
Dezyne Ecole College
Java Programming

Introduction to Java

DCz JAVA was developed by James Gosling at Sun Microsystems Ingtheyear 1995, later acquired by Oracle Corporation.
It is a class-based, object-oriented programminglanguage

History
ecole

It is a programming language created in 1991.
James Gosling, Mike Sheridan, and Patrick Naughton, a team of Stuengineers know as

the Green team initiated the Java language in 1991.

In 1995 Java was developed by James Gosling, who is known as the Father of Java.

Sun Microsystems released its first public implementation in 1996 as Java 1.0.

Java programming language is named JAVA. Why?

After the name OAK, the team decided to give a new name to it and the suggested words were Silk,
Jolt, revolutionary, DNA, dynamic, etc. These all names were easy to spell and fun to say, but they

all wanted the name to reflect the essence of technology.

In accordance with James Gosling, Java the among the top names along with Silk, and since java was

a unique name so most of them preferred it.

Java is the name of an island in Indonesia where the first coffee(named java coffee) was produced.
And this name was chosen by James Gosling while having coffee near his office. Note that Java is

just a name, not an acronym.

Java Terminologyy

Before learning Java, one must be familiar with these common terms of Java.

1. Java Virtual Machine(JVM): This is generally referred to as JVM. There are three execution

phases ofa program. They are written, compile and run the program.

Writing a program is done by a java programmer like you and me.

The compilation is done by the JAVAC compiler which is a primary Java compiler
included in the Java development kit (UDK). It takes the Java program as input and

generates bytecode as output.
In the Running phase of a program, JvVM executes the bytecode generated by the

compiler.
Now, we understood that the function of Java Virtual Machine is to execute the bytecode produced

by the compiler. Every Operating System has a different JVM but the output they produce after the

3PAGE

Java Programming
Dezyne Ecole College

execution of bytecode is the same across all the operating systems. This is why Java is known as

a platform-independent language.

. Bytecode in the Development process: As discussed, the Javac compiler of JDK compiles the java

Source code into bytecode so that it can be executed by JVM. It is saved as .class file by the compiler.

. Java Development Kit(JDK): While we were using the term JDK when we learn about bytecode

and JVM. So, as the name suggests, it is a complete Java development kit that includes everything

including compiler, Java Runtime Environment (URE), java debuggers, java docs, etc. For the program

to execute in java, we need to install JDK on our computer in order to create, compile and run the

java program.

4. Java Runtime Environment (URE): JDK includes JRE. JRE installation on our computers allows the

java program to run, however, we cannot compile it. JRE includes a browser, JVM, applet supports,
and plugins. For running the java program, a computer needs JRE.

Primary/Main Features of Java

1. Platform Independent: Compiler converts source code to bytecode and then the JVM executes

the bytecode generated by the compiler. This bytecode can run on any platform be it Windows,
Linux, macOS which means if we compile a program on Windows, then we can run it on Linux and
vice versa. Each operating system has a different JVM, but the output produced by all the OS is the
same after the execution of bytecode. That is why we call java a platform-independent language.
2. Object-Oriented Programming Language: Organizing the program in the terms of collection of
objects is a way of object-oriented programming, each of which represents an instance of the class. The four main concepts of Object-Oriented programming are:

Abstraction
Encapsulation

Inheritance

Polymorphism

3. Simple: Java is one of the simple languages as it does not have complex features like pointers, operator overloading, multiple inheritances, Explicit memory allocation.
4. Robust: Java language is robust which means reliable. It is developed in such a way that it puts a lot of effort into checking errors as early as possible, that is why the java compiler is able to detect even those errors that are not easy to detect by another programming language. The main features of java that make it robust are garbage collection, Exception Handling, and memory allocation.
5. Secure: In java, we don't have pointers, so we cannot access out-of-bound arrays i.e it shows ArraylndexOutofBound Exception if we try to do so.

6. Distributed: We can create distributed applications using the java programming language. The java programs can be easily distributed on one or more systems that are connected to each other through an internet connection.

4 PAGE

Dezyne École College Java Programming

7. Multithreading: Java supports multithreading. It is a Java feature that allows concurrent
execution of two or more parts of a program for maximum utilization of CPU.

8. Portable: As we know, java code written on one machine can be run on another machine. The
platform-independent feature of java in which its platform-independent bytecode can be taken to
any platform for execution makes java portable.
10. Dynamic flexibility: Java being completely object-oriented gives us the flexibility to add
classes, new methods to existing classes and even create new classes through sub-classes.

11. Write Once Run Anywhere: As discussed above java application generates a '.class' file which
corresponds to our applications(program) but contains code in binary format. It provides ease to

architecture-neutral ease as bytecode is not dependent on any machine architecture. It is the
primary reason java is used in the enterprising IT industry globally worldwide.

12. Power of compilation and interpretation: Most languages are designed with purpose either
they are compiled language or they are interpreted language. But java integrates arising enormous

power as Java compiler compiles the source code to bytecode and JVM executes this bytecode to

machine OS-dependent executable code.

Differences between Java and C++

Parameter
Founder

Java
Java was developed by James Gosling at C++ was developed by Bjarne

Sun Microsystems. Stroustrup at Bell Labs in 1979 as
an extension of the C language.

First Release
Stable Release

On May 23, 1995

Java SE 14 or JDK 14 was released on C++17 was released in December
March 17, 2020.

In October 1985

2017.
Official Website
Influenced By:

oracle.com/java
Java wasInfluenced by Ada 83, Pascal, C++ was Influenced by Influenced
C++, C#, etc. languages

isocpp.org

by Ada, ALGOL 68, C, ML, Simula,

Smalltalk, etc. languages.
develop C++ was influenced to develop Influenced to: Java was influenced to

BeanShell, C#, Clojure, Groovy, Hack, J#,
Kotlin, PHP, Python, Scala, etc. languages. Python, Rust,

C99, Java, JS++, Lua, Perl, PHP,
Seed7, etc.

languages.
Platform
Dependency
Portability

Platform independent, Java bytecode Platform dependent, should be
works on any operating system.
It can run in any OS hence it is portable.

compiled for different platforms.
C++ is platform-dependent. Hence
it is not portable.

Compilation Java is both Compiled and Interpreted C++ is only Compiled Language.
Language.

Memory
Management
Virtual Keyword It doesn't have Virtual Keyword.
Multiple

Memory Management System Memory Management in C++ is IS

Controlled. Manual.
It has Virtual Keyword.

It supports only single inheritance. It supports both single and
Multiple
partially using interfaces.

Inheritance inheritances are achieved multiple Inheritance.

5 PAGE

le College
Java Programming

Overloading
Supports only method overloading and It supports both metnod and
doesn't allow operator overloading.
It has limited support for pointers.

operator overloading.
It strongly supports pointers.

Pointers
Libraries

t doesn't support direct native library It supports direct system library
for calls but only Java Native Interfaces. calls, making it suitable

Libraries system-level programming.

eS nave a wide range of classes for C++ libraries have comparatively
various high-level services. low-level functionalities.

Documentation
Comment Supports documentation comments It doesn't support documentation

(eg,**.. */) for source code.
Java provides built-in

multithreading.

Thread Support
comments for source code.

support for C++ doesn't have built-in support
for threads, depends on third-

TYpe
party threading libraries.

Java is only
programming language.

an object-oriented C++ is both a procedural and an

object-oriented programming

language.
Input-Output
mechanism

(System C++ uses cin for input and cout for

input an output operation.
Java uses the

class): System.in for
and System.out for output.
Java doesn't support goto Keyword 8oto Keyword C++ supports goto keyword.

cturesand ava doesn't support Structures and C+ supports Structures and
Unions Unions. Unions.
Parameter

Passing
Global Scope

Java supports only the Pass by Value C++ supports both Pass by Value

technique
It supports no global scope.

and pass by reference.

It supports both global scope and

namespace scope.

Object
Management

manual object Automatic object management with It supports
garbage collection. management using new and

delete.

Java Basic Syntax

A Java program is a collection of objects, and these objects communicate through method calls to

each other to work together.

Basic terminologies in Java

1. Class: The class is a blueprint (plan) of the instance of a class (object). It can be defined as a

template which describes the data and behaviour associated with its instance.

Example: Blueprint of the house is class.

2. Object: The object is an instance of a class. It is an entity which has behaviour and state.

Example: A car is an object whose states are: brand, colour, number-plate.

Behaviour: Running on the road.

3. Method: The behaviour of an object is the method.

.Example: The fuel indicator indicates the amount of fuel left in the car.

Example: Steps to compile and run a java program in a console

public class First {

public static void main (String[] args){

6| PAGE

Dezyne Ecole College Java Programming

System.out.println("Java Programming");

javac First.java
java First

Note: When the class is public, the name of the file has to be the class name.

The Basic Syntax:

1. Comments in Javva

There are three types of comments in Java.

i. Single line Comment

/System.out.println("Java Programming");
ii. Multi-line Comment

/*

System.out.printin("Java Programming");

System.out.printin("Alice!");

*

ii. Documentation Comment. Also called a doc comment.

/** documentation */

2. Source File Name
The name of a source file should exactly match the public class name with the extension of java.
The name of the file can be a different name if it does not have any public class. Assume you have

a public class GFG.

First.java // valid syntax
first.java // invalid syntax

3. Case Sensitivity
Java is a case-sensitive language, which means that the identifiers AB, Ab, aB, and ab are different

in Java.

System.out.println("Alice"); //valid syntax
system.out.println("Alice"); // invalid syntax

4. Class Names
i. The first letter of the class should be in Uppercase (lowercase is allowed, but not discouraged).

ii. If several words are used to form the name of the class, each inner word's first letter should be

in Uppercase.
Underscores are allowed, but not recommended. Also allowed are numbers and currency symbols,

although the latter are also discouraged because the are used for a special purpose (for inner and

anonymous classes).
class MylavaProgram //valid syntax

class 1Program /invalid syntax

7|PAGE

Dezyne Ecole College Java Programming

class My1Program //valid syntax
class $Program // valid syntax, but discouraged

class My$Program // valid syntax, but discouraged
class myJavaProgram //valid syntax, but discouraged

5. public static void main(String [l args)
The method main() is the main entry point into a Java program; this is where the processing sta
Also allowed is the signature public static void main(String.. args)
6. Method Names

i. All the method names should start with a lowercase letter.
. if several words are used to form the name of the method, then each first letter of the inner

should be in Uppercase. Underscores are allowed, but not recommended. Also allowed are ag

and currency symbols.

public void employeeRecords()// valid syntax
public void EmployeeRecords() // valid syntax, but discouraged

7. Identifiers in java

ldentifiers are the names of local variables, instance and class variables, labels, but also the names
for classes, packages, modules and methods.

i. All identifiers can begin with a letter, a currency symbol or an underscore (). According to the
convention, a letter should be lower case for variables.

ii. The first character of identifiers can be followed by any combination of letters, digits, currency
symbols and the underscore. The underscore is not recommended for the names of variables.
Constants (static final attributes and enums) should be in all Uppercase letters.

iii. Most importantly identifiers are case-sensitive.

iv. A keyword cannot be used as an identifier since it is a reserved word and has some special meaning.

Legal identifiers: MinNumber, total, ak74, hello_world, Samount, _under_value llegal identifiers: 74ak, -amount

8. White-spaces in Java
A line containing only white-spaces, possibly with the comment, is known as a blank line, and the Java compiler totally ignores it.

9. Access Modifiers: These modifiers control the scope of class and methods. Access Modifiers: default, public, protected, private
Non-access Modifiers: final, abstract,

10. Java Keywords

Kevwords or Reserved words are the words in a language that are used for some internal
orocess or represent some predefined actions. Ihese words are therefore not allowed to use as

variable names or objects.

8 PAGE

Java Programming
Dezyne Ecole College

abstract assert

Byte
Class

boolean break

char catch case
continue default const

double else enum
float

Do

extends final finally
implements
interface

package
return
super
throw
void

For goto f

Import instanceof nt

new
public
strictfp

synchronized this
try

native Long
private protected

Short static
Switch
throws transient
volatilewhile

Java Hello World Program

Java is one of the most popular and widely used programming languages and platforms.

Java is fast, reliable, and secure.

Java is used in every nook and corner from desktop to web applications, scientific

supercomputers to gaming consoles, cell phones to the lnternet.

The process of Java programming can be simplified in three steps:

Create the program by typing it into a text editor and saving it to a file - HelloWorld.java.

Compile it by typing "ijavac HelloWorld.java" in the terminal window.

Execute (or run) it by typing "java HelloWorld" in the terminal window.

// This is a simple Java program.

/FileName: "HelloWorld.java".

class HelloWorld

/Your program begins with a call to main().
//Prints "Hello, World" to the terminal window.

public static void main(String args|)

System.out.println("Hello, World");

1. Class definition
This line uses the keyword class to declare that a new class is being defined.

class HelloWorld

2. Hello World

It is an identifier that is the name of the class. The entire class definition, including all of its members,
will be between the opening curly brace { and the closing curly brace.

9| PAGE

Dezyne Ecole College Java Programming

In the Java programming language, every application must contain a main method whose signature

3. main method:

is:

public static void main (Stringl] args)
public: So that JVM can execute the method from anywhere.
tic: Ihe main method is to be called without an object. The modifiers pubiic and static

can be written in either order.
void: The main method doesn't return anything main(): Name configured in the JVM.
Stringll: The main method acepts a sir
String.

le argument, i.e., an array of elements of type

nC++, the main method is the entry point for vour application and will subsequently invOke
all the other methods required by your program.
The next line of code is shown here. Notice that it occurs inside the main() meo
System.out.printin("Hello, World");
nis ine outputs the string "Hello, World" followed by a new line on the screen. Output is
aCcomplished by the built-in printin() method. The System is a predefined class that provides
access to the system, and out is the variable of type output stream connected to the console.

