)
Il. dataType [][JarrayRefVar; (or)
lll. dataType arrayRefVar[][]; (or)
IV. dataType [larrayRefVar(];

Example to instantiate Multidimensional Array in Java

int[][] arr=new int[3][3];//3 row and 3 column
Example of Multidimensional Java Array

class Testarray3({

public static void main(String args[]){

//declaring and initializing 2D array

int arrf] []={{1,2,3},{2,4,5},{4,4,5}};

//printing 2D array

for(int i=0;i<3;i++){

for(int j=0;j<3;j++){
System.out.print(arr{i][j]+" ");

}

System.out. printin();

}

I}

46 |PAGE

————

Dezyne Ecole College Java Programming

Assigning Array Reference

As with other objects, when you assign one array reference variable to another, you are simply
changing what object that variable refers to. You are not causing a copy of the array to be made, nor
are you causing the contents of one array to be copied to the other. For example, consider this
program

// Rssigning array reference variables.
class AssignARef |
public static void main(String args()) {
int i;

int numsl|) = new int([10);
int numal{] = new int{10);

for(ieD; i < 107 dee})
numel (i) = &;

for{i=0; i < 10; i+s]
nums2 [i] = -i;
System.out.print(“Here is numsl: *);
for{iabd; 1 < 10; L++}
System.out.print (nums1 [i] « " Y);
System.out.printin{);

System.out.print (*Here is numal: *);

for(is=0;: i < 10: i+4)
System.out.print (numa2 [4i] « * “):

System.out.printlini);

nums2 = numsl; // now nums? referz to numsl <—— Assgn on ooy reference.

System,out.princ("Here is nums2 after assignment: “):
foriim®; 1 <« 10; i++)

System,out ,print (numa2 [1] + * *);
System.out.printin();

// now operate on numsl array throuah numsZ
numed [3] « 99;

System.out.print ("Here is numsl after change through nums2: ");
fori(i=0: i < 10; i+s)

System.out.print (numsl [i] + " ");
System.cut .printin(};

The output from the program is shown here:

Here is numsl: 0 1 2 34 56 78 9
Here is nums2: ¢ -1 -2 -3 -4 -5 -6 -7 -B -9
Here is nums2 after assignment: 0 1 2 3 4 56 7 8 &

Here is numel after change through nums2: 0 1 2 99 4 56 7 8 o

47 |PAGE

programming

Dezyne Ecole College Java

String Fundamentals and Handling

e String Class:
a sequence Of

In Java, a string is a sequence of characters. For example, whello" is a string containing

characters 'h', 'e', 'I', 'I', and '0'.
We use double quotes to represent a string in Java. For example,
// create a string

String type = "Java Uﬂomwm—::.::m._h
with the string Java

Here, we have created a string variable named type. The variable is initialized
Programming.
Example: Create a String in Java
class Main {
public static void main(String[] args) {
// create strings
String first = "Java";

String second = "Python";

String third = "JavaScript";

// print strings
m_.__mnm3.c£.n_._=::_“m_.mrx // print Java

mﬁ$3.ccvu::ziumnu:nr // print Python

mﬁﬂma.ccﬁ.u_._zﬂ_:::_aw // print JavaScript

Java String Operations

1. Get length of a String

To find the length of a string, we use the length() method of the String. For examp|
. ample,

48 |PAGE

Dezyne Ecole College Java Programming

class Main {

public static void main(String[] args) {

// create a string

String greet = "Hello! World";

System.out.printin("String: " + greet);
// get the length of greet

int length = greet.length();

System.out.printin("Length: " + length);

}
2. Join Two Java Strings

We can join two strings in Java using the concat() method. For example,
class Main {
public static void main(String[] args) {

// create first string

String first = "Java";

System.out.printIn("First String: " + first);
// create second

String second = "Programming";

System.out.printin("Second String: " + second);

// join two strings

String joinedString = first.concat(second);

System.out.printIn("Joined String: " + joinedString);

aalon r—rc

Dezyne Ecole College

}

3. Compare two Strings

. ample
In Java, we can make comparisons between two strings using the equals() method. For €X ’

class Main {
public static void main(String[] args) {
// create 3 strings
String first = "java programming";
String second = "java programming";
String third = "python programming";
// compare first and second strings
boolean result1 = first.equals(second);

System.out.printIn("Strings first and second are equal: " + resultl);

// compare first and third strings
boolean result2 = first.equals(third);

System.out.printIn("Strings first and third are equal: " + result2);

}

4.Char charAt(int i): Returns the character at i*" index.
"JavaProgramming".charAt(3); // returns ‘a’

5.String substring (int i): Return the substring from the i™" index character to end.

"JavaProgramming ".substring(3); // returns “aProgramming”

6. String substring (int i, int j): Returns the substring from i to j-1 index.

"GeeksforGeeks".substring(2, 5); // returns “eks”

7. int indexOf (String s): Returns the index within the string of the first occurrence of the

specified string. i
String s = "Learn Share Learn™;
int output = s.indexOf(“Sha re”); // returns 6

8. int indexOf (String s, int i): Returns the index within the string of the first

specified string, starting at the specified index.
String s = “Learn Share Learn”;

50| PAGE

Java Programming

OCcurrence of the

[\

Dezyne Ecole College Java Programming

int output = s.indexOf("ea",3);// returns 13

9. Int lastindexOf(String s): Returns the index within the string of the last occurrence of the
specified string.

String s = “Learn Share Learn”;
int output = s.lastindexOf("a"); // returns 14

10.5tring toLowerCase(): Converts all the characters in the String to lower case.

String word1 = “HelLo”;
String word3 = word1.toLowerCase(); // returns “hello"

Immutable String in Java
In Java, String objects are immutable. Inmutable simply means unmodifiable or unchangeable.

Once String object is created its data or state can't be changed but a new String object is created.

class Testimmutablestring{
public static void main(String args[]){
String s="Sachin";

s.concat(" Tendulkar");//concat() method appends the string at the end

System.out.printIn(s);//will print Sachin because strings are immutable objects

}
}

Output

Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new object
is created with Sachin Tendulkar. That is why String is known as immutable.

“sachin
Tendulkar”

String constant
poof

50| PAGE

. ——
Java Programming

Dezyne Ecole College

As you can see in th
" : e above figure . -)
Sachin” not to "Sachin Tel'ldu?karuthat two objects are created but s reference variable still refers to

But if we explicitl ign i
plicitly assign it to the reference variable, it will refer to "Sachin Tendulkar" object.

For example:

class Testimmutablestring1{

public static void main(String args[]){
String s="Sachin";
s=s.concat(" Tendulkar");

System.out.printin(s);

}

}
Output
Sachin Tendulkar

Three String-Related Language Features

CharSequence Interface
uence of characters.

is used to represent the seq
create strings in

The CharSequence interface
ses implement it. It means, W€ can

String, StringBuffer and StringBuilder clas
Java by using these three classes.

CharSequence

B

/ | \

/] N implements
/ I N
/ b3
I
I

/
/

String stringBuffer

N\
N

stringBuilder

The Java String is immutable which means it cannot be changed.
a new instance is created. For mutable strings, you can use

never we change any string,
ringBuilder classes.

@ Whe
stringBuffer and St

52 |PAGE

Dezyne Ecole College Java Programming

* StringBuffer Class:

Java StringBuffer class is used to create mutable (modifiable) String objects. The StringBuffer class in

Java is the same as String class except it is mutable i.e. it can be changed.

What is a mutable String?

A String that can be modified or changed is known as mutable String. StringBuffer and StringBuilder

classes are used for creating mutable strings.

1) StringBuffer Class append() Method
The append() method concatenates the given argument with this String.

class StringBufferExample{
public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");
sh.append("Java");//now original string is changed
System.out.printin(sb);//prints Hello Java

}

}
Output:
Hello Java

2) StringBuffer insert() Method

The insert() method inserts the given String with this string at the given position.

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");
sh.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints Hlavaello

}

}
3) StringBuffer replace() Method

The replace() method replaces the given String from the specified beginindex and endindex.

class StringBufferExample3{
public static void main(String args[]){
StringBuffer sb=new StringBuffer("Hello");

sb.replace(1,3,"Java");
System.out.printn(sb);//prints Hlavalo

53| PAGE

Dezyne Ecole College Java Programming

}
}
4) StringBuffer delete() Method

g inindex to
The delete() method of the StringBuffer class deletes the String from the specified B
endindex.

class StringBufferExample4{
public static void main(String args[]){

StringBuffer sh=new StringBuffer("Hello");
sh.delete(1,3):

System.out.println(sb};//prints Hlo
}
}

5) StringBuffer reverse() Method

The reverse() method of the StringBuilder class reverses the current String.

class StringBufferExample5{
public static void main(String args[1{
StringBuffer sb=new StringBuffer("Hello");
sb.reverse();
System.out.printin(sb);//prints olleH } }

e StringBuilder Class:

Java StringBuilder class is used to create mutable (modifiable) String. The Java StringBuilder
class is same as StringBuffer class except that it is non-synchronized.