4. compiling the program
After successfully setting up the environment, we can open a terminal in both
Windows/Unix and go to the directory where the file - HelloWorld.java is present.
Now, to compile the HelloWorld program, execute the compiler - javac, to specify the

name of the source file on the command line, as shown:
javac HelloWorld.java

The compiler creates a Helloworld.class (in the current working directory) that contains the bytecode version of the program. Now, to execute our program, JVM(Java Virtual Machine) needs to be called using java, specifying the name of the class file on the command line, as shown:
java HelloWorld

This will print "Hello World" to the terminal screen.

a.C C Asvstemi2 cmc.e.e

F:1javac HelloMorld. java

F:1java HelloWorld
Hello, Horld

F:

10 PA GE

Dezyne Ecole College Java Programming

Variable

A variable is a container which holds the value while the Java program is executed. A variable

is assigned with a data type.

Variable is a name of memory location.
There are three types of variables in java: local, instance and static.

A variable is the name of a reserved area allocated in memory. In other words, it is a name of the

memory location. It is a combination of "vary+ able" which means its value can be changed.

int data-50://Here data is variable

How to initialize variables?

It can be perceived with the help of 3 components that are as follows:

datatype: Type of data that can be stored in this variable.
variable_name: Name given to the variable.
value: It is the initial value stored in the variable.

int age = 20; value

datatype variable_name

20

Resenved Memory far varisble

RAM

There are three types of variables in Java:

o local variable

o instance variable

o static variable

1) Local Variable
A variable declared inside the body of the method is called local variable. You can use this variable
only within that method and the other methods in the class aren't even aware that the variable exists.

A local variable cannot be defined with "static" keyword.

import java.io.*;
class G{

public static void main(Stringl] args)

int var 10;// Declared a Local Variable

11 | PAGE

Dezyne Ecole College
Java Programming

/This variable is local to this main method only System.out.printin("Local Variable:" +var);

2) Instance Variable
cdbes are non-static variables and are declared in a class outside any me

constructor, or block.

object of AS instance variables are declared in a class, these variables are created wnE the class is created and destroyed when the object is destroyed.
Instance Variable can be accessed only by creating objects.

import java.io.*;

class G{

public String ge;// Declared Instance Variable

public G()
//Default Constructor

this.ge = "Shubham Jain'";// initializing Instance Variable

//Main Method
public static void main(Stringl] args)

//Object Creation
G name = new G();

// Displaying O/P
System.out.println("name is: " + name.ge);

3) Statie variable

Static variables are also known as Class variables.

These variables are declared similarly as instance variables. The difference is that static

variables are declared using the static keyword within a class outside any method constructor

or block.

You can create a single copy of the static variable and share it among all the instances of the

class.

public class A

static int m=100;//static variable

void method()

12 PA GE

Dezyne École College Java Programming

int n=90://local variable

public static void main(String args[])

int data=50;//instance variable

//end of class

13 PAGE

Dezyne Ecole College Java Programming

Data types in Java

Data Types in Java

Primitlve Data Types
Non- Primitive Data Types

Boolean TYpe Numeric Type

Character Value ntegral Value |

Integer Floating-Paint

A
boolean char byte short int long float double String Array

Java has two categories of data:

Primitive Data Type: such as boolean, char, int, short, byte, long, float, and double
Non-Primitive Data Type or Object Data type: such as String, Array, etc.

Primitive Data Type

DESCRIPTHON DEFALT SZE EXAMPLE LITERALS RANGE OF VALUES

tfue or tolse 1aise bit true, false
true, false

tyte twos complemant intager 3 bits none 128 to 127

16 bits a', u0o41,101, W, T,n, unicode character uG009
character representation

of ASCIl values

char

0 to 255
Wos complement integer 16 bits (none) shoit

-32,768

32,767 32 bits 2,-1.0, 1,2 int twos conplement integer

2,147,483,648

2,147,483,647

9,223,372,036,854,775,808
twos conplement integer 64 bits 2, L, OL, L, 2 ong

9,223,372,036,854,776,807 32 bits 1.23e100f, 1.23e-100f, 31,3.14F).0 wwwwwww fHoat IEEE 754 loating point

upto 7 decimal digits
0.0 1.23456e300d, 1.23456e-300d, 1etd double IEEE 754 Hoating point 64 bits

upto 16 decimal digits

Non-Primitive Data Type or Reference Data Types

Doference Data Types will contain a memory address of variable values because the reference
tvpes won't store the variable value directly in memory. They are strings, objects, arr

nce
ys, etc.

14 PAGE

Dezyne Ecole College Java Programming

Literals in Java

Literal: Any constant value which can be assigned to the variable is called literal/constant.
In simple words, Literals in Java is a synthetic representation of boolean, numeric, character, or

string data.

I/Here 100 is a constant/literal.
int x 100;

Integral literals- For Integral data types (byte, short, int, long)
int x 101;

Floating Point Literals- For Floating-point data types, we can specify literals in only

decimal form.
double d = 123.456;

Char Literals- We can specify literal to a char data type as a single character within the

single quote.
char ch 'a';

String Literals- Any sequence of characters within double quotes is treated as String

literals
Strings "Hello";

Boolean literals-Only two values are allowed for Boolean literals, i.e., true and false.

boolean b = true;

Operators in Java

Java provides many types of operators which can be used according to the need. They are classified
based on the functionality they provide. Some of the types are:

1. Arithmetic Operators
2. Unary Operators
3. Assignment Operator
4. Relational Operators
5. Logical Operators
6. Ternary Operator

Bitwise Operators
8. Shift Operators
9. instance of operator

1. Arithmetic Operators: They are used to perform simple arithmetic operations on primitive data

types.

*: Multiplication
/: Division
% Modulo
+ Addition

-: Subtraction

15 PAGE

Java Programming

Dezyne Ecole College

OnarY Operators: Unary operators need only one operand. Thev are used to Ini

decrement or negate a value.
- : Unary minus, used for negating the values.

*Unary plus indicates the positive value (numbers are positive without this, however

performs an automatic conversion to int when the type of its operand is the byte, cidl
This is called unary numeric promotion.

short.

of
**:Increment operator, used for incrementing the value by 1. There are two va

increment operators.

Post-Increment: Value is first used for computing the result and then incremente0

Pre-Increment: Value is incremented first, and then the result is computed

Decrement operator, used for decrementing the value by 1. There are two varietles o

decrement operators.

Post-decrement: Value is first used for computing the result and then decremented.

Pre-Decrement: Value is decremented first, and then the result is computea.

!: Logical not operator, used for inverting a boolean value.

3. Assignment Operator: =" Assignment operator is used to assign a value to any variable. lt has a

right to left associativity, i.e. value given on the right-hand side of the operator is assigned to the

variable on the left, and therefore right-hand side value must be declared before using it or should

be a constant.

The general format of the assignment operator is:

variable = value;

In many cases, the assignment operator can be combined with other operators to build a shorter

version of the statement called a Compound Statement. For example, instead of a = a+5, we can

write a+ 5.

+, for adding left operand with right operand and then assigning it to the variable on the left.

-=, for subtracting right operand from left operand and then assigning it to the variable on the

left.

, for multiplying left operand with right operand and then assigning it to the variable on the

left.

, for dividing left operand by right operand and then assigning it to the variable on the left.

%=, for assigning modulo of left operand by right operand and then assigning it to the variable

on the left.

4. Relational Operators: These operators are used to check for relations like equality, greater than,

lacs than. Thev return boolean results after the comparison and are extensively used in looping statements as well as conditional if-ese statements. The general format is,
variable relation_operator value

Some of the relational operators are-

==, Equal to: returns true if the left-hand side is equal to the right-hand side.
. le, Not Equal to: returns true if the left-hand side is not equal to the right-hand side. . less than: returns true if the left-hand side is less than the right-hand side.

16 PAGE

Dezyne Ecole College Java Programming

<=, less than or equal to returns true if the left-hand side is less than or equal to the

right-hand side.

, Greater than: returns true if the left-hand side is greater than the right-hand side.
, Greater than or equal to: returns true if the left-hand side is greater than or

equal to the right-hand side.

5. Logical Operators: These operators are used to perform "logical AND" and "logical OR"

operations.

Conditional operators are:
&&, Logical AND: returns true when both conditions are true.

I1, Logical OR: returns true if at least one condition is true.
!, Logical NOT: returns true when condition is false and vice-versa

6. Ternary operator: Ternary operator is a shorthand version of the if-else statement. It has three

operands and hence the name ternary.
The general format is:

condition ? if true: if false

public class operators {
public static void main(String[] args)

int a 20, b = 10, c = 30, result;

//result holds max of three
// numbers
result

((a> b) ? (a> c) ?a:c: (b> c) ? b:c);

System.out.println("Max of three numbers ="

+ result);

7. Bitwise Operators: These operators are used to perform the manipulation of individual bits of a

number. They can be used with any of the integer types. They are used when performing update

and query operations of the Binary indexed trees.

&, Bitwise AND operator: returns bit by bit AND of input values.

1, Bitwise OR operator: returns bit by bit OR of input values.

., Bitwise XOR operator: returns bit by bit XOR of input values.
,Bitwise Complement Operator: This is a unary operator which returns the one's complement

representation of the input value, i.e., with all bits inverted.

8. Shift Operators: These operators are used to shift the bits of a number left or right, thereby
multiplying or dividing the number by two, respectively. They can be used when we have to multiply

or divide a number by two. General format-

number shift_op number_of_places_to_shift;

<<, Left shift operator: shifts the bits of the number to the left and fills 0 on voids left as a result.

Similar effect as of multiplying the number with some power of two.

, Signed Right shift operator: shifts the bits of the number to the right and fills 0 on voids left

as a result. The leftmost bit depends on the sign of the initial number. Similar effect as of dividing

the number with some power of two.

17 PAGE

Dezyne Ecole College Java Programming

oids , Unsigned Right shift operator: shifts the bits of the number to the right and fills 0 on vold

left as a result. The leftmost bit is set to 0.

9. instanceof operator: The instance of the operator is used for type checking. It Ca Dc

if an object is an instance of a class, a subclass, or an interface. General forma object instance of class/subclass/interface

recedence and Associativity of Operators

Precedence and associative rules are used when dealing with hybrid equations involving more than

one type of operator. In such cases, these rules determine which part of the equation to consider

Tirst, as there can be many different valuations for the same equation. The below table depicts the
precedence of operators in decreasing order as magnitude, with the top representing the highest
precedence and the bottom showing the lowest precedence.

Operators Associativity Iype
Right to left Unary postfix

(type Right to left Unary prefix

Left to right Multiplicative

Left to right Additive

Left to right Relational

Left to right Equality
Left to right Boolean Logical AND

Left to right Boolean Logical Exclusive OR

Left to right Boolean Logical Inclusive OR

&& Left to right Conditional AND
1 Left to right Conditional OR

Right to left Conditional

Right to left Assignment

Type conversion

Java provides various data types just likely any other dynamic languages such as boolean. char, int, unsigned int, signed int, float, double, long, etc in total providing 7 types.
Every datatype acquires different space while storing in memory.
When you assign a value of one data type to another, the two types might not be comnati with each other. If the data types are Compatible, then Java will perform the conversion

e

automatically known as Automatic Type Conversion

And if not then they need to be cast or converted explicitly. For example, assigning an int value to a long variable.

18 P AGE

Java Programming Dezyne Ecole College

Widening or Automatic Type Conversion
Widening conversion takes place when two data types are automatically converted. This happens
when:

The two data types are compatible.
When we assign a value of a smaller data type to a bigger data type.

Byte-> Short-> Int-> Long- > Float-> Double

Widening or Automatic Conversion

class G{

I/Main driver method
public static void main(String[] args)

int i = 100;

Automatic type conversion
I/ Integer to long type
long I = i;

/ Automatic type conversion
// long to float type
float f=

//Print and display commands
System.out.println("Int value " + i);

System.out.println("Long value" +1);
System.out.println("Float value" +f);

Narrowing or Explicit Conversion
If we want to assign a value of a larger data type to a smaller data type we perform explicit type casting or narrowing.

This is useful for incompatible data types where automatic conversion cannot be done. Here, the target type specifies the desired type to convert the specified value to.

Double-> Float-> Long -> Int -> Short-> Byte
Narrowing or Explicit Conversion

19| PAGE

Dezyne Ecole College
Java Programmi

public class G {

public static void main (String[] args

//Double datatype
double d = 100.04;

long I= (long)d;

int i = (int)l;

//Print statements System.out.println("Double value " + d);

System.out.println("Long value " + I);

System.out.println("Int value " + i);

nAGE

Dezyne École College Java Programming

Program Control Statements

Decision Making in Java (if, if-else, switch, break, continue, jump)-
A programming language uses control statements to control the flow of execution of a program

based on certain conditions. These are used to cause the flow of execution to advance and branch

based on changes to the state of a program.

Java's Selection statements:
if

if-else
nested-if
if-else-if
switch-case

jump - break, continue, return

1. if: if statement is the most simple decision-making statement. It is used to decide whether a

certain statement or block of statements will be executed or not i.e if a certain condition is true

then a block of statement is executed otherwise not.

Syntax:
if(condition)

//Statements to execute if

/condition is true

Example:

class IfDemo {
public static void main(String args|l)

int i 10;

if (i> 15)
System.out.println("10 is less than 15");

2. if-else: The if statement alone tells us that if a condition is true it will execute a block of
statements and if the condition is false it won't. But what if we want to do something else if the

condition is false. Here comes the else statement. We can use the else statement with if statement

to execute a block of code when the condition is false.

Syntax:
if (condition)

/Executes this block if

//condition is true

21 | PAGE

Dezyne Ecole College Java Programin9

else

//Executes this block if
// condition is false

Example:
class IfElseDemo {

public static void main(String args[I)

int i = 10;

if (i< 15)
System.out.printin("i is smaller than 15");

else

System.out.println("i is greater than 15");

3. nested-if: A nested if is an if statement that is the target of another if or else. Nested if statements

mean an if statement inside an if statement. Yes, java allows us to nest if statements within i

statements. i.e, we can place an if statement inside another if statement.

Syntax:
if (condition1)

//Executes when condition1 is true

if (condition2)

//Executes when condition2 is true

Example:

class NestedlfDemo{

public static void main(String args[)

int i = 10;

if (i == 10){

//First if statement
if (i< 15)

System.out.println("i is smaller than 15");

//Nested -if statement

//Will only be executed if statement above

22 P AGE

Dezyne Ecole College Java Programming

// it is true
if (i< 12)

System.out.println(
"i is smaller than 12 too");

else

System.out.printin("i is greater than 15");

4. if-else-if ladder: Here, a user can decide among multiple options.The if statements are executed
from the top down. As soon as one of the conditions controlling the if is true, the statement
associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions
is true, then the final else statement will be executed.
if (condition)

statement;

else if (condition)

statement;

else

statement;

Example:

class ifelseifDemo {
public static void main(String args[0)

{
int i 20;

if (i == 10)

System.out.println("i is 10");
else if (i == 15)

System.out.printin("i is 15");
else if (i == 20)

System.out.printin("i is 20");
else

System.out.println("i is not present");

5. switch-case: The switch statement is a multiway branch statement. It provides an easy way to

dispatch execution to different parts of code based on the value of the expression.

Syntax:
switch (expression)

23 | PAGE

Dezyne Ecole College

Java Programmingg

case value1:

statement1;

break;

case value2:

statement2;

break;

case valueN:

statementN;

break;

default:

statementDefault;

Ihe expression can be of type byte, short, int char, or an
enumeration.

Beginning
with

JDK7, expression can also be of type String.

Duplicate case values are not allowed.

The default statement is optional.

The break statement is used inside the switch to terminate a statement sequence.

The break statement is optional. If omitted, execution will continue on into the next case.

Nested-Switch Statement:

Nested-Switch statements refers to Switch statements inside of another Switch Statements.

Syntax:

switch(n)

//code to be executed if n = 1;

case 1:

//Nested switch

switch(num)

//code to be executed if num = 10

case 10:

statement 1;

break;

//code to be executed if num 20

case 20:

statement 2;

break;

//code to be executed if num = 30

24 | P A GE

Dezyne Ecole College Java Programming

càse 30:
statement 3;
break;

// code to be executed if num
/ doesn't match any cases
default:

break;

//code to be executed if n 2;
case 2:

statement 2;

break;

/code to be executed if n = 3;

case 3:

statement 3;

break;

// code to be executed if n doesn't match any cases

default:

6. jump: Java supports three jump statements: break, continue and return. These three statements

transfer control to another part of the program.
Break: In Java, a break is majorly used for:

Terminate a sequence in a switch statement (discussed above).

To exit a loop.
Used as a "civilized" form of goto.

Continue: Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop but stop processing the remainder of the code in its body for this

particular iteration. This is, in effect, a goto just past the body of the loop, to the loop's end. The

continue statement performs such an action.

class ContinueDemo {
public static void main (String args 0)

for (int i = 0; i< 10; i++) {

//f the number is even

// skip and continue
if (i % 2 == 0)

continue;

// f number is odd, print it
System.out.print(i + " ");

25 | P AGGE

Dezyne Ecole College
Java Programming

e return statement is used to explicitly return from a method. That is, t Lau

program control to transfer back to the caller of the method.

Example:

class Return{

public static void main(String argsl)

booleant = true;

System.out.printin("Before the return.");

if (t)

return;

/Compiler will bypass every statement
I/after return
System.out.println("This won't execute.");

Loops in Java-
Looping in programming languages is a feature which facilitates the execution of a set or

instructions/functions repeatedly while condition evaluates to true.
some

Java provides three ways for executing the loops. While all the ways provide similar basic

functionality, they differ in their syntax and condition checking time.

1. while loop: A while loop is a control filow statement that allows code to be executed repeatedly

based on a given Boolean condition. The while loop can be thought of as a repeating

statement.

Syntax:
while (boolean condition)

loop statements...

.While loop starts with the checking of condition. If it evaluated to true, then the loop body statements are executed otherwise first statement following the loop is executed. For this reason it is also called Entry control loop
Once the condition is evaluated to true, the statements in the loop body are executed. Normally the statements contain an update value for the variable being processed for the next iteration. When the condition becomes false, the loop terminates which marks the end of its life cycle.

class whileLoopDemo

public static void main (String args[))
{

int x = 1

/Exit when x becomes greater than 4
while (x <= 4)

26 | P AGE

Dezyne Ecole College Java Programming

System.out.println("Value of x:" +x);

I/ Increment the value of x for

// next iteration

Xt+;

2. for loop: for loop provides a concise way of writing the loop structure. Unlike a while loop, a for

statement consumes the initialization, condition and increment/decrement in one line thereby

providing shorter, debug structure of looping. a easy to

Syntax:

for (initialization condition; testing condition;

increment/decrement)

statement(s)

Initialization condition: Here, we initialize the variable in use. It marks the start of a for

loop. An already declared variable can be used or a variable can be declared, local to loop

only.
Testing Condition: It is used for testing the exit condition for a loop. It must return a boolean
value. It is also an Entry Control Loop as the condition is checked prior to the execution of

the loop statements.
Statement execution: Once the condition is evaluated to true, the statements in the loop

body are executed.

.Increment/ Decrement: It is used for updating the variable for next iteration.
Loop termination:When the condition becomes false, the loop terminates marking the end

of its life cycle.

class forloopDemo

public static void main (String args[l)

// for loop begins when x=2
//and runs till x <=4

for (int x = 2; x <= 4; x*++)

System.out.println("Value of x:" + x);

Enhanced For loop
Java also includes another version of for loop introduced in Java 5. Enhanced for loop provides a

simpler way to iterate through the elements of a collection or array. It is inflexible and should be

27 | PAGE

Java Programming

Dezyne Ecole College

used only when there is a need to iterate through the elements in a sequential
manner

witnout

knowing the index of the currently processed element.

Syntax:
for (T element:Collection obj/array)

statement(s)

Example-

public class enhancedforloop

public static void main(String args[0)

String array[l = {"'Ron", "Harry", "Hermoine";

/enhanced for loop
for (String x:array)

System.out.println(x);

* for loop for same function
for (int i = 0; i< array.length; i++)

System.out.println(array[l);

3. do while: do while loop is similar to while loop with only difference that it checks for condition after executing the statements, and therefore is an example of Exit Control Loop. Syntax:

do

statements..

while (condition);

. do while loop starts with the execution of the statement(s). There is no checking of any
condition for the first time.
After the execution of the statements, and update of the variable value, the condition is
hecked for true or false value. If it is evaluated to true, next iteration of loop starts.
When the condition becomes false, the loop terminates which marks the end of its life cvcle.
tic important to note that the do-while loop will execute its statements atleast once before
anv condition is checked, and therefore is an example of exit control loop.

28 PAGE

Dezyne Ecole College
Java Programming

class dowhileloopDemo

public static void main(String args[0)
int x= 21;
do

/ The line will be printed even
I/ if the condition is false

System.out.println("Value of x:" +x);
Xt+;

while (x< 20);

Nested loop means a loop statement inside another loop statement. That is why nested loops are
also called as "loop inside loop".

Syntax for Nested For loop: for (initialization; condition; increment){
for (initialization; condition; increment){

// statement of inside loop

I/ statement of outer loop

class {
public static void print2D[int mat[]0)

// Loop through all rows
for (int i = 0; i< mat.length; i++) {

I/Loop through all elements of current row for (intj = 0; j< mat[i].length; j++) System.out.print(mat[il0] + " ");

System.out.println();

public static void main(String args[l) throws 1OException
int mat[]l = {{1,2,3, 4},

{5,6,7,8

29| P AGE

Dezyne Ecole College Java Programming

{9, 10, 11, 12}};
print2D(mat);

Output:
1234

5678

9 10 11 12

Input from the keyboard

In Java, there are many ways to read strings from input.
The simplest one is to make use of the class Scanner, which is part of the java.utl liDray alu

has been newly introduced in Java 5.0.
USing this class, we can create an object to read input from the standard input

channel System.in (typically, the keyboard), as follows:

Scanner scanner = new Scanner(System.in);

Then, we can use the nextline() method of the Scanner class to get from standard input the next line

(a sequence of characters delimited by a newline character), according to the following schema:

import java.util.Scanner;

public class Keyboardinput {
public static void main (Stringl] args) {

Scanner scanner = new Scanner(System.in);

String inputString = scanner.nextLine();

**

System.out.println(inputString);
.

import java.util.Scanner;- imports the class Scanner from the library java.util

Scanner scanner = new Scanner(System.in -creates a new Scanner object, that is connected

to standard input (the keyboard)

String inputString = scanner.nextLine();
We can also read in a single word (1.e., a sequence of characters delimited by a whitespace

character) by making use of the next() method of the Scanner class,.

lava Scanner class provides nextint{) method for reading an integer value, nextDoublel

method for reading a double value, nextLong() method for reading a long value, etc.

30 | P AGE

Java Programming Dezyne Ecole College

0OPs (Object-Oriented Programming System)

Object-Oriented Programming is a methodology or paradigm to design a program using classes and

objects. It simplifies software development and maintenance by providing some concepts:

Object
Class

Inheritance

Polymorphism

Abstraction

Encapsulation

1. Object

Objects

Any entity that has state and behavior is known as an object. For example, a chair, pen, table,

keyboard, bike, etc. It can be physical or logical.

An Object can be defined as an instance of a class. An object contains an address and takes up some

space in memory.

An object has three characteristicS:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc.

o Identity: An object identity is typically implemented via a unique 1D. The value of the ID is not

visible to the external user. However, it is used internally by the JVM to identify each object

uniquely.

31 PAGE

Dezyne Ecole College
Java Programming

For Example, Pen is an object. S Its name is Reynolds; color is white, known as i its state. It is used to

write, so writing is its behavior.

created.
An object is an instance of a class. A class is a template or blueprint from which objecis o
So, an object is the instance(result) of a class.

2. Class
from A Class is a group of objects which have common properties. It is a template or bluep

which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

o Fields

o Methods

o Constructors

oBlocks

o Nested class and interface

Syntax to declare a class:

1. class <class_name>{

field;

method;

3. Inheritance

When one object acquires all the properties and behaviors of a parent object, it is known as inheritance. It provides code reusability. It is used to achieve runtime polymorphism.

4. Polymorphism

If one task is performed in different ways, it is known as polymorphism. For example: to convince the customer differently, to draw something, for example, shape, triangle, rectangle, etc.
in Java, we use method overloading and method overriding to achieve polymorphism.

5. Abstraction

Hiding internal details and showing functionality is known as traction. For example phone call, we
don't know the internal processing.

In Java, we use abstract class and interface to achieve abstraction.

32 P A GE

Dezyne Ecole College Java Programming

6. Encapsulation

Binding (or wrapping) code and data together into a single unit are known as encapsulation. For

example, a capsule, it is wrapped with different medicines.

A java class is the example of encapsulation.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and name. We are

creating the object of the Student class by new keyword and printing the object's value.

Here, we are creating a main() method inside the class.

/Java Program to illustrate how to define a class and fields Dezy ne E
//Defining a Student class.

class Student

D B

//defining fields

int id://field or data member or instance variable ecole

String name;

//creating main method inside the Student class

public static void main(String args[l{ i0, Civ L

//Creating an object or instance

Student s1=new Student();://creating an object of Student

I/Printing values of the object

System.out.printin(s1.id);//accessing member through reference variable

System.out.println(s1.name);

Object and Class Example: main outside the class

In real time development, we create classes and use it from another class. It is a better approach than

previous one.

class Student{

int id;

String name;

I/Creating another class Testatudenti which contains the main method

33 | PAGE

10

Dezyne Ecole College
Java Programming

class TestStudent1{

public static void main(String args0)N
Student s1=new Student();

System.out.println(s1.id);
System.out.printin(s1.name);

3 Ways to initialize object

There are 3 ways to initialize object in Java.
1. By reference variable
2. By method

3. By constructor

Object and Class Example: Initialization through reference Initializing an object means storing data into the object. Let's see a simple example where we are going to initialize the object through a reference variable.

class Student{

int id;

String name;

class TestStudent2{

public static void main(String args[D
Student s1=new Student();

s1.id=101;

s1.name="Jack";

System.out.println(s1.id+" "+s1.name);//printing members with a white space

34 | P A GE

Dezyne Ecole College Java Programming

Creating Objects Using New Keyword

1. Using new keyword

Using the new keyword in java is the most basic way to create an object. This is the most common

way to create an object in java. Almost 99% of objects are created in this way. By using this method

we can call any constructor we want to call

class G

String name = "Java Programming";

public static void main(Stringl] args)

//using new keyword
G obj = new G();

// Print and display the object
System.out.println(obj.name);

Methods

A method in Java or Java Method is a collection of statements that perform some specific

task and return the result to the caller.

A Java method can perform some specific task without returning anything.

Methods in Java allow us to reuse the code without retyping the code.

Method Declaration

In general, method declarations has five components

1. Modifier: It defines the access type of the method i.e. from where it can be accessed in your

application. In Java, there 4 types of access specifiers.

public: It is accessible in all classes in your application.

protected: It is accessible within the class in which it is defined and in its subclass/es

private: It is accessible only within the class in which it is defined.

default: It is declared/defined
without using any modifier. It is accessible within the same class

and package within which its class is defined.