Syntax:-

class StringBuilderExample{

public static void main(String args[]){
StringBuilder sb=new StringBuilder("Hello ");
sh.append("Java");//now original string is changed
System.out.printin(sb);//prints Hello Java

}

}
Note: Same Methods as String Buffer.

54 |PAGE

—

Dezyne Ecole College Java Programming

String Constructors

* The String object can be created explicitly by using the new keyword and a constructor in the
same way as you have created objects in previously. For example The statement
String str = new String(“Welcome to Java”);

Here, String (“Welcome to Java”) is actually a constructor of the form String (string literals).

® You can also create a string from an array of characters. To create a string initialised by an
array of characters, use the constructor of the form
String (charArray)
For example, consider the following character array.
char[] charArray ={'H’,'V’, *,’D",’V',/N’,'E’,’S''H’};

® Inaddition to these two constructors, String class also supports the following constructors,
* String (): It constructs a new String object which is initialized to an empty string (" “). For
example:

String s = new String(); '
Will create a string reference variable s that will reference an empty string.

Escape character in Java Strings
The escape character is used to escape some of the characters present inside a string.
Suppose we need to include double quotes inside a string.

// include double quote
String example = "This is the "String" class";

Since strings are represented by double quotes, the compiler will treat "This is the " as the string.
Hence, the above code will cause an error.

To solve this issue, we use the escape character \ in Java. For example,

// use the escape character
String example = "This is the \"String\" class.";

Creating strings using the new keyword:
Since strings in Java are objects, we can create strings using the new keyword as well. For example,
/[create a string using the new keyword

String name = new String("Java String");

In the above example, we have created a string name using the new keyword.
Here, when we create a string object, the String() constructor is invoked.

class Main {

55| PAGE

[—
Dezyne Ecole College

public static void main(String(] args) {

// create a string using new
String name = new String("Java String");

System.out.printin(name); // print Java String

}
}

Java programming

Inheritance is an important pillar of OOP(Obje:

Inheritance Basics

2 : hanism in
i mming). It is the mec
ct-Oriented Progra g) < cliss.

features(fields and methods) of anoth

java by which one class is allowed to inherit the

Important terminology:
« Super Class: The class whose features are inherit

parent class).
« Sub Class: The class that inherits the oth

the superclass fields and methods.

new class and there is already a class that inclu
our new class from the existing class. By doing this,

the existing class.

How to use inheritance in Java
The keyword used for inheritance is extends.

Syntax :
class derived-class extends base-class

{
//methods and fields

Example:

class Employee{

float salary=40000;

}

class Programmer extends Employee{
int bonus=10000;

public static void main(String args[]){

Programmer p=new Programmer();
System.out.printin("Programmer salary is:"+p.salary);
System.out.printin("Bonus of Programmer is:"+p bon’us)-

!

56 |PAGE

ed is known as superclass(or a b

er class is known as a subclass(or

extended class, or child class). The subclass can add its own fields an

« Reusability: Inheritance supports the concept of “reusability”,
des some of the code that we

we are reusing the fiel

ase class ora

a derived class,
d methods in addition to

i.e. when we want to create a

want, we can derive
ds and methods of

Java Programming

Dezyne Ecole College
}
}

Types of Inheritance in Java
Below are the different types of inheritance which are supported by Java.

1. Single Inheritance: In single inheritance, subclasses inherit the features of one superclass. In
the image below, class A serves as a base class for the derived class B.

Single Inheritance

Example:
class one {
public void print_ge()
{
System.out.printin("Java");
}
}

class two extends one {
public void print_for() { System.out.printin("Is"); }
}
// Driver class
public class Main {
public static void main(String[] args)
{
two g = new two();
g.print_ge();
g.print_for();
g.print_ge();
}
}

2. Multilevel Inheritance: In Multilevel Inheritance, a derived class will be inheriting a base class
and as well as the derived class also act as the base class to other class. In the below image, class A
serves as a base class for the derived class B, which in turn serves as a base class for the derived

class C.

57 |PAGE

S

Dezyne Ecole College

Base Class

Intermediatory
Class

Derived Class

Multilevel Inheritance

Example:
class one {
public void print_ge()
{ .
System.out.pri"htln("Java");
}
}

class two extends one {

public void print_for() { System.out.printin("ls"); }

}

class three extends two {
public void print_ge()
{
System.out.printIn{“Java"};
}
}

// Drived class
public class Main {
public static void main(String[] args)
{
three g = new three();
g.print_ge();
g.print_for();
g.print_ge();
}
}

58 |PAGE

Java Programm ing

D

Dezyne Ecole College Java Programming

archical Inheritance, one class serves as a superclass (base

3. Hierarchical Inheritance: In Hier
s for the derived

class) for more than one subclass. In the below image, class A serves as a base clas

class B, Cand D.

Base Class [A

Derived 1 Derived 2 Derived 3
Example:
class A {
public void print_A() { System.out.printIn("Class A"); }

}

class B extends A {
public void print_B() { System.out.printin("Class B"); }

}

class C extends A {
public void print_C() { System.out.printin("Class C"); }

}

class D extends A {
public void print_D() { System.out.printIn("Class D"); }

}

// Driver Class
public class Test {
public static void main(String[] args)
{
B obj_B = new B();
obj_B.print_A();
obj_B.print_B();

Cobj_C = new C();
obj_C.print_A();
obj_C.print_C();

D obj_D = new D{);
obj_D.print_A();
obj_D.print_D();

59 |PAGE

mming

3 Progra
Dezyne Ecole College Java

ss can have more
note that Java
e inheritances

4. Multiple Inheritance (Through Interfaces): In Multiple inheritances, olne:;a
s. Plea

than one superclass and inherit features from all parent classe _ tipl
does not support multiple inheritances with classes. In java, we can achieve mu

only through Interfaces.

Multiple Inheritance

Member Access(Access Modifiers) In Inheritance

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor, or class.
We can change the access level of fields, constructors, methods, and class by applying the access

modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed

from outside the class.
2. Default: The access level of a default modifier is only within the package. It cannot be accessed

from outside the package. If you do not specify any access level, it will be the default

3. Protected: The access level of a protected modifier is within the package and outside th
> ide the
package through child class. If you do not make the child class, it cannot be accessed f
d esse
outside the package. rom

4. Public: The access level of a public modifier is everywhere. It can be accessed f
‘ - ro ithi
class, outside the class, within the package and outside the package it the

1) Private

The private access modifier is accessible only within the class

60| P AGE

——

Dezyne Ecole College Java Programming

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and
private method. We are accessing these private members from outside the class, so there is a compile-
time error.

class A{
private int data=40;

private void msg(){System.out.printin("Hello java");}

}

public class Simple{

public static void main(String args[]){
A obj=new A();
System.out.printIn(obj.data);//Compile Time Error
obj.msg();//Compile Time Error
}

}

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is accessible only
within package. It cannot be accessed from outside the package. It provides more accessibility than
private.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A class from
outside its package, since A class is not public, so it cannot be accessed from outside the package.

//save by A.java
package pack;
class A{
void msg(){System.out.printin("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{
public static void main(String args[]){
A obj = new A();//Compile Time Error

61| PAGE

-

) Java Programming
Dezyne Ecole College

obj.msg():ffcomp“e Time Error i
t cannot pe accessed

. i
In the above example, the scope of class A and its method msg() is default SO
from outside the package. '

3) Protected

through
. ackage but

The protected access modifier is accessible within package and outside the P

inheritance only.

It can't
d constructor.

The protected access modifier can be applied on the data member, method an

be applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

f pack package is
In this example, we have created the two packages pack and mypack. The A ':Iaszk‘;gz e
public, so can be accessed from outside the package. But msg methgd Of.thIS pa
protected, so it can be accessed from outside the class only through inheritance.

//save by A java
package pack;
public class A{

protected void msg(){System.out.printin("Hello");}
}

//save by B.java
package mypack;

import pack.*;

class B extends A{
public static void main(String args[]){
B obj = new B();
obj.msg();
}
}

Output: Hello

62 |PAGE

Dezyne Ecole College Java Programming

4) Public
The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

Example of public access modifier

//save by A.java

package pack;

public class A{

public void msg(){System.out.printIn("Hello");}

}

//save by B.java
package mypack;
import pack.*;

class B{
public static void main(String args[]){

A obj = new A();
obj.msg();
}
}

Output: Hello

Inheritance and Constructors in Java

It is very important to understand how the constructors get executed in the inheritance
concept. In the inheritance, the constructors never get inherited to any child class.

In java, the default constructor of a parent class called automatically by the constructor of its
child class. That means when we create an object of the child class, the parent class

constructor executed, followed by the child class constructor executed.
Let's look at the following example java code.

class ParentClass{
int a;
ParentClass(){

System.out.printin("Inside ParentClass constructor!");

62| PAGE

Java

Dezyne Ecole College

}
class ChildClass extends ParentClass{

ChildClass(){

System.out.printIn("Inside ChildClass constructor!!");

}

class ChildChildClass extends ChildClass{

ChildChildClass({){

System.out.printin("Inside ChildChildClass constructor!!");

}
public class Constructorininheritance {
public static void main(String[] args) {
ChildChildClass obj = new ChildChildClass();}}
Output:
Inside ParentClass constructor!

Inside ChildClass constructor!!
Inside ChildChildClass constructor!!

* However, if the parent class contains both default and param

the default constructor called automatically by the child class constructor

Let's look at the following example java code.

class ParentClass{
int a;
ParentClass(int a){

System.out.printin("Inside ParentClass Parameterizeqd const
fuctor|

this.a = a;

64 [PAGE

——— e

programming

eterized constructor, then only

")

Dezyne Ecole College Java Programming

}

ParentClass(){

System.out.printin("Inside ParentClass default constructor!”);

}

class ChildClass extends ParentClass{

ChildClass(){

System.out.printIn("Inside ChildClass constructor!!");

}

public class Constructorininheritance {
public static void main(String[] args) {

ChildClass obj = new ChildClass();}}

Output:

Inside ParentClass default constructor!
Inside ChildClass constructor!!

Constructor in inheritance
A constructor is a method with the same name as the class name and is invoked automatically

[]
when a new instance of a class is created.

Constructors of both classes must be executed when the object of child class is created.
Sub Class's constructor invokes constructor of super class.
Explicit call to the super class constructor from sub class's can be made using super().

Super() should be the first statement of child class constructor.

if u don't write super() explicitly then java compiler implicitly write the super().

65| PAGE

S ———

Dezyne Ecole College Java Programming

Super Keyword

The super keyword in java is a reference variable that is used to refer parent c'?ss Db]zc(:si'n I::
keyword “super” came into the picture with the concept of Inheritance. It is majorly us
following contexts: has same
1. Use of super with variables: This scenario occurs when a derived class and base class

data members.

class Vehicle

{
int maxSpeed = 120;

}

/* sub class Car extending vehicle */
class Car extends Vehicle

{
int maxSpeed = 180;

void display()
{

/* print maxSpeed of base class (vehicle) */
System.out.printIn("Maximum Speed: " + super.maxSpeed);

}
}

/* Driver program to test */
class Test

{

public static void main(String[] args)

{

Car small = new Car();
small.display();

}
}

Output:
Maximum Speed: 120

with methods: This is used when we want to call parent class method. So whenever
2: Use of sul:'dm;:hild class have same named methods then to resolve ambiguity we use super
a parent an

keyword.

66 |PAGE

s

Dezyne Ecole College

/* Base class Person */

class Person

{
void message()
{
System.out.printIn("This is person class");
}
}

/* Subclass Student */
class Student extends Person

{

void message()

System.out.printin("This is student class");

// Note that display() is only in Student class
void display()
{

// will invoke or call current class message() method

message();

/[will invoke or call parent class message() method

super.message();

‘ 67 |PAGE

Java Programming

————————— _______________.——-——-—.__

Dezyne Ecole College Java Programming

}

/* Driver Program to test */

class Test

{

public static void main(String args[])

{
Student s = new Student();
// calling display() of Student
s.display();
}
}
Output:

This is student class
This is person class

3. Use of super with constructors: super keyword can also be used to access the parent class
constructor. One more important thing is that, “super’ can call both parametric as well as non
parametric constructors depending upon the situation, Following is the code snippet to explain

the above concept

class Person

{
Person()

{

System.out.printin("Person class Constructor");

}
}

/* subclass Student extending the Person class */
class Student extends Person

{

Student()
{

// invoke or call parent class constructor
super();

System.out.printIn("Student class Constructor");

68| PAGE

Dezyne Ecole College Java Programming

}
}
/* Driver program to test*/
class Test
{
public static void main(Stringf] args)
{
Student s = new Student();
}
}
Output:

Person cIassIConstructor
Student class Constructor

Other Important points:

1. Callto super() must be first statement in Derived(Student) Class constructor.

2. If a constructor does not explicitly invoke a superclass constructor, the Java compiler
automatically inserts a call to the no-argument constructor of the superclass. If the superclass

does not have a no-argument constructor, you will get a compile-time error. Object does have
such a constructor, so if Object is the only superclass, there is no problem.

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only functionality to the
user.

Another way, it shows only essential things to the user and hides the internal details, for example,

sending SMS where you type the text and send the message. You don't know the internal processing
about the message delivery.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract and non-
abstract methods. It needs to be extended and its method implemented. It cannot be instantiated.

69 | PAGE

____#_____ Java programming

I

Dezyne Ecole College

Points to Remember

o An abstract class must be declared with an abstract keyword.

It can have abstract and non-abstract methods.

o It cannot be instantiated.

It can have constructors and static methods also.

Example of abstract class
abstract class A{}
Abstrac hod in J
t Method in Java 15 an abstract

: ion i wn
A method which is declared as abstract and does not have implementation Is kno

method.
Example of abstract method
abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method

In this example, Bike is an abstract class that contains only one abstract method run. Its
implementation is provided by the Honda class.

abstract class Bike{

abstract void run();

}

class Honda4 extends Bike{

void run(){System.out.printin("running safely");}
public static void main(String args[]){

Bike obj = new Honda4();

obj.run();

}

}
Output:

running safely

70|PAGE

’_\Dezyne Ecole College Java Programming

Interface in Java

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

e The interface in Java is @ mechanism to achieve abstraction.
There can be only abstract methods in the Java interface, not methaod body.

e It is used to achieve abstraction and multiple inheritance in Java.
In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

How to declare an interface?

An interface is declared by using the interface keyword. It provides total abstraction; means
all the methods in an interface are declared with the empty body, and all the fields are public,
static and final by default. A class that implements an interface must implement all the

methods declared in the interface.

Syntax:

interface <interface_name>{

// declare constant fields
// declare methods that abstract

// by default.
}

In other words, Interface fields are public, static and final by default, and the methods are public

and abstract.

interface Printable{

interface Printable{

int MIN=5; - e public static final int MIN=5;
o —»(compiler —> . L

void print(); S | public abstract void print();

} }

~ Printable java Printable class

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another

interface, but a class implements an interface.

71| PAGE

Dezyne Ecole College

class interface interface

A A 4

extends | implements extends
|

class class interface

Java Interface Example 1:

interface printable{

void print();

}

class A6 implements printable{

public void print(){System.out.printin("Hello");}

public static void main(String args[]}{
A6 obj = new A6();
obj.print();
}
}
Output:
Hello
Java Interface Example 2:

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.printin("drawing rectangle");}
}

class Circle implements Drawable{

public void draw(}{System.out.println(“drawing circle");}
}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by meth 2
0de.g. getDrawah
le()

72|PAGE

\

—‘-‘___-_--_“‘—--

—

Dezyne Ecole College Java Programming

d.draw();
B
Output:

drawing circle

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is known as

multiple inheritance.

interface interface interface | interface '
® b4
\.\ ra .
N ,/ implements extends
\ 2"
class interface

Maultiple Inheritance in Java

Example:

interface Printable{
void print();

}

interface Showable{

void show();

}

class A7 implements Printable,Showable{
public void print{){System.out.println("Hello"};}

public void show(){System.out.println("Welcome“);}

public static void main(String args[]){
A7 obj = new A7();

obj.print();

obj.show();

}

}

e

Java Programming

Dezyne Ecole College

; : in fava?
Can we cast an object reference to an interface reference in java?

Yes, you can. .
an hold object of

c
If you implement an interface and provide body to its methods from a class.fYO:nce to an interface
that class using the reference variable of the interface i.e. cast an object refer

reference.
ccess the methods of

But, using this you can access the methods of the interface only, if you try to 3
the class a compile time error is generated.

Example
e of the interface

In the main method we are assigning the object of the class to the reference variabl
and trying to invoke both the method.

interface Mylnterface{
public static int num = 100;
public void display();

}

public class InterfaceExample implements MyInterface{
public void display() {

System.out.printin("This is the implementation of the display method");

}

public void show() {

System.out.printIn("This is the implementation of the show method");

public static void main(String args(]) {

Mylnterface obj = new InterfaceExample();
obj.display();

obj.show();

74| PAGE

—
T — =

Java Programming

Dezyne Ecole College

Compile time error

On compiling, the above program generates the following compile time error —

InterfaceExample.java:16: error: cannot find symbol

obj.show();
A
symbol: method show()

location: variable obj of type Mylinterface
1 error

To make this program work you need to remove the line calling the method of the class as —

Example
interface Mylnterface{

public static int num = 100;
public void display();

}

public class InterfaceExample implements Myinterface{
public void display() {

System.out.printIn("This is the implementation of the display method");

}

public void show() {

System.out.printIn("This is the implementation of the show method");

}

public static void main(String args[]) {

Myinterface obj = new InterfaceExample();
obj.display();

//obj.show();

75| PAGE

Dezyne Ecole College Java Programming

Now, the program gets compiled and executed successfully.