2. The return type: The data type of the value returned by the method or void if does not return a

value.
3. Method Name: the rules for field names apply to method names as well, but the convention is a

little different.

35 | P A GE

Dezyne Ecole College Java Programming

their
4. Parameter list: Comma-separated list of the input parameters is defined, preceded w

use empty
data type, within the enclosed parenthesis. If there are no parameters, you mue

parentheses ().
your 5. Method body: it is enclosed between braces. The code you need to be executed to pei

intended operations.

return-type method-name parameter-list

modifier Publig int ma (int x, int y
if (x> y)

return x
else

body of the method

return y

Types of Methods in Java

There are two types of methods in Java:

1. Predefined Method: In Java, predefined methods are the method that is already defined in the Java class libraries is known as predefined methods. It is also known as the standard library method or built-in method. We can directly use these methods just by calling them in the program at any point.

2. User-defined Method: The method written by the user or programmer is known as a user-defined method. These methods are modified according to the requirement.
Rules to Name a Method

While defining a method, remember that the method name must be a verb and start with a lowercase letter.
In the multi-word method name, the first letter of each word must be in uppercase except the
first word. For example, findSum, computeMax, setX and getX.

Method Calling
The method needs to be called for using its functionality.
Let's see an example of the predefined method:

36 | P A GE

Dezyne Ecole College
Java Programming

public class Demo

public static void main(Stringl] args)

/using the max() method of Math class
System.out.print("The maximum number is: "+ Math.max(9,7);

How to Create a User-defined Method:

Example1:

import java.util.Scanner;
public class EvenOdd

public static void main (String args[)

//creating Scanner class object
Scanner scan=new Scanner(System.in);

System.out.print("Enter the number: ");
/reading value from user
int num=scan.nextlnt();

/method calling
findEvenOdd(num);

//user defined method
public static void findEvenOdd(int num)

//method body
if(num%2==0)
System.out.println(num+" is even");
else

System.out.println(num+" is odd");
}

Example 2:

public class Addition

public static void main(String[l args)

{
int a = 19;

int b 5;

//method calling

37 | PAGE

Dezyne Ecole College Java Programming

int c add(a, b); //a and b are actual parameters
System.out.println("The sum of a and b is= "+ c);

I/user defined method
public static int add(int n1, int n2) //n1 and n2 are formal parameters

int s;

S=n1+n2;
return s; //returning the sum

Method Overloading

n Java, two or more methods may have the same name if they differ in parameters (diTreren

number of parameters, different types of parameters, or both).
hese methods are called overloaded methods and this feature is called method overloading

void func() {...}

void func(int a) f ...}

float func(double a) {.. }

float funcint a, float b) {...}

Here, the func() method is overloaded. These methods have the same name but accept different

arguments.

Why method overloading?

Suppose, you have to perform the addition of given numbers but there can be any number of

arguments (let's say either 2 or 3 arguments for simplicity).

In order to accomplish the task, you can create two methods sum2num(int,

int) and sum3num(int, int, int) for two and three parameters respectively. However, other
programmers, as well as you in the future may get confused as the behavior of both methods

are the same but they differ by name.

The better way to accomplish this task is by overloading methods. And, depending upon the
argument passed, one of the overloaded methods is called. This helps to increase the readability of the program.

How to perform method overloading in Java?

1. Overloading by changing the number of parameters:

38 PAGE

Dezyne Ecole College Java Programming

class MethodOverloading{

private static void display(int a)l

System.out.println("Arguments: "+ a);

private static void display(int a, int b}{
System.out.printin("Arguments: "+ a + " and " + b};

public static void main(Stringl] args) {

display(1);
display(1, 4;

2. Method Overloading by changing the data type of parameters:

class MethodOverloading

// this method accepts int

private static void display(int a){

System.out.printin("Got Integer data.");

I/ this method accepts String object
private static void display(String a){

System.out.printin("Got String object.");

public static void main(Stringl) args){

display(1);

display("Hello");

Constructors

A constructor in Java is a special method that is used to initialize objects.
The constructor is called when an object of a class is created.

At the time of calling the constructor, memory for the object is allocated in the memory

Every time an object is created using the new() keyword, at least one constructor is called.

39 P AGE

Java Programming

Dezyne Ecole College

How Constructors are Different from Methods in Java?

Constructors must have the same name as the class within which it is aten

necessary for the method in Java.
Constructors do not return any type while method(s) have the return type orvo

return any value. called
Constructors are called only once at the time of Object creation while metnou

any number of times.

Types of Constructors in Java

Primarily there are two types of constructors in java:

No-argument constructor
Parameterized Constructor

1. No-argument construetor
A COnstructor that has no parameter is known as the default constructor. If we do't derine a

constructor in a class, then the compiler creates a default constructor(with no arguments) for the

class. And if we write a constructor with arguments or no-arguments then the compiler doEs To

create a default constructor.

class G
int num;

String name;

/ this would be invoked while an object

// of that class is created.

G()
System.out.println("Constructor called");

class GF
public static void main(Stringl] args)

// this would invoke default constructor.

G g1 new G();

//Default constructor provides the default

// values to the object like 0, nul

System.out.println(geek1.name);

System.out.printin(geek1.num);

2. Parameterized Constructor

A constructor that has parameters is known as parameterized constructor. If we want to initialize fields of the class with our own values, then use a parameterized constructor.

class G {

/ data members of the class.

String name;

int id;

40 | P A GE

Dezyne Ecole College Java Programming

/ Constructor would initialize data members
I/ With the values of passed arguments while

/Object of that class created
G(String name, int id)

this.name = name;

this.id = id;

// Class 2
class GF{

// main driver method
public static void main(Stringl args)

/This would invoke the parameterized constructor.
G g1 new G("adam", 1);

System.out.println("Name:" +g1.name
+"and ld:" + g1.id);

Constructors Overloading

Similar to Java method overloading, we can also create two or more constructors with different

parameters. This is called constructors overloading

class Main{

String language;

// constructor with no parameter

Main(){
this.language = "Java";

//constructor with a single parameter

Main(String language){
this.language = language;

public void getName() {
System.out.println("Programming Langauage: "+ this.language);

public static void main(Stringl] args) {

//call constructor with no parameter
Main obj1 = new Main();

//call constructor with a single parameter
Main obj2 = new Main("Python");

41 | P AGE

Dezyne Ecole College
Java Programming

obj1.getName();
obj2.getName();

The new operator
ne new operator is used in Java to create new objects. It can also be used to create an array oDJel

Let us first see the steps when creating an object from a class-

Declaration - A variable declaration with a variable name with an object type.

Instantiation - The 'new' keyword is used to create the object.

Initialization
- The 'new' keyword is followed by a call to a constructor. This call initializes the

new object.

Syntax
NewExample obj=new NewExample();

Points to remember

It is used to create the object.
It allocates the memory at runtime.

All objects occupy memory in the heap area.

It invokes the object constructor.

Now, let us see an example -

Example
public class NewExample1{

void display0

System.out.println("Invoking Method");

public static void main(Stringl] args){
NewExample1 obj=new NewExample1();
obj.display(0;

Recursion
Recursion is the technique of making a function call itself.

This technique provides a way to break complicated problems down into simple problems which are easier to solve.

42 P AGE

Dezyne École College Java Programming

How Recursion works?

public static void main(String[] args) (

recurse() ***

Normal

Method Call
static void recurse() i Recursive

Call
recurse(). ******************************4***** *******************

***********nssnsssvwe

In order to stop the recursive call, we need to provide some conditions inside the method.

Otherwise, the method will be called infinitely.

Hence, we use the if..else statement (or similar approach) to terminate the recursive call

inside the method.

class Factorial {

static int factorial(int n){

if (n l=0) / termination condition

return n
* factorial(n-1):// recursive call

else

return 1;}

public static void main(String[] args){

int number = 4, result;

result factorial(number);

System.out.printin(number +
" factorial =

"
+ result); }}

43 P AGE

Java Programming

Dezyne Ecole College

Arrays in Java
ame. An array in Java is a group of like-typed variables referred to by a common nau

The variables in the array are ordered, and each has an index beginning trom d

objed

Lengtn Property:-Since arrays are objects in Java, we can find their length using the oDj

property length.

The direct superclass of an array type is Object.

|22 | 68 89 97 89
40 55 63 17

Array Indices

LO

Array Length =9

First Index=0

Last Index=8

Creating, Initializing, and Accessing an Array

1. One-Dimensional Arrays:
The general form of a one-dimensional array declaration is

type var-namell:

OR

typell var-name;

An array declaration has two components: the type and the name.

type declares the element type of the array. The element type determines the data type of
each element that comprises the array.

Like an array of integers, we can also create an array of other primitive data types like char,

float, double, etc.

Example
// both are valid declarations

int intArrayll;
or int[] intArray;

byte byteArray[l;
short shortsArray[l:
boolean booleanArrayl:
long longArrayll;
float floatArrayll;

44 | PA GE

Java Programming
Dezyne Ecole College

double doubleArray[l;
char charArray[1:

Instantiating an Array in Java

When an array is declared, only a reference of an array is created. To create or give memorY

to the array, you create an array like this:

The general form of new as it applies to one-dimensional arrays appears as followsS:

var-name = new type [size];

Here, type specifies the type of data being allocated,

size determines the number of elements in the array,

and var-name is the name of the array variable that is linked to the array.

To use new to allocate an array, you must specify the type and number of elements to

allocate.

Example:
int intArrayl; //declaring array

intArray = new int[20]; // allocating memory to array

OR

int[] intArray = new int[20]; // combining both statements in one

Accessing Java Array Elements using for Loop

Each element in the array is accessed via its index. The index begins with 0 and ends at (total array

size)-1. All the elements of array can be accessed using Java for Loop.

// accessing the elements of the specified array

for (int i=0; i< ar.length; it+)

System.out.println("Element at index
" +i+

"+arr[l); .

Example:

class G

public static void main (Stringl] args)

// declares an Array of integers.

int[] arr;

I/ allocating memory for 5 integers.
arr = new int[5];

I/ initialize the first elements of the array
arr[0] = 10;

// initialize the second elements of the array
arr[1) = 20;

45 | PAGE

Dezyne Ecole College Java Programming

//so on...
arr[2] = 30;

ar[3] = 40;

arrl4] 50;

Il accessing the elements of the specified array for (int i 0; i< arr.length; i++)
System.out.println("Element at index" +i+

""+arri});

2. Multidimensional Arrays:

In such case, data is stored in row and column based index (also known as matrix rorm .

Syntax to Declare Multidimensional Array in Java

I. dataTypel arrayRefVar; (or)
. dataType 0larrayRefVar; (or)
I. dataType arrayRefVar[|0: (or)
IV. dataType [JarrayRefVar[l:

Example to instantiate Multidimensional Array in Java

int[0l arrenew int[3][31://3 row and 3 column

Example of Multidimensional Java Array

class Testarray3{

public static void main(String args[l

//declaring and initializing 2D array

int arrf|l={1,2.3M24.51,(4,4,5)

l/printing 2D array

for(int i-0;i<3;i++}
for(int j-0;j<3j++
System.out.print{arr[ilu]+" "}

System.out.println();

46 | PAGE

Dezyne Ecole College Java Programming

Assigning Array Reference

As with other objects, when you assign one array reference variable to another, you are simply

changing what object that variable refers to. You are not causing a copy of the array to be made, nor

are you causing the contents of one array to be copied to the other. For example, consider this

program

1/ Asoigning array reterence variables.
class AssignARei {

public st at ic void main {String args {i)
int i:

int nums1 {] = new int [10);

int numa2 I new int {10);

for (i-0; i 10: i+*)

fori 0; i < 10: i++)

nums2 [i1 -i;
System.out.print "Here is numsl: "};
forti«0; i< 10: it+)

System.out.print (nuns2 [i}" ";

Syst em.out.printin{1

System.out.prínt ("Here is nums2: *)
fox (i-0; i « 10; i++)

System.out.print (nuno2 lil "}
System.out.println():

nuns2 numsl; / now ums2 refera to 2umel Astigri an arrory reBerence.

System out.print ("Here is nuns2 after a5signnent: "}:
for(i 0i < 10; i++)

System.out.print {nums2 1il * "}

system.out.println();

l now operate ca numsl array through nums2
nums2 3} 99;

System.cut.print ("Here is numsl after change through nums2: *)
for (i-0;i 10; i++)

System.out.print (nums1 {i *");
System.out.print in();

The output from the program is shown here:

Here is numsl: 0 12 3 45 6 7 89

Here is nums2: 0 -1 -2-3 -4 -5 -6 -7 -8-9
Here is nums2 after assignment: 0 1 2 3 4 5 6 7 8 9
Here ia nunsl after change through nums2: 01 2 99 456 7 8 9

47 | P AGE

D
ezyne E

cole C
ollege

J
a
v

a

P

r
o

g
r
a
m

m
i
n

g

S
tring F

u
n

d
a
m

e
n

ta
ls

 a
n

d
 H

an
d

lin
g

String
Class:

d
d

t
n

g

is

 a
s
e
q

u
e
n

c
e
 o

f characters. F
o

r e
x

a
m

p
le

, "
h

e
llo

"
 is a

s
trin

g
 c

o
n

ta
in

in
g

 a sequenceE
O

ch
aracters 'h', 'e', T

, T', and 'o
'.

W
e
 u

s
e
 d

o
u

b
le

 q
u

o
tes to

 rep
resen

t a string in Jav
a. F

o
r ex

am
p

le

// create a strin
g

S
trin

g
 ty

p
e
 =

 "Ja
v

a
 p

ro
g

ra
m

m
in

g
"

H
ere,

w
e
 h

a
v

e
 c

re
a
te

d
 a

strin
g

 v
a
ria

b
le

 n
a
m

e
d

 ty
p

e
. T

h
e v

a
ria

b
le

 is initialized w
ith

 th
e
 s

trin
g

 J
a
v

d

Program
m

ing.

E
xam

ple: C
re

a
te

 a S
tring in

 Ja
v

a

class M
ain {

public sta
tic

 v
o

id
 m

ain(Stringl] args) {

//create strings

S
trin

g
 first =

 "Ja
v

a
";

S
trin

g
 s

e
c
o

n
d

 =
 "

P
y

th
o

n
"
;

S
trin

g
 th

ird
 =

 "Jav
aS

crip
t";

// print strings

S
y

s
te

m
.o

u
t.p

rin
tln

(firs
t)}

;
// print Ja

v
a

S
ystem

.out.println(second); // print Python

S
y

stem
.o

u
t.p

rin
tln

(th
ird

);
// p

rin
t JavaS

cript

Jav
a S

trin
g

 O
perations

1
. G

et len
g

th
 o

f a S
trin

g

T
o find th

e
 len

g
th

 o
f a strin

g
, w

e u
se th

e length() m
eth

o
d

 o
f th

e
 S

tring. F
o

r ex
am

p
le,

48
P A

G
E

Java Programming Dezyne Ecole College

class Main {

public static void main(Stringl) args){

//create a string

String greet = "Hello! VWorld";

System.out.printin("String: " + greet);

l/ get the length of greet

int length = greet.length();

System.out.println("Length: " + length);

2. Join Two Java Strings

We can join two strings in Java using the concat() method. For example,

class Main{

public static void main(String[] args) {

//create first string

String first = "Java ";

System.out.println("First String: " +first);

//create second

String second = "Programming";

System.out.printin ("Second String: "+ second);

/ join two strings

String joinedString = first.concat(second);

System.out.println("Joined String:"+ joinedString);

Dezyne Ecole College Java Programming

3. Compare two Strings

In Java, we can make comparisons between two strings using the equals() method. ro
ple,

class Main{

public static void main(Stringl args) {

//create 3 strings

String first = "java programming";

String second = "java programming";

String third = "python programming";

// compare first and second strings

boolean result1 first.equals(second);

System.out.println("Strings first and second are equal: "+ result1);

// compare first and third strings

boolean result2 = first.equals(third);

System.out.printin("Strings first and third are equal: " + result2);

4.Char charAt(int i): Returns the character at ith index.
"JavaProgramming".charAt(3); // returns a'

5.String substring (int i): Return the substring from the ith index character to end.
"JavaProgramming".substring(3); // returns "aProgramming"

6. String substring (int i, int j): Returns the substring from i to j-1 index.
"GeeksforGeeks".substring(2, 5);// returns "eks"

7. int indexof (String s); Returns the index within the string of the first occurrence of the

specified string.
String s = "Learn Share Learn";

int output = s.indexOf("Share"); // returns 6

8. int indexOf (String s, int i): Returns the index within the string of the first occurrence of the
specified string, starting at the specified index.

String s = "Learn Share Learn";

50 | P A GE

Dezyne Ecole College Java Programming

int output= s.indexOf("ea",3);:// returns 13
9. Int lastlndexof(String s): Returns the index within the string of the last occurrence of the

specified string.
Strings ="Learn Share Learn";
int output = s.lastindexof("a"); // returns 14

10.String tolowerCase(): Converts all the characters in the String to lower case.

String word1 "HeLLo";
String word3 = word1.toLowerCase(); // returns "hello"

Immutable String in Java

In Java, String objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once String object is created its data or state can't be changed but a new String object is created.

class Testimmutablestring

public static void main(String argslM

String s="Sachin";

S.concat(" Tendulkar");//concat() method appends the string at the end

System.out.println(s)://will print Sachin because strings are immutable objects

Output

Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new object
is created with Sachin Tendulkar. That is why String is known as immutable.

sachin

"sachin

Tendulkar"

String constant
pool

Heap

51 | PAGE

Dezyne Ecole College Java Programming

As you can see in the above figure that two objects are created but s reference variaDiE

"Sachin" not to "Sachin Tendulkar".

jed t. But if we explicitly assign it to the reference variable, it will refer to "Sachin Tenduika ar"

For example:

class Testimmutablestring1{

public static void main(String args[IM

String s="Sachin";

s=s.concat(" Tendulkar");

System.out.println(s);

Output

Sachin Tendulkar

Three String-Related Language Features

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters.

String, StringBuffer and StringBuilder classes implement it. It means, we can create strings in

Java by using these three classes.

CharSequence

implements

String StringBuffer StringBuilder

The Java String is immutable which means it cannot be changed.

Whenever we change any string, a new instance is created. For mutable strings, you can use

StringBuffer and StringBuilder classes.

52| PAGE

Dezyne Ecole College Java Programming

• StringBuffer Class:

Java StringBuffer class is used to create mutable (modifiable) String objects. The StringBuffer class in

Java is the same as String class except it is mutable i.e. it can be changed.

What is a mutable String?

A String that can be modified or changed is known as mutable String. StringBuffer and StringBuilder
classes are used for creating mutable strings.

1) StringBuffer Class append() Method

The append{) method concatenates the given argument with this String.

}
Output:
Hello Java

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java

2) StringBuffer insert() Method

The insert() method inserts the given String with this string at the given position.

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.insert(l,"Java");//now original string is changed

System.out. println(sb);//prints HJavaello

}

}

3) StringBuffer replace() Method

The replace() method replaces the given String from the specified begin Index and end Index.

class StringBufferExample3{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello"};

sb.replace(l,3, "Java"};

System.out.println{sb};//prints HJavalo

53 I P AGE

Dezyne Ecole College

}

}

4) StringBuffer delete() Method

Java programming

·r d beginlndex to The delete() method of the StringBuffer class deletes the String from the spec• ie end Index.

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");
sb.delete(l,3);

System.out.println(sb);//prints Hlo

}

}

5) StringBuffer reverse() Method

The reverse() method of the StringBuilder class reverses the current String.

class StringBufferExampleS{

public static void main(String args[)){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH } }

• StringBuilder Class:

Java StringBuilder class is used to create mutable (modifiable) String. The Java StringBuilder
class is same as StringBuffer class except that it is non-synchronized.

Syntax:-

class StringBuilderExample{

public static void main(String args[]}{

StringBuilder sb=new StringBuilder{"Hello ");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java

}

}

Note: Same Methods as String Buffer.

54 I P AGE

Dezyne Ecole College Java Programming

String Constructors

• The String object can be created explicitly by using the new keyword and a constructor in the

same way as you have created objects in previously. For example The statement

String str = new String("Welcome to Java");

Here, String ("Welcome to Java") is actually a constructor of the form String (string literals).

• You can also create a string from an array of characters. To create a string initialised by an

array of characters, use the constructor of the form

String (charArray)
For example, consider the following character array.
char[] char Array ={'H' ,'i' ,' ','D' ,'I' ,'N' ,'E' ,'S' ,'H'};

• In addition to these two constructors, String class also supports the following constructors,

• String(): It constructs a new String object which is initialized to an empty string(" "). For
example:

Strings = new String();
Will create a string reference variables that will reference an empty string.

Escape character in Java Strings

The escape character is used to escape some of the characters present inside a string.

Suppose we need to include double quotes inside a string.

// include double quote

String example= "This is the "String" class";

Since strings are represented by double quotes, the compiler will treat "This is the " as the string.
Hence, the above code will cause an error.

To solve this issue, we use the escape character\ in Java. For example,

// use the escape character

String example= "This is the \"String\" class.";

Creating strings using the new keyword:

Since strings in Java are objects, we can create strings using the new keyword as well. For example,

// create a string using the new keyword

String name= new String("Java String");

In the above example, we have created a string name using the new keyword.

Here, when we create a string object, the String() constructor is invoked.

class Main {

55 IP A GE

}

Dezyne Ecole College

public static void main(String[] args) {

// create a string using new

String name= new String("Java String");

System.out.println(name); // print Java String

}

Inheritance Basics

Java programming

. . . .) It • the mechanism in

Inheritance 1s an important pillar of OOP(Object-Oriented Programming · is

java by which one class is allowed to inherit the features(fields and methods) of ano
ther class.

Important terminology:
• Super Class: The class whose features are inherited is known as superclass(or a base class or a

parent class).
• Sub Class: The class that inherits the other class is known as a subclass(or a derived class,

extended class, or child class). The subclass can add its own fields and methods in addition to

the superclass fields and methods.

• Reusability: Inheritance supports the concept of "reusability", i. e. when we want to create a

new class and there is already a class that includes some of the code that we want, we can derive

our new class from the existing class. By doing this, we are reusing the fields and methods of

the existing class.

How to use inheritance in Java

The keyword used for inheritance is extends.

Syntax:
class derived-class extends base-class

//methods and fields

Example:

class Employee{

float salary=40000;

class Programmer extends Employee{

int bonus=lO000;

public static void main(String args(]){

Programmer p=new Programmer();

System.out.prin tln("Programmer salary . ·" is. +p.salary)·

System.out.println("Bonus of Programm . ·" '
er is. +p.bonus);

56 IP AG E

________ _J

4

'

Dezyne Ecole College

}

}

Types of Inheritance in Java
Below are the different types of inheritance which are supported by Java.

Java Programming

1. Single Inheritance: In single inheritance, subclasses inherit the features of one superclass. In
the image below, class A serves as a base class for the derived class B.

Single Inheritance

Example:
class one {

public void print_ge()
{

System.out.println("Java");

class two extends one {
public void print_for() { System.out.println("ls"); }

}
// Driver class
public class Main {

public static void main(String[] args)
{

two g = new two();

g.print_ge();
g.print_for();
g.print_ge();

2. Multilevel Inheritance: In Multilevel Inheritance, a derived class will be inheriting a base class
and as well as the derived class also act as the base class to other class. In the below image, class A
serves as a base class for the derived class B, which in turn serves as a base class for the derived
class C.

57 I P AG E

Dezyne Ecole College

Base Class

lntermediatory
Class

Derived Class

Multilevel Inheritance

Example:
class one {

public void print_ge()
{

System.out.pri~tln("Java ");

class two extends one {

public void print_for() { System.out.println("ls");}

class three extends two {

public void print_ge()
{

System.out.println("Java");

// Drived class
public class Main {

public static void main(String[] args)

{
three g = new three();

g.print_ge();

g. print_for();

g.print_ge();

58 I P A G E

Java Programming

Dezyne Ecole College
Java Programming

3. Hierarchical Inheritance: In Hierarchical Inheritance, one class serves as a superclass (base

class) for more than one subclass. In the below image, class A serves as a base class for the derived

class B, C and D.

Base Class A

Derived I

Example:
class A {

De1ived 2 De1ived 3

public void print_A() { System.out.println("Class A"); }

}

class B extends A {

public void print_B() { System.out.println("Class B");}

}

class C extends A {

public void print_C() { System.out.println("Class C");}

class D extends A {

public void print_D() { System.out.println("Class D");}

// Driver Class

public class Test {

public static void main(String[] args)

{

B obj_B = new B();

obj_B.print_A();

obj_B.print_B();

C obj_C = new C();

obj_C.print_A();

obj_C.print_C();

D obj_D = new D();

obj_D.print_A();

obj_D.print_D();

59 I P AG E

Dezyne Ecole College
Java programming

}

. ne class can have more

4. Multiple Inheritance (Through Interfaces): In Multiple inheritances, 0 ote that Java
1 Please n

than one superclass and inherit features from all parent c asses._ ultiple inheritances

does not support multiple inheritances with classes. In java, we can achieve m

only through Interfaces.

Multiple Inheritance

Member Access(Access Modifiers) In Inheritance

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor, or class.

We can change the access level of fields, constructors, methods, and class by applying the access

modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed

from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be accessed

from outside the package. If you do not specify any access level, it will be the default.

3. Protected: The access level of a protected modifier is within the packag d .
e an outside the

package through child class. If you do not make the child class it ca t b
, nno e accessed from

outside the package.

4. Public: The access level of a public modifier is everywhere It c b
. an e accessed from Within th

class, outside the class, within the package and outside the k e
pac age.

1) Private

The private access modifier is accessible only within the cl
ass.

60 I P A GE

Dezyne Ecole College Java Programming

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and

private method. We are accessing these private members from outside the class, so there is a compile­

time error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

public static void main(String args[]){

A obj=new A();

System.out.println(obj.data);//Compile Time Error

obj.msg();//Compile Time Error

}

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is accessible only
within package. It cannot be accessed from outside the package. It provides more accessibility than
private.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A class from
outside its package, since A class is not public, so it cannot be accessed from outside the package.

//save by A.java

package pack;

class A{

void msg(){System.out.println("Hello");}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();! /Compile Time Error

61 IP AGE

Dezyne Ecole College Java Programming

obj.msg();//Compile Time Error } }

. cannot be accessed
In the above example, the scope of class A and its method msg() is default so it
from outside the package.

3) Protected

. . ackage but through
The protected access modifier is accessible within package and outside the P
inheritance only.

h d onstructor. It can't T e protected access modifier can be applied on the data member, method an c
be applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack package is

public, so can be accessed from outside the package. But msg method of this package is declared as

protected, so it can be accessed from outside the class only through inheritance.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

//save by B.java

package mypack;

import pack.*;

class B extends A{

public static void main(String args[]){

B obj = new B();

obj.msg();

Output: Hello

62 I P AG E

}

Dezyne Ecole College Java Programming

4) Public

The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

Example of public access modifier

I /save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

/ /save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

}

Output: Hello

Inheritance and Constructors in Java

• It is very important to understand how the constructors get executed in the inheritance

concept. In the inheritance, the constructors never get inherited to any child class.

• In java, the default constructor of a parent class called automatically by the constructor of its

child class. That means when we create an object of the child class, the parent class

constructor executed, followed by the child class constructor executed.