Output:
This is the implementation of the display method

to
Therefore, you need to cast an object reference to an interface reference. Whenever you nestd
call the methods of the interface only.

Difference between Abstract Class and Interface

Abstract class Interface

1) Abstract class can have abstract and non- | Interface can have only abstract methods. Sinc.e -
- abstract methods. | Java 8, it can havedefault and static |

| methods also.
2) Abstract class doesn't support multiple Interface supports multiple inheritance.

inheritance.

3) Abstract class can have final, non-final, Interface has only static and final variables.
static and non-static variables.

4) Abstract classcan provide the Interface can't provide the implementation off

implementation of interface. abstract class.

5) The abstract keyword is used to declare . Theinterface keywordis used to declare

abstract class. . interface.

6) An abstract class can extend another Java ~ Aninterface can extend another Java interface
class and implement multiple Java interfaces. = only.

7) An abstract class can be extended using = An interface can be implemented using keyword
keyword "extends". - "implements".

8) A Javaabstract classcan have class Members ofaJava interface are public by default
members like private, protected, etc.

9)Example: Example:
public abstract class Shape(~ public interface Drawable{
public abstract void draw(); void draw();
} }
76 | PAGE

e ————s S e
—

Y

Dezyne Ecole College

Sr. Key

No.
Supported

1 Methods
Multiple

2 ;
Inheritance

3 Supported
Variables

4 Implementation

5 Keyword
Inheritance

6

7 Inheritance
A

8 ccess

9 Constructor

77 |PAGE

Following are the important differences between (&

Class

A class can have both an
abstract as well as concrete
methods.

Multiple Inheritance is not
supported.

final, non-final, static and non-
static variables supported.

A class can implement an
interface.

A class is declared using class
keyword.

A class can inherit another
class using extends keyword
and implement an interface.

A class can be inherited using
extends keyword.

A class can have any type of
members like private, public.

A class can have constructor
methods.

Java Programming

lass and an Interface.

Interface

Interface can have only abstract
methods. Java 8 onwards, it can have
default as well as static methods.

Interface supports Multiple

Inheritance.

Only static and final variables are
permitted.

Interface can not implement an
interface, it can extend an interface.

Interface is declared using interface
keyword.

Interface can inherit only an inteface.

Interface can only be implemented
using implements keyword.

Interface can

members.

only have public

Interface can not have a constructor.

Dezyne ccole Lollege

Java Packages

e directory. We use€

A package in Java is used to group related classes. Think of it as a folder in a fil : ;
divided into

packages to avoid name conflicts, and to write a better maintainable code. packages are
two categories:

¢ Built-in Packages (packages from the Java API)
o User-defined Packages (create your own packages)

1. Built-in Packages

— . - ava
e The Java APl is a library of prewritten classes, that are free to Us€ included in the]

Development Environment.

import a single class

ou can either
e the classes that

e The library is divided into packages and classes. Meanin
kage that contain all

(along with its methods and attributes), or a whole pac
belong to the specified package.

e To use a class or a package from the library, you need to use the import keyword:

Syntax
import package.name.Class; //Importa single class

import package.name.*; // Importthe whole package

Import a Class

If you find a class you want to use, for example, the Scanner class, which is used to get user input.

Example

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util package.

To use the Scanner class, create an object of the class and use any of the available methods found in
the Scanner class documentation. In our example, we will use the nextline() method, which is used

to read a complete line

Import a Package

There are many packages to choose from. In the previous example, we used the Scanner class f
the java.util package. This package also contains date and time facilities, random-number gess rzm
’ nerator

and other utility classes.

To import a whole package, end the sentence with an asterisk sign (*). Th
; . . The i :
import ALL the classes in the java.util package:) following example will

78 |PAGE

A--.D'.‘"‘\‘J

Dezyne Ecole College

Example
import java.util.*;

2. User-defined Packages

Java Programming

To create your own package, you need to understand that Java uses a file system directory to store

them. Just like folders on your computer
Example
L— root

L— mypack

L— MyPackageClass.java

To create a package, use the package keyword
MyPackageClass.java
package mypack;
class MyPackageClass {

public static void main(String[] args) {

System.out.printin("This is my package!");

¢ Save the file as MyPackageClass.java, and compile it:
e C:\Users\Your Name>javac MyPackageClass.java

« Then compile the package:

e C:\Users\Your Name>javac -d . MyPackageClass.java
o This forces the compiler to create the "mypack” package.

The -d keyword specifies the destination for where to save the class file. You can use any directory
name, like c:/user (windows), or, if you want to keep the package within the same directory, you

can use the dot sign ".", like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

« When we compiled the package in the example above, a new folder was created, called

"mypack".

« To run the MyPackageClass.java file, write the following:

79| PAGE

Dezyne Ecole College

Java Programming

e C:\Users\Your Name>java mypack.MyPackageClass
* The output will be:
This is my package!

Packages and Member Access (Access Modifiers)

A‘-‘CGSS - “ithin 0 v.v.'itiliﬁ{ -;,utst}ne" Péckége by -.."-"ii.““.‘Sidéi;
Modifier elassiil package L 'i:':subclass.only' . package
Private ; Y - .. N N N

Defm.m N Y Y S N - u
[~ . Y | Y _______________________ Y o -

' Public

Static import

In Java, static import concept is introduced in 1.5 version.
With the help of static import, we can access the static members of a class directly without

class name or any object.

For Example: we always use sqrt() method of Math class by using Math class i.e. Math.sqrt(),
but by wusing static import we can access sqrt() method directly.
According to SUN microSystem, it will improve the code readability and enhance coding.
But according to the programming experts, it will lead to confusion and not good for
programming. If there is no specific requirement then we should not go for static import.

// Java Program to illustrate
// calling of predefined methods
// without static import
class Geeks {
public static void main(String[] args)
{
System.out.printin(Math.sqrt(4));
System.out.printin(Math.pow(2, 2));
System.out.printin(Math.abs(6.3));

}
}

// Java Program to illustrate

// calling of predefined methods
// with static import

import static java.lang.Math.*;
class Test2 {

80 |PAGE

Dezyne Ecole College Java Programming

public static void main(String[] args)

{
System.out.printin(sqrt(4));

System.out.println(pow(2, 2));
System.out.printin(abs(6.3));

}
}

Exception Handling

Exception Handling in Java is one of the effective means to handle the runtime errors so
that the regular flow of the application can be preserved.
Java Exception Handling is a mechanism to handle runtime errors such as

ClassNotFoundException, IOException.

An exception is an unwanted or unexpected event, which occurs during the execution of a
program i.e at run time, that disrupts the normal flow of the program’s instructions.

When an exception occurs within a method, it creates an object. This object is called the
exception object. It contains information about the exception such as the name and
description of the exception and the state of the program when the exception occurred.

An exception can occur for many reasons. Some of them are:

e |nvalid user input

e Device failure

e Loss of network connection

Physical limitations (out of disk memory)

e Code errors
e Opening an unavailable file

What is an Error?
Errors represent irrecoverable conditions such as Java virtual machine (JVM) running out of

[]
memory, memory leaks, stack overflow errors, library incompatibility, infinite recursion, etc.
Errors are usually beyond the control of the programmer and we should not try to handle

errors.

Error vs Exception

Error: An Error indicates a serious problem that a reasonable application should not try to catch.
Exception: Exception indicates conditions that a reasonable application might try to catch.

Exception Hierarchy

All exception and errors types are subclasses of class Throwable, which is the base class of the
hierarchy. One branch is headed by Exception. This class is used for exceptional conditions that user
programs should catch. NullPointerException is an example of such an exception. Another

81 |PAGE

Dezyne Ecole College Java Programming

3;:2?' I?rror 5 USF:‘d by the Java run-time system(JVM) to indicate errors having to do with the run-
nvironment itself(JRE). StackOverflowError is an example of such an error.

Object

Throwable

'

Error

Exceptions

Checkad Exceptions
Example: 10 or Compile o Virtual Machine Errof I

time Exceplion

Unchecked Exceptions
example: Runtime or Nuil Assertion Error et¢

Pointer Exceptions

A 4

Types of Exceptions
Java defines several types of exceptions that relate to its various class libraries. Java also allows
users to define their own exceptions.

Types of Exceptions
- User-Defined Exception ' Built-in Exception -

Cﬁecked_Excéﬁﬁqns.-

> ArthmeticException

> ClassCastExcetion

> NullPointerException

> ArrayINdexQutOfBoundsException
> ArrayStoreException

> lllegalThreadStateException

> ClassNotFoundException
> InterruptedException

> [OException

> [nstantiationException

> SQLException
> FileNotFoundException

an be Categorized into 2 Ways:

Exceptions ¢
1. Built-in Exceptions
Checked Exception

82 |PAGE

e

Dezyne Ecole College Java Programming

» UncheckedException

2. User-Defined Exceptions

1. Built-in Exceptions: Built-in exceptions are the exceptions that are available in Java libraries.

These exceptions are suitable to explain certain error situations.
Checked Exceptions: Checked exceptions are called compile-time exceptions because these

exceptions are checked at compile-time by the compiler.