Let's look at the following example java code.

class ParentClass{

int a;

ParentClass(){

System.out.println("lnside ParentClass constructor!");

63 I P AG E

Dezyne Ecole College

class ChildClass extends ParentClass{

ChildClass(){

11 ")· System.out.println("lnside ChildClass constructor .. ,

class ChildChildClass extends ChildClass{

Ch ildCh ildClass(){

11") · System.out.println("lnside ChildChildClass conSt ructor.. '

public class Constructorlnlnheritance {

Output:

public static void main(String[] args) {

ChildChildClass obj= new ChildChildClass();}}

Inside ParentClass constructor!
Inside ChildClass constructor!!
Inside ChildChildClass constructor!!

Programming
Java

• However, if the parent class contains both default and parameterized constructor, then only
the default constructor called automatically by the child class constructor.

Let's look at the following example java code.

class ParentClass{

int a;

ParentClass(int a){

System.out.println("lnside ParentClass parameter',z d
e constructor!");

this .a = a;

64IP AGE

Dezyne Ecole College

}

ParentClass(){

System.out.println("lnside ParentClass default constructor!");

}

class ChildClass extends ParentClass{

ChildClass(){

System.out.println("lnside ChildClass constructor!!");

public class Constructorlnlnheritance {

Output:

public static void main(String[] args) {

ChildClass obj = new ChildClass();}}

Inside ParentClass default constructor!

Inside ChildClass constructor!!

Constructor in inheritance

Java Programming

• A constructor is a method with the same name as the class name and is invoked automatically

when a new instance of a class is created.

• Constructors of both classes must be executed when the object of child class is created.

• Sub Class's constructor invokes constructor of super class.

• Explicit call to the super class constructor from sub class's can be made using super().

• Super() should be the first statement of child class constructor.

• if u don't write super() explicitly then java compiler implicitly write the super().

65 I PAGE

}

}

Dezyne Ecole College

Super Keyword

Java Programming

The super keyword in Java is a reference variable that is used to refer parent class objects.' The
keyword "sup " · . I d in the

. er came into the picture with the concept of Inheritance. It is ma1or Y use following contexts:

1. Use of super w,·th · bl . h" . b lass has same
varia es. T 1s scenario occurs when a derived class and ase c data members.

class Vehicle
{

}
int maxSpeed = 120;

/*subclass Car extending vehicle*/
class Car extends Vehicle
{

int maxSpeed = 180;

void display()
{

}

/* print maxSpeed of base class (vehicle)*/
System.out.println("Maximum Speed: "+ super.maxSpeed);

/* Driver program to test * /
class Test
{

public static void main(String[] args)
{

}

Car small= new Car();
small.display();

Output:

Maximum Speed: 120

2 U f super with methods: This is used when we want to call parent class method. So whenever
. se o h d h

a parent and child class have same named met o s t e n to resolve ambiguity we use super

keyword.

66 I P A GE

Dezyne Ecole College

/ * Base class Person * /

class Person

void message()

System.out.println("This is person class");

/* Subclass Student*/

class Student extends Person

void message()

System.out.println("This is student class");

// Note that display() is only in Student class

void display()

67 I P AGE

// will invoke or call current class message() method

message();

// will invoke or call parent class message() method

super.message();

Java Programming

Dezyne Ecole College

/* Driver program to test* I

class Test

}

Output:

public static void main(String args[])

Students = new Student();

I I calling display() of Student

s.display();

This is student class
This is person class

Java Programming

3. Use of super with constructors: super keyword can also be used to access the parent class
constructor. One more important thing is that, "super' can call both parametric as well as non
parametric constructors depending upon the situation. Following is the code snippet to explain
the above concept

class Person
{

Person()
{

System.out.println("Person class Constructor");

/* subclass Student extending the Person class * /
class Student extends Person

{
Student()

{
// invoke or call parent class constructor
super();

System.out.println("Student class Constructor");

68 I P A GE

Dezyne Ecole College

}

/* Driver program to test*/
class Test
{

public static void main(String[) args)
{

Students = new Student();
}

Output:

Person class Constructor
Student class Constructor

Other Important points:

Java Programming

1. Call to super() must be first statement in Derived{Student) Class constructor.
2. If a constructor does not explicitly invoke a superclass constructor, the Java compiler

automatically inserts a call to the no-argument constructor of the superclass. If the superclass
does not have a no-argument constructor, you will get a compile-time error. Object does have
such a constructor, so if Object is the only superclass, there is no problem.

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only functionality to the
user.

Another way, it shows only essential things to the user and hides the internal details, for example,
sending SMS where you type the text and send the message. You don't know the internal processing
about the message delivery.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class {Oto 100%)

2. Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract and non­
abstract methods. It needs to be extended and its method implemented. It cannot be instantiated.

69 IP AGE

(Dezyne Ecole College

Points to Remember

o An abstract class must be declared with an abstract keyword.

o It can have abstract and non-abstract methods.

o It cannot be instantiated.

o It can have constructors and static methods also.

Example of abstract class

abstract class A{}

Abstract Method in Java

Java programming

. . known as an abstract
A method which is declared as abstract and does not have implementation JS

method.

Example of abstract method

abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method

In this example, Bike is an abstract class that contains only one abstract method run. Its

implementation is provided by the Honda class.

abstract class Bike{

abstract void run();

}

class Honda4 extends Bike{

void run(){System.out.println("running safely"};}

public static void main(String args[]}{

Bike obj= new Honda4(};

obj.run(};

}

}

Output:
running safely

70 I P A GE

Dezyne Ecole College Java Programming

Interface in Java

• An interface in Java is a blueprint of a class. It has static constants and abstract methods.

• The interface in Java is a mechanism to achieve abstraction.

• There can be only abstract methods in the Java interface, not method body.

• It is used to achieve abstraction and multiple inheritance in Java.

• In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

How to declare an interface?

• An interface is declared by using the interface keyword. It provides total abstraction; means

all the methods in an interface are declared with the empty body, and all the fields are public,

static and final by default. A class that implements an interface must implement all the

methods declared in the interface.

Syntax:

interface <interface_name>{

// declare constant fields

// declare methods that abstract

I I by default.

In other words, Interface fields are public, static and final by default, and the methods are public

and abstract.

interface Printable{

int MIN=5;

void print();

}

Printable.java

'
j

i ~---.
~ , compiler,./
I '-.......... _.~_,.,. ..
'

The relationship between classes and interfaces

interface Printable{

publ ic static final int MIN=5;

public abstract void print();

}

Printable .. class

As shown in the figure given below, a class extends another class, an interface extends another

interface, but a class implements an interface.

711PAG E

Dezyne Ecole College

class I inte;ace I
extends

class

Java Interface Example 1:

interface printable{

void print();

class AG implements printable{

I implements
I
I

class

public void print(){System.out.println("Hello");}

public static void main(String args[]){

AG obj= new AG();

obj.print();

}

}

Output:

Hello

Java Interface Example 2:

interface Drawable{

void draw();

//lmplemehtation: by second user

class Rectangle implements Drawable{

interface

~-tends

interface

public void draw(){System.out.println("drawing rectangle");}

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

//Using interface: by third user

class Testlnterfacel{

public static void main(String args[l){

Drawable d=new Circle();//ln real scenario object is p ·d db
' rovi e Y method

721PAGE

Programming
Java

e.g. getDrawable()

Dezyne Ecole College

d.draw();

}}

Output:

drawing circle

Multiple inheritance in Java by interface

Java Programming

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is known as

multiple inheritance.

interface

' ' ' ' \ /

class

interface

" /
/ . I , , unp ements

interface

interface

Multiple Inheritance in Java

Example:

interface Printable{

void print();

}

interface Showable{

void show();

}

class Al implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String argsf]){

Al obj= new Al();

obj .print();

obj.show();

73 JP A G E

interface

extend,

Dezyne Ecole College
Java Programming

. . a? Can we cast an object reference to an interface reference Ill JaV, ·
Yes, you can. .

You can hold object of If you implement an interface and provide body to its methods from a class. to an interface
that class using the reference variable of the interface i.e. cast an object reference
reference.

. . . ccess the methods of But, usmg this you can access the methods of the interface only, 1f you try to a
the class a compile time error is generated.

Example

·able of the interface In the main method we are assigning the object of the class to the reference van
and trying to invoke both the method.

interface Mylnterface{

public static int num = 100;

public void display();

}

public class lnterfaceExample implements Mylnterface{

}

public void display() {

System.out.println("This is the implementation ofthe display method");

}

public void show() {

System.out.println("This is the implementation of the show method");

}

public static void main(String args[]) {

Mylnterface obj= new lnterfaceExample();

obj.display();

obj.show();

74 I P A G E

t

• »r--------------------------~
Java Programming

}

}

Dezyne Ecole College

Compile time error

On compiling, the above program generates the following compile time error -

lnterfaceExample.java:16: error: cannot find symbol

obj .show();

I\

symbol: method show()

location: variable obj of type Mylnterface

1 error

To make this program work you need to remove the line calling the method of the class as -

Example

interface Mylnterface{

public static int num = 100;

public void display();

public class lnterfaceExample implements Mylnterface{

public void display() {

System.out.println("This is the implementation of the display method");

public void show() {

System.out.println("This is the implementation of the show method");

public static void main(String args[]) {

Mylnterface obj= new lnterfaceExample();

obj.display();

//obj.show();

75 IP A G E

Dezyne Ecole College Java Programming

Now, the program gets compiled and executed successfully.

Output:

This is the implementation of the display method

Therefore, you need to cast an object reference to an interface reference. Whenever you need to
call the methods of the interface only.

Difference between Abstract Class and Interface

Abstract class Interface

- -- - I
i

'
' ··I

• ·1 •-·-·· - • • ·-·----- - -- - •• - l
- h d Since ' 1) Abstract class can have abstract and non- l Interface can have only abstract met O s. . j

abstract methods. - .l Java 8, it can have default and static I
methods also. : - ---- -- ----------------------------1

2) Abstract class doesn't support multiple ! Interface supports multiple inheritance. \
inheritance. ' 1

ll -··- ---- ------· -----------···_j, -- ------------ --------·------ --- -- - • --·- -- -- - --- -·· --·· -. - - -- --·---·---- ------------ l I
! 3) Abstract class can have final, non-final, i Interface has only static and final variables.

static and non-static variables.
--- --- -- ---- - ---

4) Abstract class can provide
implementation of interface.

the

i
------- --··----··------ --·-- -------- ------ ______ _j .. ·---------·------ -- --- ---------·-·-· - !

Interface can't provide the implementation of \
abstract class.

1 5) The abstract keyword is used to declare The interface keyword is used to declare
abstract class. interface.

6) An abstract class can extend another Java
class and implement multiple Java interfaces.

7) An abstract class can be extended using
keyword "extends".

An interface can extend another Java interface !
on~. i

An interf~~~--~-; ~ ~-; ·;~plemented using keyword i
"implements".

8) A Java abstract class can have class ! Members of a Java interface are public by default. 1

members like private, protected, etc. I

9)Example:
public abstract class Shape{
public abstract void draw();
}

76 I P A GE

I

i Example: -
1

1

, public interface Drawable{
void draw();

I }

Dezyne Ecole College
Java Programming

Following are the important differences between Class and an Interface.

Sr. Key Class Interface

No.

Supported A class can have both an Interface can have only abstract

1 Methods abstract as well as concrete methods. Java 8 onwards, it can have

methods. default as well as static methods.

2
Multiple Multiple Inheritance is not · Interface supports Multiple

Inheritance supported. Inheritance.

3
Supported final, non-final, static and non- Only static and final variables are

Variables static variables supported. permitted. ·

4
Implementation A class can implement an : Interface can not implement an

5
Keyword

Inheritance

6

7
Inheritance

8
Access

9
Constructor

77I PAGE

interface. interface, it can extend an interface.

A class is declared using class

keyword.

Interface is declared using interface

· keyword.

A class can inherit another . Interface can inherit only an inteface.

· class using extends keyword

and implement an interface.

A class can be inherited using Interface can only be implemented

extends keyword. using implements keyword.

A class can have any type of Interface can only have public

members like private, public. members.

A class can have constructor Interface can not have a constructor.

methods.

•

Dezyne Ecole c.;ouege

Java Packages

A package in Java is used to group related classes. Think of it as a folder in a file direct0 ':\': w; _u:e

packages to avoid name conflicts, and to write a better maintainable code. Packages are divide in °
two categories:

• Built-in Packages (packages from the Java API)

• User-defined Packages (create your own packages)

1. Built-in Packages

•
. I ded in the Java

The Java API is a library of prewritten classes, that are free to use, me u

Development Environment.

•
. h . art a single class

The library is divided into packages and classes. Meaning you can e1t er ,mp th t

. .
t • II the classes a

(along with its methods and attributes), or a whole package that con am a

belong to ·the specified package.

• To use a class or a package from the library, you need to use the import keyword :

Syntax

import package.name.Class; II Import a single class

import package.name.*; II Import the whole package

Import a Class

If you find a class you want to use, for example, the Scanner class, which is used to get user input.

Example

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util package.

To use the Scanner class, create an object of the class and use any of the available methods found in

the Scanner class documentation. In our example, we will use the nextline() method, which is used

to read a complete line

· Import a Package

There are many packages to choose from. In the previous example we used the Scann I
f

. . , er c ass rom

the java.util package. This package also contains date and time facilities random-nu b

. .
' m er generator

and other utility classes.