Unchecked Exceptions: The unchecked exceptions are just opposite to the checked exceptions.
The compiler will not check these exceptions at compile time. In simple words, if a program
throws an unchecked exception, and even if we didn’t handle or declare it, the program would

not give a compilation error.

2. User-Defined Exceptions: Sometimes, the built-in exceptions in Java are not able to describe a
certain situation. In such cases, users can also create exceptions which are called ‘user-defined

Exceptions’.

The advantages of Exception Handling in Java are as follows:

s Provision to Complete Program Execution

Easy Identification of Program Code and Error-Handling Code
* Propagation of Errors

* Meaningful Error Reporting

¢ [dentifying Error Types

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table describes each

| Keyword Description

Ctry ' The "try" keyword is used to specify a block where we should place an exception
code. It means we can't use try block alone. The try block must be followed by either
catch or finally.

' catch The "catch" block is used to handle the exception. It must be preceded by try block

! which means we can't use catch block alone. It can be followed by finally block later.

 finally ' The "finally" block is used to execute the necessary code of the program. It is

executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It specifies that there may
occur an exception in the method. It doesn't throw an exception. It is always used

with method signature.

Let's see an example of Java Exception Handling in which we are using a try-catch statement

to handle the exception.

83|PAGE

¢ Java Programming
Dezyne Ecole College

public class JavaExceptionExample{
public static void main(String args[]){
try(
//code that may raise exception
int data=100/0;
Jeatch(ArithmeticException e){System.out.printin(e);}

//rest code of the program

System.out.printin("rest of the code...");

}

}
Output:

Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code...

Common Scenarios of Java Exceptions

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) A scenario where NuﬂPointerExcepﬁon occurs

If we have a null value in anyvariable, performing any operation on the variable throws a
NullPointerException.

String s=null;
System.out.printin(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs

If the formatting of any variable or number is mismatched, it i

. . » Itmay result into Ny .
Suppose we have a string variable that has characters; converting this \arariat'.:lnb.e”:0 rm?tExcepuon_
NumberFormatException. € Into digit will cause

String s="abc";
int i=Integer.parselnt(s];l/NumberFormatException

4) A scenario where Arrayl ndexOutOIBoundsException occurs

When an array exceeds to it's size, the Arr
) aylndexOut0 i
reasons to occur ArraylndexOutOfBoundsException Co;Bs.?duer:‘(ishEx‘;eptlon occurs. there may be oth
i e fo € other

llowing Statements

84 |PAGE

|—"—‘—-—-—-——___

Dezyne Ecole College Java Programming

int a[]=new int[5];

a[10]=50; //ArraylndexOutOfBoundsException

Java Multiple-catch block
A try block can be followed by one or more catch blocks. Each catch block must contain a different
exception handler. So, if you have to perform different tasks at the occurrence of different exceptions,

use java multi-catch block.

Let's see a simple example of java multi-catch block.

public class MultipleCatchBlock1 {

public static void main(String[] args) {

try{
int a[]=new int[5];
a[5]=30/0;
}

catch(ArithmeticException e)

{

System.out.printin("Arithmetic Exception occurs");

}
catch(ArraylindexOutOfBoundsException e)

{

System.out.printin("ArraylndexOutOfBounds Exception occurs");

}

catch(Exception e)

{

System.out.printIn("Parent Exception occurs");

}

System.out.printIn("rest of the code");

}
}

Output:
Arithmetic Exception occurs
rest of the code

Nested try block

In Java, using a try block inside another try block is permitted. It is called as nested try block.

For example, the inner try block can be used to handle ArrayindexOutOfBoundsException while
the outer try block can handle the ArithemeticException (division by zero).

Why use nested try block
Sometimes a situation may arise where a part of a block may cause one error and the entire block
itself may cause another error. In such cases, exception handlers have to be nested.

85 |PAGE

= min
Dezyne Ecole College Java Programming

Syntax;:

//main try block
try
{
statement 1;
Statement 2;
//try catch block within anoth
try
{
statement i
statement 4;
/[try catch block Within nested try block
try
{
statement 5;
statement 6;

er try block

}
catch(Exception e2)
{

//exception message

}
}

catch(Exception e1)
{
//exception message
}
}
//catch block of parent (outer) try block
catch(Exception e3)
{
//exception message

}

Java Nested try Example:

public class NestedTryBlock{
public static void main(String args[]){
[//outer try block
try{
//inner try block 1
tw{ H¥H "
System.out.printin("going to divide by 0");
int b =39/0;
}

86 |PAGE

Dezyne Ecole College Java Programming

//catch block of inner try block 1
catch(ArithmeticException e)

{

System.out.printin(e);

}

//inner try block 2

try{
int a[]=new int[5];

//assigning the value out of array bounds
a[S]=4;
} s

//catch block of inner try block 2
catch(ArraylndexOutOfBoundsException e)

{

System.out.printin(e);

}

System.out.printin("other statement");

}
//catch block of outer try block

catch(Exception e)

{

System.out.printin("handled the exception (outer catch)");

}

System.out.printIn("normal flow..");

}
}

Java finally block

Java finally block is always executed whether an exception is handled or not. Therefore, it
contains all the necessary statements that need to be printed regardless of the exception

occurs or not.
o The finally block follows the try-catch block.

class TestFinallyBlock {

public static void main(String args[])}{

try{

//below code do not throw any exception

87 |PAGE

I———————

Dezyne Ecole College

int data=25/5;
System.out.printin(data);
}
//catch won't be executed
catch(NullPointerException e){
System.out.printin(e);
}
//executed regardless of exception occurred or not
finally {
System.out.printIn("finally block is always executed");

}

System.out.printin("rest of the code...");

}

Java throw keyword

We can also define our own set of conditions and throw an exception ex

Java Programming

plicitly using throw keyword.

For example, we can throw ArithmeticException if we divide a number by another number. Here we

just need to set the condition and throw exception using throw keyword

The syntax of the Java throw keyword is given below.

throw Instance i.e.,
throw new exception_class("error message");

throw new |OException("sorry device error");

Example:
public class TestThrow1 {
//function to check if person is eligible to vote or not
public static void validate(int age) {
if(age<18) {
//throw Arithmetic exception if not eligible to vote

88 |PAGE

e —

Dezyne Ecole College Java Programming

throw new ArithmeticException("Person is not eligible to vote");
}

else {
System.out.printin("Person is eligible to votell");

}
}
//main method
public static void main(String args(]){
//calling the function
validate(13);
System.out.printin("rest of the code...");

}
}

Subclass Exceptions

There are many rules if we talk about method overriding with exception handling.
Some of the rules are listed below:

o If the superclass method does not declare an exception
o If the superclass method does not declare an exception, subclass overridden method
cannot declare the checked exception but it can declare unchecked exception.
o If the superclass method declares an exception

o If the superclass method declares an exception, subclass overridden method can

declare same, subclass exception or no exception but cannot declare parent
exception.

1. If the superclass method does not declare an exception:

import java.io.*;
class Parent{

// defining the method
void msg() {
System.out.printin("parent method");

}
}

public class TestExceptionChild extends Parent{

// overriding the method in child class

// gives compile time error

void msg() throws IOException {
System.out.printin("TestExceptionChild");

}

public static void main(String args[]) {
Parent p = new TestExceptionChild();

89 |PAGE

Dezyne Ecole College Java Programming

p.msg();
}

ot override msg(

(:\Us_érs\Anu_rati_DesIctop\abcDemo)jauac_ TestExcepti‘onChil__d-jaVa
estExceptionChild.java:14: error: msg() in TestExceptionChild -cann

) in Parent
__vc_';-i_d msg() -throws IOException {

" overridden method does not throw TOException - -
1 error ‘

2. If the superclass method declares an exception:

import java.io.*;
class Parent{
void msg()throws ArithmeticException {
System.out.printIn("parent method");

}
}

public class TestExceptionChild2 extends Parent{

void msg()throws Exception {
System.out.printIn("child method");

}

public static void main(String args(]) {
Parent p = new TestExceptionChild2();

try {
p.msg();

}
catch (Exception e){}

C:\User_s\hnufati\Désktop\.abcDemt:)javac TestExceptionChild2. java
TestExceptionChild2.java:9: error: msg() in TestExceptionChild ;o
() in Parent - hE i i ? cannot override msg
void msg()throws Exception {
. A' r “ -

: _o_\'.ré}-r-idden 'me'tbod does. nbt throw . Exception

1 -error

Java Programming

Dezyne Ecole College

Multithreading

ows concurrent execution of two or more parts of a

Multithreading is a Java feature that all
aximum utilization of CPU.

a thread.

s within a process.
games, animation, etc.

program for m
e Each part of such program is called
So, threads are light-weight processé

Java Multithreading is mostly used in

Multitasking
the

process of executing multiple tasks simultaneously. We use multitasking to utilize

Multitasking is a
in two ways:

CPU. Multitasking can be achieved
based Multitasking (Multiprocessing}

o Process-
ultitasking (Multithreading}

o Thread-based M

Multitasking (Multiprocessing)
s has an address in memory. In other

each process allocates a separate

1) Process-based
words,

o Each proces

memory area.
o Aprocessis heavyweight.
o Costof communication between the process is high.
o Switching from oné process to another requires some time for saving and loading registers,

memory maps, updating lists, etc.

Ititasking (Multithreading)

2) Thread-based Mu
he same address space.

Threads share t

o
o Athreadis lightweight.
o Costof communication between the thread is low.
What is Thread in java
Athreadisa lightweight subprocess, the smallest unit of processing. It is @ sepa rate path of execution.
affect other threads. It

Threads are independent. If there occurs exception in one thread, it doesn't
uses a shared memory area.

91 |PAGE
R

e E————— ey

ramming
Dezyne Ecole College Java Prog

As shown in the above figure, a thread is executed inside the process. There is context-sw:tchhmg
between the threads. There can be multiple processes inside the OS, and one process can have

multiple threads.

Lifecycle of a Thread in Java) .
A thread in Java at any point of time exists in any one of the following states. A thread lies only in

one of the shown states at any instant:

1. New

2. Runnable

3. Blocked

4. Waiting

5. Timed Waiting
6. Terminated

The diagram shown below represents various states of a thread at any instant in time.

Wa Jﬁng for
noﬂﬁcaﬁn ™

wailing " ©

wailing

92 |PAGE

-

Dezyne Ecole College Java Programming

Life Cycle of 3 thread

1. New Thread: When a new thread is created, it is in the new state. The thread has not yet started
to run when the thread is in this state., When a thread lies in the nNew state, its code is yet to be
run and hasn’t started to execute,

2. Runnable State: A thread that is ready to run is moved to a runnable state. In this state, a thread
might actually be running or it might be ready to run at any instant of time. It is the responsibility
of the thread scheduler to give the thread, time to run.
A multi-threaded Program allocates a fixed amount of time to each individual thread. Each and

states
* Blocked
* Waiting

waiting state.
5. Terminated State: A thread terminates because of either of the following reasons:

* Because it exits normally. This happens when the code of the thread has been entirely
executed by the program.

* Because there occurred some unusual erroneous event, like segmentation fault or an
unhandled exception.

Threads can be created by using two mechanisms :

1. Extending the Thread class
2. Implementing the Runnable Interface

Thread creation by extending the Thread class
We create a class that extends the java.lang.Thread class.

® This class overrides the run() method available in the Thread class.

* Athread begins its life inside run() method.

* We create an object of our new class and call start() method to start the execution of a

thread.
® Start() invokes the run() method on the Thread object.

Example:
class MultithreadingDemo extends Thread {
public void run()
{
try {

93 |PAGE

Dezyne Ecole College

// Displaying the thread that is running
System.out.println(
Thread " + Thread.currentThread().getld()
+"is running");
}
catch (Exception e){
// Throwing an exception
System.out.println("Exception is caught");

}
}
}

// Main Class
public class Multithread {
public static void main(String[] args)
{
int n =8; // Number of threads
for (inti=0;i<n; i++) {
MultithreadingDemo object
= new MultithreadingDemo();
object.start();
}
}
}

* Qutput
Thread 15 is running
Thread 14 is running
Thread 16 is running
Thread 12 is running
Thread 11 is running
Thread 13 is running
Thread 18 is running
Thread 17 is running

Thread creation by implementing the Runnable Interface

Java Programming

We create a new class which implements java.lang.Runnable interface and override run() method.

Then we instantiate a Thread object and call start() method on this object.

class MultithreadingDemo implements Runnable {
public void run()

{

try {
// Displaying the thread that is running

System.out.printin(
"Thread " + Thread.currentThread().getld()
+"is running");
}
catch (Exception e) {
// Throwing an exception
System.out.printIn("Exception is caught");

94 |PAGE

[

Dezyne Ecole College Java Programming

}
}
}

// Main Class
class Multithread {
public static void main(String[] args)
{
int n = 8; // Number of threads
for (inti=0;i<n;i++){
Thread object
= new Thread(new MultithreadingDemo());
object.start();
}
}
}

Output

Thread 13 is running
Thread 11 is running
Thread 12 is running
Thread 15 is running
Thread 14 is running
Thread 18 is running
Thread 17 is running
Thread 16 is running

Creating Multiple Threads in Java
Now, we will learn methods of creating multiple threads in Java program. Basically, when we need to

perform several tasks at a time, we can create multiple threads to perform multiple tasks in a program.
For example, to perform two tasks, we can create two threads and attach them to two tasks. Hence,
creating multiple threads in Java programming helps to perform more than one task simultaneously.

In multiple threading programming, multiple threads are executing simultaneously that improves the
performance of CPU because CPU is not idle if other threads are waiting to get some resources.

Multiple threads share the same address space in the heap memory. Therefore, It is good to create
multiple threads to execute multiple tasks rather than creating multiple processes. Look at the below

picture.

Task 1 l
| r - _thread1
thread 2
Task2 4
Program

Fig: Thread-based Multitasking

95 |[PAGE

- mmin
Dezyne Ecole College Java Progra g

: s to first cut
Suppose there is one person (1 thread) to perform these two tasks. In this case, he ?2econd ticket
ticket and then come along with us to show seats. Then, he will go back to door to cu
and then again enter the hall to show seat for second ticket.

. - mploys two
Like this, he is taking a lot of time to perform these tasks one by one. If theater manager employ

. r person will
persons (2 threads) to perform these two tasks, one person will cut the ticket and another p
show seat.

, ; ike this, both
Thus, when the second person will be showing seat, the first person will cut the ticket. Lik '
persons will act simultaneously and wastage of time will not happen.

. ; ; he following
Let's create a program where we will try to implement this realtime scenario. Look at t
source code.

// Two threads performing two tasks at a time.
public class MyThread extends Thread
{

// Declare a String variable to represent task,
String task;

MyThread(String task)
{

this.task = task;
}
public void run()
{

for(inti=1;i<=5; i++)

{

System.out.printin(task+ " : " +i);

try
{ =
Thread.sleep(1000); // Pause the thread execution for 1000 milliseconds.
}
catch(InterruptedException ie) {

System.out.printIn(ie.getMessage());

}

}// end of for loop.
}// end of run() method.
public static void main(String[] args)
{ .
// Create two objects to represent two tasks.

MyThread th1 = new MyThread("Cut the ticket"); // Passing task as an argument to its constructor,
MyThread th2 = new MyThread("Show your seat number");

// Create two objects of Thread class and Pass two objects as parameter to constructor of Thread
class.

Thread t1 = new Thread(th1);

Thread t2 = new Thread(th2);

tl.start();

t2.start();

}
}

9B |PAGE

Java Programming

Dezyne Ecole College

Output:
Cut the ticket: 1
Show your seat number : 1
Show your seat number : 2
Cut the ticket : 2
Show your seat number : 3
Cut the ticket: 3
Show your seat number : 4
Cut the ticket : 4
Show your seat number : 5
Cut the ticket : 5

bjects of MyThread class.

In the preceding example program, we have created two threads on two 0

Here, we created two objects to represent two tasks.
When we will run the above program, the main threa
generate from the main thread that will perform two diffe

d starts running immediately. Two threads will

rent tasks.

Priority of a Thread (Thread Priority)

Each thread has a priority. Priorities are represented by a number between 1 and 10.
s according to their priority (known as

In most cases, the thread scheduler schedules the thread
preemptive scheduling).

But it is not guaranteed because it depends on JVM specification that which scheduling it chooses.

Setter & Getter Method of Thread Priority

Let's discuss the setter and getter method of the thread priority.

« public finalint getPriority(): The java.lang.Thfead.getPriority() method returns the priority
of the given thread.