To import a whole package, end the sentence with an asterisk sign (*). The followin .

import ALL the classes in the java.util package: g example will

78 I P AGE

Dezyne Ecole College Java Programming

Example

import java.util. *;

2. User-defined Packages

To create your own package, you need to understand that Java uses a file system directory to store

them. Just like folders on your computer

Example

L-. root

L-. mypack

L-. MyPackageClass.java

To create a package, use the package keyword

MyPackageClass.j ava

package mypack;

class MyPackageClass {

public static void main(String[] args) {

System.out.println("This is my package!");

• Save the file as MyPackageClass.java, and compile it :
• C:\Users\Your Name>javac MyPackageClass.java

• Then compile the package:
• C:\Users\ Your Name>javac -d . MyPackageClass.java
• This forces the compiler to create the "mypack" package.

The -d keyword specifies the destination for where to save the class file. You can use any directory

name, like c:/user (windows), or, if you want to keep the package within the same directory, you

can use the dot sign".", like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

• When we compiled the package in the example above, a new folder was created, called

"mypack".

• To run the MyPackageClass.java file, write the following:

79 IP AGE

Dezyne Ecole College

• C:\Users\Your Name>java mypack.MyPackageClass
• The output will be:

This is my package!

Packages and Member Access (Access Modifiers)

t

~ifo<l
. ' '~ . ,\.

· Private y i
; N

~ .. '
·,, .-.,.:<-:.:

!N
········· .L .. 1 ·····l i l i

· Def~~-~~-----------~----··-----1
,.....l v _____ _ _

1

,_. YN

I P-rotected : Y ! y
: i
I Public • Y J Y I

l Y
'

Java Programming

·,

tsi<
. ;:•.(.:. . ;

N

N

• N
----·-! ---------------

y
l. __ ---·-------- ·------------ -·-- _1 __ "•------------------··-·--- 1_ ______ __ _________ _ ----- ---- - L ----- --· ---- -· - ---·-·-- ·-- - --- --------- ------- ------- -

Static import

• In Java, static import concept is introduced in 1.5 version.
• With the help of static import, we can access the static members of a class directly without

class name or any object.
• For Example: we always use sqrt() method of Math class by using Math class i.e. Math.sqrt(),

but by using static import we can access sqrt() method directly.
According to SUN microSystem, it will improve the code readability and enhance coding.

• But according to the programming experts, it will lead to confusion and not good for
programming. lfthere is no specific requirement then we should not go for static import.

// Java Program to illustrate
// calling of predefined methods
// without static import
class Geeks {

public static void main(String[] args)
{

}

System .out. pri ntl n (Math.sqrt(4));
System.out.println(Math.pow{2, 2));
System.out. println(Math.a bs(6.3));

// Java Program to illustrate
// calling of predefined methods
// with static import
import static java.lang.Math. *;
class Test2 {

80 I PAGE

I Dezyne Ecole College

public static void main(String[] args)

{

}

System.out.println(sqrt(4));
System.out.println(pow(2, 2));
System.out. println (abs(6.3));

Exception Handling

Java Programming

• Exception Handling in Java is one of the effective means to handle the runtime errors so

that the regular flow of the application can be preserved.

• Java Exception Handling is a mechanism to handle runtime errors such as

ClassNotFoundException, IOException.

• An exception is an unwanted or unexpected event, which occurs during the execution of a

program i.e at run time, that disrupts the normal flow of the program's instructions.

• When an exception occurs within a method, it creates an object. This object is called the

exception object. It contains information about the exception such as the name and

description of the exception and the state of the program when the exception occurred.

An exception can occur for many reasons. Some of them are:

• Invalid user input
• Device failure

• Loss of network connection

• Physical limitations (out of disk memory)

• Code errors

• Opening an unavailable file

What is an Error?

• Errors represent irrecoverable conditions such as Java virtual machine (JVM) running out of

memory, memory leaks, stack overflow errors, library incompatibility, infinite recursion, etc.

• Errors are usually beyond the control of the programmer and we should not try to handle

errors.

Error vs Exception

• Error: An Error indicates a serious problem that a reasonable application should not try to catch.

• Exception: Exception indicates conditions that a reasonable application might try to catch.

Exception Hierarchy

All exception and errors types are subclasses of class Throwable, which is the base class of the

hierarchy. One branch is headed by Exception. This class is used for exceptional conditions that user

programs should catch. NullPointerException is an example of such an exception. Another

81 I P A G E

Dezyne Ecole College Java Programming

branch, Error is used by th J . · h

t

. . . e ava run-time system(JVM) to indicate errors having to do wi
t h

t e ru n-

1me environment 1tself(JRE) 5 k · tac OverflowError is an example of such an error.

Object

Throwable

Exceptions

Checked Exceptions

Example: 10 or Compile

time Exception

Unchecked Exceptions
Example: Runtime or Null

Pointer Exceptions

Types of Exceptions

Error

Virtual M achine Error

Assertion Error etc

Java defines several types of exceptions that relate to its various class libraries. Java also allows

users to define their own exceptions.

Types of Exceptions

· User• Defined Exception

Checked Exceptions ·

> ClassNotFoundExcepticm
> lnterruptedException
> IOException
> lnstantiationException
> SQLException
> FileNotFoundException

· Built-in Exception

Unchecked ~ceptlons :· ,

> ArthmeticException
> ClassCastExcetion
> NullPointerException
> ArraylNdexOutOIBoundsException
> ArrayStoreException
> lllegalThreadSMteExceplion

Exceptions can be Categorized into 2 Ways:

1. Built-in Exceptions
• Checked Exception

82 I PAGE

Dezyne Ecole College Java Programming

• UncheckedException

2. User-Defined Exceptions

1. Built-in Exceptions: Built-in exceptions are the exceptions that are available in Java libraries.

These exceptions are suitable to explain certain error sit uations.

• Checked Exceptions: Checked exceptions are called compile-time exceptions because these

exceptions are checked at compile-time by the compiler.

• Unchecked Exceptions: The unchecked exceptions are just opposite to the checked exceptions.

The compiler will not check these exceptions at compile time. In simple words, if a program

throws an unchecked exception, and even if we didn't handle or declare it, the program would

not give a compilation error.

2. User-Defined Exceptions: Sometimes, the built-in exceptions in Java are not able to describe a

certain situation. In such cases, users can also create exceptions which are called 'user-defined

Exceptions'.

The advantages of Exception Handling in Java are as follows:

• Provision to Complete Program Execution

• Easy Identification of Program Code and Error-Handling Code

• Propagation of Errors

• Meaningful Error Reporting

• Identifying Error Types

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table describes each.

,-·------·--·--·----- ·--------~-----------·-- ··---- · --··--- ------------ ------ ··---------·-••-•----···-·- ---··--·· • -· - I

/ Keyword Description i
I __ . ··r·-·· - ·-·-·····--···----··-·-·····-······•··-·-··-····· ······--······---------•···· ---- -- --~

/ try / The "try" keyword is used to specify a block where we should place an exception j

I

/ i code. It means we can't use try block alone. The try block must be followed by either ,

1. . - -··--·--··--··-----·-····----·-··-·-•-·-·•···-·- -·--·····-··------- ··-·· - - --· ··-·- - --·I

I
catch or finally. /

/ catch The "catch" block is used to handle the exception. It must be preceded by try block /

/. . . _ ... _ . / .~~_i=~-~:an~~~.-~~~:~~~~ c.at=·h -~~~~ ~~~~=· It can.~~~~l~ ~.e~ .• ~~.~i~.~~~.~o~.~-l~~~r. j
/ finally / The "finally" block is used to execute the necessary code of the program. It is

/ I executed whether an exception is handled or not.

' throw

! throws

j

I The "throw" keyword is used to throw an exception.
I

.................... ·-·--···· ---····-··· .. -........

I The "throws" keyword is used to declare exceptions. It specifies that there may ,

I occur an exception in the method. It doesn 't throw an exception. It is always used

with method signature.

Let's see an example of Java Exception Handling in which we are using a try-catch statement

to handle the exception.

83 l PAG E

Dezyne Ecole College

public class JavaExceptionExample{

public static void main(String args[]){

try{

//code that may raise exception

int data=l00/0;

}catch(ArithmeticException e){System.out.println(e);}

//rest code of the program

System.out.println("rest of the code ... ");

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code ...

Common Scenarios of Java Exceptions

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=S0/0;// ArithmeticException

2) A scenario where NullPointerException occurs

Java Programming

If we have a null value in any variable, performing any operation on the variable throws a

NullPointerException.

String s=null;

System.out. println(s. length());//Nu IIPointerException

3) A scenario where NumberFormatException occurs

If the formatting of any variable or number is mismatched it may result into N b F
. . ' um er ormatExcept·

Suppose we have a string variable that has characters; converting this variable int . . . ion.
NumberFormatException. 0 d1g1t will cause

String s="abc";

int i=lnteger.parselnt{s);//NumberFormatException

4) A scenario where ArraylndexOutOIBoundsExcept
1
·
on occurs

When an array exceeds to it's size, the ArraylndexOutOfB

reasons to occur ArraylndexOutOfBoundsExceptio C ?undsException occurs. there m b
n. ons1der the following st t ay e other

a ements.

84I P AG E

Dezyne Ecole College Java Programming

int a[]=new lnt[S);

a(lO]=S0; // ArraylndexOutOfBoundsException

Java Multiple-catch block
A try block can be followed by one or more catch blocks. Each catch block must contain a different

exception handler. So, if you have to perform different tasks at the occurrence of different exceptions,

use java multi-catch block.

Let's see a simple example of java multi-catch block.

public class MultipleCatchBlockl {

public static void main(String[) args) {

try{

Output:

int a[]=new int[S];
a[5]=30/0;
}
catch(ArithmeticException e)

{
System.out.println("Arithmetic Exception occurs");
}

catch(ArraylndexOutOfBoundsException e)
{
System.out.println("ArraylndexOutOfBounds Exception occurs");
}

catch(Exception e)
{
System.out.println("Parent Exception occurs");
}

System.out.println("rest of the code");

Arithmetic Exception occurs
rest of the code

Nested try block

In Java, using a try block inside another try block is permitted. It is called as nested try block.

For example, the inner try block can be used to handle ArraylndexOutOfBoundsException while
the outer try block can handle the ArithemeticException (division by zero).

Why use nested try block
Sometimes a situation may arise where a part of a block may cause one error and the entire block
itself may cause another error. In such cases, exception handlers have to be nested.

85 I P AGE

Dezyne Ecole College

Syntax:

//main try block
try
{

statement 1;
statement 2;

//try catch block within another try block
try
{

statement 3;
statement 4;

//try catch block within nested try block
try

}

{

statement S;
statement 6;

catch(Exception e2)
{

//exception message
}

}

catch(Exception el)
{

//exception message
}

}

//catch block of parent (outer) try block
catch(Exception e3)
{

//exception message
}

Java Nested try Example:

public class NestedTryBlock{
public static void main(String args[]){
//outer try block
try{
//inner try block 1
try{

}

System.out.println("going to divide by O");
int b =39/0;

86 I PAGE

Java Programming

}

Dezyne Ecole College

//catch block of inner try block 1

catch(ArithmeticException e)
{

System.out.println(e);
}

I /inner try block 2
try{

int a[]=new int[S];

//assigning the value out of array bounds

a[S]=4;
}

//catch block of inner try block 2

catch(ArraylndexOutOfBoundsException e)

{

System.out.println(e);
}

System.out.println("other statement");

//catch block of outer try block

catch(Exception e)
{

Java Programming

,.;~<!'~~.:/·.::~-:> ..
~ , i / ", : . ..

/Z..-_· . ,::=:-.- _ ~c. -·
..-

~~·-- \ _..., -_ .. ., ... ,:
, , . . .

\.. ·,
'-, :. . ---,___

"\- ·. ··-- '----~--
....- ~ . . . -~.._ _ _:,__-__ _

System.out.println("handled the exception (outer catch)");

}

}

System.out.println("normal flow .. ");

}

Java finally block

• Java finally block is always executed whether an exception is handled or not. Therefore, it

contains all the necessary statements that need to be printed regardless of the exception

occurs or not.
• The finally block follows the try-catch block.

class TestFinaflyBlock {

public static void main(String args[]){

try{

//below code do not throw any exception

87 I P AGE

Dezyne Ecole College

int data=25/5;

System.out.println(data);

//catch won't be executed

catch(NullPointerException e){

System.out.println(e);

//executed regardless of exception occurred or not

finally {

System.out.println("finally block is always executed");

System.out.println("rest of the code .. . ");

Java throw keyword

Java Programming

We can also define our own set of conditions and throw an exception explicitly using throw keyword.

For example, we can throw ArithmeticException if we divide a number by another number. Here, we

just need to set the condition and throw exception using throw keyword.

The syntax of the Java throw keyword is given below.

throw Instance i.e.,

throw new exception_class("error message");

throw new IOException("sorry device error");

Example:
public class TestThrowl {

//function to check if person is el igible to vote or not
public stat ic void validate(int age) {

if(age<18) {

//throw Arithmetic exception if not eligible to vote

88 I P A G E

Dezyne Ecole College Java Programming

}

throw new ArithmeticException("Person is not eligible to vote");
}

else {

System.out.println("Person is eligible to vote 11");

}

//main method
public static void main(String args[]){

//calling the function
validate(13);
System.out.println("rest of the code ... ");

}

Subclass Exceptions

There are many rules if we talk about method overriding with exception handling.

Some of the rules are listed below:

o If the superclass method does not declare an exception
o If the superclass method does not declare an exception, subclass overridden method

cannot declare the checked exception but it can declare unchecked exception.
o If the superclass method declares an exception

o If the superclass method declares an exception, subclass overridden method can
declare same, subclass exception or no exception but cannot declare parent
exception.