« public final void setPri
updates or assign the
lllegalArgumentException
to 10 (maximum).

ang.Thread.setPriority() method
Priority. The method throws
e, whichis 1 (minimum)

ority(int newPriority): The java.l
priority of the thread to new
if the value newPriority goes out of the rang

3 constants defined in Thread class:
1. public static int MIN_PRIORITY
2. public static int NORM_PRIORITY
3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the value of

MAX_PRIORITY is 10,

97 |PAGE

Dezyne Ecole College

Example of priority of a Thread:
import java.lang.*;

public class ThreadPriorityExample extends Thread

{

// Method 1
// Whenever the start() method is called by a thread

// the run() method is invoked
public void run()
{

// the print statement
System.out.println("Inside the run() method");

}

// the main method

public static void main(String argvsl])
{
// Creating threads with the help of ThreadPriority
ThreadPriorityExample thl = new ThreadPriorityExample();
ThreadPriorityExample th2 = new ThreadPriorityExample();
ThreadPriorityExample th3 = new ThreadPriorityExample();

Example class

// We did not mention the priority of the thread.
// Therefore, the priorities of the thread is 5, the default value

// 1st Thread
// Displaying the priority of the thread

// using the getPriority() method
System.out.printin("Priority of the thread thl is : " + th1.getPriority());

// 2nd Thread

// Display the priority of the thread
System.out.println("Priority of the thread th2 is : " + th2 getPriority());

// 3rd Thread

// J/ Display the priority of the thread
System.out.printin("Priority of the thread th2 is : " + th2.getPriority());

// Setting priorities of above threads by
// passing integer arguments
thl.setPriority(6);

th2.setPriority(3);

th3.setPriority(9);

// 6
System.out.printin("Priority of the thread th1is: " + thl-getPriority())-

//3
System.out.printin("Priority of the thread th2 is : " + th2 getPriority())
! yu),

98 |PAGE

Dezyne Ecole College Java Programming

/19
System.out.printin("Priority of the thread th3 is: " + th3.getPriority());

// Main thread

// Displaying name of the currently executing thread
System.out.println("Currently Executing The Thread : " + Thread.currentThread().getName());

System.out.printIn("Priority of the main thread is : " + Thread.currentThread().getPriority());

// Priority of the main thread is 10 now
Thread.currentThread().setPriority(10);

System.out.printin("Priority of the main thread is : " 4 Thread.currentThread().getPriority());

}
}

Output:

Priority of the thread thlis:
Priority of the thread th2is:
Priority of the thread th2 is:
Priority of the thread thlis:
Priority of the thread th2 is :
Priority of the thread th3is: 9
Currently Executing The Thread : main
Priority of the main threadis: 5
Priority of the main thread is : 10

w o b

Java Synchronization

e Synchronization is a process of handling resource accessibility by multiple thread requests.

o The main purpose of synchronization is to avoid thread interference.

e At times when more than one thread try to access a shared resource, we need to ensure that
resource will be used by only one thread at a time. The process by which this is achieved is
called synchronization.

e The synchronization keyword in java creates a block of code referred to as critical section.

General Syntax:
synchronized (object)

{

//statement to be synchronized

}

99 |PAGE

Dezyne Ecole College

Why we need Syncronization?
rce at the same
1f we do not use syncronization, and let two or moré threads access 2 shared resou

time, it will lead to distorted results.
cution and save

T1 starts €x€
en T1 returns-

e result W
1in thefile temporary.txt

threads T1 and T2,
ate som
dbyT.

rong result.

Consider an example, Suppose we have two different

certain values in a file temporary.txt which will be used to calcul

Meanwhile, T2 starts and before T1 returns, T2 change the values save

(temporary.txt is the shared resource). Now obviously T1 will return w
n above case, once

tion i
will be able

With synchroniza
ther thread

roduced.
dnoo

ch problems, synch ronization was int
ked(LOCK mode), an

To prevent su
le will be loc

T1 starts using temporary.txt file, this fi
to access or modify it until T1 returns.

Using Synchronized Methods
t see what happens

ds is a way to accomplish synchronization. But lets firs

Using Synchronized metho
ronization in our program.

when we do not use synch

Example with no Synchronization

class Table{

void printTable(int n){//method not synchronized
for(int i=1;i<=5;i++){
System.out.println(n*i);
try{

Thread.sleep(400);

Jcatch(Exception e){System.out.println(e);}

class MyThreadl extends Thread{

Tablet;

100 |[PAGE

Java programming

Dezyne Ecole College

MyThread1(Table t){
this.t=t;
}

public void run(){
t.printTable(5);

}

}

class MyThread2 extends Thread({
Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){
t.printTable(100);
}
}

class TestSynchronization1{

public static void main(String args[I{
Table obj = new Table();//only one object
MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

101 |PAGE

Java Programming

—-_____________——-——______—

Dezyne Ecole College Java Programming

Output:

100
10
200
15
300
20
400
25

500

1. Java Synchronized Method

e If you declare any method as synchronized, it is known as synchronized method.

method is used to lock an object for any shared resource.

e Synchronized
matically acquires the lock for that

When a thread invokes a synchronized method, it auto

L]
object and releases it when the thread completes its task.

//example of java synchronized method

class Table{

synchronized void printTable(int n){//synchronized method

for(int i=1;i<=5;i++){

System.out.println{n*i);

try{

102 |PAGE

Dezyne Ecole College Java Programming

Thread.sleep(400);

}eatch(Exception e){System.out.println(e);}

}

class MyThread1 extends Thread{

Table t;
MyThread1(Table t){ \,*‘“{—” ~ "";J\\
ey SRR
:‘.., % W (A
this.t=t; -'-'_';“?-) - ‘\&“‘
L \
e g
} £
=1
public void runw“;"g
W, e‘\
.
t.printTable(5); \ & S
W
}
}

class MyThread2 extends Thread{
Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

103 |PAGE

. Java Programming
Dezyne Ecole College

public class TestSynchronization2{

public static void main(String args[]){
Table obj = new Table();//only one object
MyThread1 t1=new MyThread1(obj);
MyThread2 t2=new MyThread2(obj);
tl.start();

t2.start();

}

}

Output:

10
15
20
25
100
200
300
400
500

Synchronized Block in Java

* Synchronized block can be used to perform synchronization on eor

method. ANy specific resource of the
e Suppose we have 50 lines of code in our method, but we want t

such cases, we can use synchronized block 0 synchronize only 5 lines

’ ,in
108 |PAGE
——
—
___-‘-‘____-"'—-—-

L CLLL22YERR2RRLRDR00DDDILIITNNITSD

Dezyne Ecole College Java Programming

* If we put all the codes of the method in the synchronized block, it will work same as the
synchronized method,

Points to Remember

* Synchronized block is used to lock an object for any shared resource.

* Scope of synchronized block is smaller than the method.

synchronized (object reference expression) {
//code block

}

Example of Synchronized Block
class Table

{
void printTable(int n){
synchronized(this){//synchronized block
for(int i=1;i<=5;i++){
System.out.printin(n*i);
try{
Thread.sleep(400);

Jcatch(Exception e){System.out.printin(e);}

}

}

}//end of the method

}

class MyThread1 extends Thread{
Table t;

MyThread1(Table t){

this.t=t;

}

105 | PAGE

Dezyne Ecole College

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{
Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}
}

o |
public class TestSynch ronizedBlock1{

public static void main(String args[I){
Table obj = new Table();//only one object
MyThreadl t1=new MyThread 1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

106 |PAGE

Java Programiming

Dezyne Ecole College Java Programming

Output:
5
10
15
20
25 e
2 3 ,m
200 s ,
400 ;

500

Inter-thread Communication in Java

o Inter-thread communication or Co-operation is all about allowing synchronized threads to
communicate with each other.

o Cooperation (Inter-thread communication) is a mechanism in which a thread is paused
running in its critical section and another thread is allowed to enter (or lock) in the same
critical section to be executed.

o Itisimplemented by following methods of Object class:

o wait()
« notify()
« notifyAll()

1) wait() method

The wait() method causes current thread to release the lock and wait until either another thread
invokes the notify() method or the notifyAll() method for this object, or a specified amount of time

has elapsed.

2) notify() method

The notify() method wakes up a single thread that is waiting on this object's monitor. If any threads
are waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs
at the discretion of the implementation.

Syntax:
public final void notify()

107 |PAGE

e

Dezyne Ecole College Java Programming

3) notify All() method

Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

Entry Set The Owner Wait Set

@5/ o> @ ®_....@,.Qm

(waiting to be notified)

release/‘rO O

O s & O

release and {waiting to be

exit / resurrencted

The point to point explanation of the above diagram is as follows:

1.
P
3

4,
5.
6.

Threads enter to acquire lock.

Lock is acquired by on thread.

Now thread goes to waiting state if you call wait() method on the object. Otherwise it releases
the lock and exits.

If you call notify() or notifyAll() method, thread moves to the notified state (runnable state).
Now thread is available to acquire lock.

After completion of the task, thread releases the lock and exits the monitor state of the object.

Example of Inter Thread Communication in Java

class Customerf{
int amount=10000;

synchronized void withdraw(int amount){
System.out.println("going to withdraw...");

if(this.amount<amount){
System.out.printIn("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;
System.out.println{“withdraw completed...");

}

108 | PAGE

Dezyne Ecole College

synchronized void deposit(int amount){
System.out.printin("going to deposit...");
this.amount+=amount;
System.out.printin("deposit completed... ");
notify();

}

}

class Test{

public static void main(String args[]){
final Customer c=new Customer();
new Thread(){

public void run(){c.withdraw(15000);}
}.start();

new Thread(){

public void run(){c.deposit(10000);}
}start();

1

Output:

going to withdraw...

Less balance; waiting for deposit...
going to deposit...

deposit completed...

withdraw completed

Java Thread suspend() method

event occurs.

resumed using the resume() method.

Syntax
public final void suspend()

Return

This method does not return any value.
Example

public class JavaSuspendExp extends Thread

public void run()

{

109 |PAGE

Java Programming

« The suspend() method of thread class puts the thread from running to waiting state. This
method is used if you want to stop the thread execution and start it again when a certain

« This method allows a thread to temporarily cease execution. The suspended thread can be

A

: ramming
Dezyne Ecole College Java Prog

for(int i=1; i<5; i++)
{
try

// thread to sleep for 500 milliseconds
sleep(500);
System.out.printin(Thread.currentThread().getName());
Jeatch(InterruptedException e){System.out.printin(e);}
System.out.printin(i);
}
}
public static void main(String args[])
{
// creating three threads
JavaSuspendExp t1=new JavaSuspendExp ();
JavaSuspendExp t2=new JavaSuspendExp ();
JavaSuspendExp t3=new JavaSuspendExp ();
// call run() method
tl.start();
t2.start();
// suspend t2 thread
t2.suspend();
// call run() method

t3.start();

}
Output:

Thread-0
1
Thread-2
1
Thread-0
2
Thread-2
2
Thread-0
3
Thread-2
3
Thread-0
4
Thread-2
4

——

Dezyne Ecole College Java Programming

Java Thread resume() method

The resume() method of thread class is only used with suspend() method. This method is used to
resume a thread which was suspended using suspend() method. This method allows the suspended
thread to start again.

Syntax

public final void resume()

Return value

This method does not return any value.

Example
public class JavaResumeExp extends Thread
{ ;
public void run()
{
for(int i=1; i<5; i++)
{
try
{
// thread to sleep for 500 milliseconds

sleep(500);
System.out.printin(Thread.currentThread().getName());
Jeatch(InterruptedException e){System.out.printin(e);}
System.out.printIn(i);
}
}
public static void main(String args(])
{
// creating three threads
JavaResumeExp t1=new JavaResumeExp ();
JavaResumeExp t2=new JavaResumeExp ();
JavaResumeExp t3=new JavaResumeExp ();
// call run() method
t1.start();
t2.start();
t2.suspend(); // suspend t2 thread
// call run() method
t3.start();
t2.resume(); // resume t2 thread

Output:
Thread-0
1
Thread-2

111 |PAGE

Dezyne Ecole College Java Programming

1
Thread-1
1
Thread-0
2
Thread-2
2
Thread-1
2
Thread-0
3
Thread-2
3
Thread-1
3
Thread-0
4
Thread-2
4
Thread-1
4

Java Thread stop() method
The stop() method of thread class terminates the thread execution. Once a thread is stopped, it

cannot be restarted by start() method.

Syntax
public final void stop()

Example
public class JavaStopExp extends Thread

{

public void run()

{

for(int i=1; i<5; i++)
{

try

{

// thread to sleep for 500 milliseconds

sleep(500);
System.out.println(Thread.r:urrentThread(}.getName());

Jeatch(InterruptedException e){System.out.printin(e);}
System‘out.print!n(i};
}
} - .
public static void main(String args[])

{

// creating three threads

112 |PAGE

e ——

Dezyne Ecole College Java Programming

JavaStopExp t1=new JavaStopExp ();
JavaStopExp t2=new JavaStopExp ();
JavaStopExp t3=new JavaStopExp ();

// call run() method

tl.start();

t2.start();

// stop t3 thread

t3.stopl();

System.out.printin("Thread t3 is stopped");

Determining When a Thread Ends

e Itis often useful to know when a thread has ended. For example, in the preceding examples,
for the sake of illustration it was helpful to keep the main thread alive until the other threads

ended.
« In those exemples, this was accomplished by having the main thread sleep longer than the
child threads that it spawned. This is, of course, hardly a satisfactory or generalizable solution!
+ Fortunately, Thread provides two means by which you can determine if a thread has ended.
First, you can call isAlive() on the thread. Its general form is shown here:

« final boolean isAlive()

+ TheisAlive() method returns true if the thread upon which it is called is still running. It

returns false otherwise.

113 |PAGE

Dezyne Ecole College 4\‘

Java Programming

University Pattern Questions

1. What is object oriented programming (OOP)?
2. What is abstraction?
3. Define polymorphism in oop?
4. What is the advantage of inheritance in oor?
5. What is a constructor?
6. What is a class in OOP?
7. How do you declare an object in Java?
8. What is an applet?
9. Explain importing package in Java?
10. What is the use of interfaces in Java?
11. What are the application areas for Java?
12. What makes Java a secure internet programming language?
13. Explain the usage of "this" keyword in Java?
14. What is multithreading?
15. What is Event handling? Explain Event classes?
16. List and Explain the key characteristics of Java programming language?
17. Write a small program to illustrate the use of classes in Java. Also explain nested classes?
18. Write a small program to explain the usage of methods in Java. Explain method
overloading?
1S. Explain Exception handing mechanism in Java.lllustrate using a small example program?
20. Write short notes on any two of the following:
a. Java Packages
b. 1/0 (input/output) stream management.
c. Javax.swing package

d. Event Listener interfaces
21.Why Java is platform independent language?
22. What is the range of long data type?
23. What will be the output of following code :
int a=10;
System.out.printin(a>>2);
24. Which operator in Java is known as ternary operator?
25. What is bytecode?
26. Define command line argument.
27. Explain the garbage collection.
28. Describe the JVM and Java API.
_Define bitwise and shiftwise operator with example.
‘What is base class of all Java classes ?
What is return type of constructor?
_What is final variable? ‘
What is method overloading?Explain it with an example.
What is final class? How it is useful? | |
What is constructor ?Explain various types of constructors with suitable example.
: Explain the term run time polymorphism.
List various types of inheritance.
Write the uses of ‘this’ keyword, o |
. What is the difference between String and ﬁtnnuﬁuﬂur class?
: Write a program to create your own exception if marks entered are less than 0 or >100.

£

W ow wow
H W N O W

W oW W w W
00~ O W\

& W
o w

_Explain life cycle of Thread?

-
(=

114 |PAGE

B - - - -

————

Java Programming

Dezyne Ecole College
lain multithreading concept in Java.

42.Give an example to exp
d to string.

43. Describe the charAt() method relate
44. Define access specifiers.

45. What is synchronization?

46. Write the difference between
47. Distinguish between Final,Finall
48. Explain Legacy classes.

49. What is Thread? Write different ways for creating thread.Explain t
50. Create a program which explains Vector and Stack class.
51. What is package?How a user defined package is created
52. a) What is Object Oriented Programming Paradigm ? Exp
53. What is JVM ? Explain concept of byte code generation in java.

54. a) What is datatypes ? Explain various datatypes of java.

55. Write a program to sort 10 numbers in ascending order.

56. What is a package. How user defined package is created. Discuss them with example.

57. Explain briefly :
a) Garbage Collector _
b) Abstract Class PR e
c) Super Keyword ¢ g R S
d) This Keyword A
e) Throws)
58. What do you understand by Polymor
59. What is overloading?
60. What is Thread?
61. Differentiate between string an
62. Explain the need of interfaces.
63. Give difference between Java and C++.

64. Write a program of method overriding. -
65. What is JVM? Explain the advantages of JVM. Also give functionality of |

66. Write a program to sort elements of one dimensional array. Also inc

String and StringTokenizer. Explain through example.

y and Finalize.
hread properties with example

?Explain with example.

lain briefly some features of java lang.

phism?

d string buffer.

oader.
Jude exception handling

code in program.

67. What is inheritance? Explain different types of inheritance with example.

68. Whatis multithreading? Write a program to implement multithreading.

69. What is package? Write steps to create and run a package. Also give advantage of package.
70. How class path is set for packages.

71. How inheritance is implemented by interface.

72. What is the role of finally?
73. How object reference is different from object.

4. Define instance of operator.s
75. Define relational operators and Boolean logic operators.

76. What is the difference between type conversion and type casting?

77. Differentiate between the use of throw and throws.

78. Explain Thread synchronization and thread execution

79. What is conceptual difference between abstraction and encapsulation?
80. How does Java implement the Portability of code?

g1. Write note on New and This.

82. What is an exception? Explain the procedure of h
83. What is package? Write steps to create and run a
g4. Explain the use of ‘Static’ and ‘Final’ keyword.
85. What is For-Each loop in java. Write a program w
86. What is Exception Handling? Explain the concept o

ow to handle exception.
package. Also give advantage of package.

hich shows addition of two 2*2 matrix’s.
f multiple catch statements. Write a program

115 | PAGE

1

-

Java Programming
Dezyne Ecole College

Which implements finally block. ith example?
; ; ethod Wi
87. What is need of Synchronization in multithreading? Explain synchronized m

jority with
: thread priori
88. What are Threads? How threads are created in Java? Explain the concept of
an example.

89. What is abstract class.
90. What is Runnable Interface.

91. What is difference between Class and Interface? Explain it with program. ifference between
92. What is multithreading and how java implements it? Also explain di

synchronized method and synchronized block with a suitable program.

93. Describe charAt() method related to string.

94. Define Access specifiers.