1. If the superclass method does not declare an exception:

import java.io. *;
class Parent{

// defining the method
void msg() {
System.out.println("parent method");
}

public class TestExceptionChild extends Parent{

// overriding the method in child class
// gives compile time error
void msg() throws IOException {
System.out.println("TestExceptionChild");

}

public static void main(String args[]) {
Parent p = new TestExceptionChild();

89 I P AGE

Dezyne Ecole College

}

p.msg();
}

Output:

Java Programming

C:\Users\A~urat~\De~ktop\abcDemo>javac Te~tExceptfonCh~~d.j~va _ annot: override msg(
estExcept1onCh1ld.Java:14: error: msg() 1n TestExceptionChild c • .

) in Parent ·
· _ V(?id msg() . thro1<1s IOExcept;ion {.

.. ·._. "' .· ... ·

. overridden "method does . not throw ·tOEx.ception
1 error

2. lfthe superclass method declares an exception:

import java.io. *;

class Parent{
void msg()throws ArithmeticException {
System.out. println(" pa rent method");

}

}

public class TestExceptionChild2 extends Parent{
void msg()throws Exception {

}
}

System.out. println ("child method");

}

public static void main(String args[J) {
Parent p = new TestExceptionChild2();

try {
p.msg();
}
catch (Exception e){}

Output:

c: \User_s\A~urat~ \Des~op\abcDemo>javac Te~!Exceptio~Child2. java
Te~tExcept1onCh1l d2.Java:_9: error: msg() in TestExceptionChild2 cannot over.ride msc
() iB Par ent . · · ~

void _msg() throws Exception ·{

o_verridden method do~s not thrm,, Exception
1 -error

Dezyne Ecole College
Java Programming

Multi threading

• Multithreading is a Java feature that allows concurrent execution of two or more parts of a

program for maximum utilization of CPU.

• Each part of such program is called a thread.

• So, threads are light-weight processes within a process.

• Java Mu/tithreading is mostly used in games, animation, etc.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to utilize the

CPU. Multitasking can be achieved in two ways:

o Process-based Multitasking (Multiprocessing)

o Thread-based Multitasking (Multithreading)

1) Process-based Multitasking (Multiprocessing)

o Each process has an address in memory. In other words, each process allocates a separate

memory area.

o A process is heavyweight.

o Cost of communication between the process is high.

o Switching from one process to another requires some time for saving and loading registers,

memory maps, updating lists, etc.

2) Thread-based Multitasking (Multithreading)

o Threads share the same address space.

o A thread is lightweight.

o Cost of communication between the thread is low.

What is Thread in java

A thread is a lightweight subprocess, the smallest unit of processing. It is a separate path of execution.

Threads are independent. If there occurs exception in one thread, it doesn't affect other threads. It

uses a shared memory area.

91 / PA G E

Dezyne Ecole College
Java Programming

•
OS

As shown in the above figure, a thread is executed inside the process. There is context-switching
between the threads. There can be multiple processes inside the OS, and one process can have
multiple threads.

Lifecycle of a Thread in Java
A thread in Java at any point of time exists in any one of the following states . A thread lies only in
one of the shown states at any instant:
1. New
2. Runnable
3. Blocked
4. Waiting
5. Timed Waiting
6. Terminated
The diagram shown below represents various states of a thread at any instant in time.

-

92 I P A GE

WMting for
not11/cqfion

lificarion acquired

'o~ ~-
'?c>

0

Dezyne Ecole College
Java Programming

Life Cycle of a thread
1. New Thread: When a new th read is created, it is in the new state. The thread has not yet started to run when the thread is in this state. When a thread lies in the new state, its code is yet to be run and hasn't started to execute.

2. Runnable State: A thread that is ready to run is moved to a runnable state. In this state, a thread might actually be running or it might be ready to run at any instant of time. It is the responsibility of the thread scheduler to give the thread, time to run. A multi-threaded program allocates a fixed amount of time to each individual thread. Each and every thread runs for a short while and then pauses and relinquishes the CPU to another thread so that other threads can get a chance to run. When this happens, all such threads that are ready to run, waiting for the CPU and the currently running thread lie in a runnable state. 3. Blocked/Waiting state: When a thread is temporarily inactive, then it's in one of the following states:

• Blocked

• Waiting

4. Timed Waiting: A thread lies in a timed waiting state when it calls a method with a time-out parameter. A thread lies in this state until the timeout is completed or until a notification is received. For example, when a thread calls sleep or a conditional wait, it is moved to a timed waiting state.

5 . Terminated State: A thread terminates because of either of the following reasons:
• Because it exits normally. This happens when the code of the thread has been entirely executed by the program.

• Because there occurred some unusual erroneous event, like segmentation fault or an unhandled exception .

Threads can be created by using two mechanisms :
1. Extending the Thread class
2. Implementing the Runnable Interface
Thread creation by extending the Thread class We create a class that extends the java.lang.Thread class.

• This class overrides the run(} method available in the Thread class.
• A thread begins its life inside run() method.
• We create an object of our new class and call start(} method to start the execution of a thread.

• Start() invokes the run() method on the Thread object.

Example:
class MultithreadingDemo extends Thread {

public void run()
{

try {

93 I P AGE

}

Dezyne Ecole College

I/ Displaying the thread that is running
System.out.println(

"Thread " + Thread.currentThread().getld()
+ " is running");

catch (Exception e) {

// Throwing an exception

} System.out.println("Exception is caught");

// Main Class

public class Multithread {

public static void main(String[] args)
{

int n = 8; // Number of threads
for (inti= O; i < n; i++) {

MultithreadingDemo object

}

= new MultithreadingDemo();
object.start();

· Output
Thread 15 is running
Thread 14 is runn.ing
Thread 16 is running
Thread 12 is running
Thread 11 is running
Thread 13 is running
Thread 18 is running
Thread 17 is running

Thread creation by implementing the Runnable Interface

Java Programming

We create a new class which implements java.lang.Runnable interface and override run() method.

Then we instantiate a Thread object and call start() method on this object.

class MultithreadingDemo implements Runnable {
public void run()

{
try {

}

// Displaying the thread that is running
System.out.println(

"Th read "+ Thread.currentThread().getld()
+ " is running");

catch (Exception e) {
// Throwing an exception
System.out.println("Exception is caught");

94 I P A G E

Dezyne Ecole College

// Main Class

class Multithread {

public static void main(String(] args)
{

int n = 8; / / Number of threads

for (inti= O; i < n; i++) {

Thread object

= new Thread(new MultithreadingDemo());

object.start();

Output
Thread 13 is running

Thread 11 is running

Thread 12 is running

Thread 15 is running

Thread 14 is running

Thread 18 is running

Thread 17 is running

Thread 16 is running

Creating Multiple Threads in Java

Java Programming

Now, we will learn methods of creating multiple threads in Java program. Basically, when we need to

perform several tasks at a time, we can create multiple threads to perform multiple tasks in a program.

For example, to perform two tasks, we can create two threads and attach them to two tasks. Hence,

creating multiple threads in Java programming helps to perform more than one task simultaneously.

In multiple threading programming, multiple threads are executing simultaneously that improves the

performance of CPU because CPU is not idle if other threads are wa iting to get some resources.

Multiple threads share the same address space in the heap memory. Therefore, It is good to create

multiple threads to execute multiple tasks rather than creating multiple processes. Look at the below

picture.

B -zl""'\. / Q r:7 //rr;;;:;:,✓
L::_J

.__ __ ___, Program

Fig: Thread-based Multitasking

95 I P AGE

Dezyne Ecole College Java Programming

. h has to first cut Suppose there is one person (1 thread) to perform these two tasks. In this case, e d ticket
. . . d r to cut secon

ticket and then come along with us to show seats. Then, he will go back to 00
and then again enter the hall to show seat for second ticket.

. ger employs two Like this, he is taking a lot of time to perform these tasks one by one. If theater mana on will • d another pers persons (2 threads) to perform these two tasks, one person will cut the ticket an show seat.

. h f k t Like this, both Thus, when the second person will be showing seat, the first person will cut t e ic e · persons will act simultaneously and wastage of time will not happen.
. . L k at the following Let's create a program where we will try to implement this realt1me scenario. 00

source code.

I I Two threads performing two tasks at a time.
public class MyThread extends Thread
{
I I Declare a String variable to represent task.
String task;

MyThread(String task)
{
this.task= task;

}

public void run()
{
for(int i = 1; i <= 5; i++)
{
System.out.println(task+" : "+i);
try
{

Thread.sleep(l000); I I Pause the thread execution for 1000 milliseconds.
}
catch(lnterruptedException ie) {
System.out.println(ie.getMessage());
}
} I I end of for loop. .. } // end of run() method.
public static void main(String[] args)
{
I I Create two objects to represent two tasks.

MyThread thl = new MyThread("Cut the ticket"); I I Passing task as an argument to its construct d(" h
or.

MyThread th2 = new MyThrea S ow your seat number");

I I Create two objects of Thread class and pass two objects as parameter to constructor of Thread class.
Thread t1 = new Thread(thl);
Thread t2 = new Thread(th2);
tl.st art();
t2.start();
}

}

96 \ PAGE

4

Dezyne Ecole College

Output:
Cut the ticket : 1

Show your seat number: 1

Show your seat number : 2

Cut the ticket : 2

Show your seat number : 3

Cut the ticket : 3

Show your seat number : 4

Cut the ticket : 4

Show your seat number : 5

Cut the ticket : 5

Java Programming

In the preceding example program, we have created two threads on two objects of MyThread class.

Here, we created two objects to represent two tasks.

When we will run the above program, the main thread starts running immediately. Two threads will

generate from the main thread that will perform two different tasks.

Priority of a Thread (Thread Priority)

Each thread has a priority. Priorities are represented by a number between 1 and 10.

In most cases, the thread scheduler schedules the threads according to their priority (known as

preemptive scheduling).

But it is not guaranteed because it depends on JVM specification that which scheduling it chooses.

Setter & Getter Method of Thread Priority

Let's discuss the setter and getter method of the thread priority.

• public final int getPriority(): The java.lang.Thread.getPriority() method returns the priority

of the given thread.

• public final void setPriority(int newPriority): The java.lang.Thread.setPriority() method

updates or assign the priority of the thread to newPriority. The method throws

lllegalArgumentException if the value newPriority goes out of the range, which is 1 (minimum)

to 10 (maximum).

3 constants defined in Thread class:

1. public static int MIN_pRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the value of

MAX_pRIORITY is 10.

97 I P A G E

Dezyne Ecole College

Example of priority of n Thread:
import java.lang. *;

public class ThreadPriorityExample extends Thread

{

II Method 1
I I Whenever the start() method is called by a thread

I I the run() method is invoked

public void run()

{

I I the print statement

System.out.println("lnside the run() method");

}

I I the main method

public static void main(String argvs[])

{
I I Creating threads with the help of ThreadPriorityExample class

ThreadPriorityExample thl = new ThreadPriorityExample();

ThreadPriorityExample th2 = new ThreadPriorityExample();

ThreadPriorityExample th3 = new ThreadPriorityExample();

I I We did not mention the priority of the thread.

I I Therefore, the priorities of the thread is 5, the default value

I I 1st Thread

I I Displaying the priority of the thread

I I using the getPriority() method

System.out.println("Priority of the thread thl is : "+ thl.getPriority());

I I 2nd Thread

I I Display the priority of the thread

System.out.println("Priority of the thread th2 is : "+ th2.getPriority());

I I 3rd Thread

I I I I Display the priority of the thread

System.out.println("Priority of the thread th2 is : "+ th2.getPriority());

I I Setting priorities of above threads by

I I passing integer arguments

th l.setPriority(6);

th2.setPriority(3);

th3.setPriority(9);

II 6

System.out.println("Priority of the thread thl is · "+ thl g tP • .
· • e nonty());

l/3
Syste m.out.printfn("Priority of the thread th2 is• 11 + th2 . .

· .getPnorrty());

98 I P AGE

Java programming

Dezyne Ecole College
Java Programming

//9
System.out.println("Priority of the thread th3 is:"+ th3.getPriority());

// Main thread

I I Displaying name of the currently executing thread

System.out.println("Currently Executing The Thread : "+ Thread.currentThread().getName());

System.out.println("Priority ofthe main thread is : "+ Thread.currentThread().getPriority());

I I Priority of the main thread is 10 now

Thread.currentThread().setPriority(lO);

System.out.println("Priority of the main thread is : "+ Thread.currentThread().getPriority());

}
}

Output:
Priority of the thread thl is: 5

Priority of the thread th2 is : 5

Priority of the thread th2 is : 5

Priority of the thread thl is : 6

Priority of the thread th2 is : 3
Priority of the thread th3 is : 9

Currently Executing The Thread : main

Priority of the main thread is : 5

Priority of the main thread is: 10

Java Synchronization

• Synchronization is a process of handling resource accessibility by multiple thread requests.

• The main purpose of synchronization is to avoid thread interference.

• At t imes when more than one thread try to access a shared resource, we need to ensure that

resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization.

• The synchronization keyword in java creates a block of code referred to as critical section.

General Syntax:

synchronized (object)

//statement to be synchronized

99 IP AGE

}

}

Dezyne Ecole College

Java programming

Why we need Syncronization?

d
rce at the same

If we do not use syncronization, and let two or more threads access a share resou

time, it will lead to distorted results.

.
cution and save

Consider an example, Suppose we have two different threads Tl and T2, T1 starts exe
• It hen T1 returns.

certain values in a file temporary.txt which will be used to calculate some resu w txt

Meanwhile, T2 starts and before T1 returns, T2 change the values saved by T1 in the file temporary.

(temporary.txt is the shared resource). Now obviously T1 will return wrong result.

. . • above case, once

To prevent such problems, synchronization was introduced With synchronizatwn ,n bl

.
· h d will be a e

T1 starts usmg temporary.txt file, this file will be locked(LOCK mode), and no other t rea

to access or modify it until T1 returns.

Using Synchronized Methods

Using Synchronized methods is a way to accomplish synchronization. But lets first see what happens

when we do not use synchronization in our program.

Example with no Synchronization

class Table{

void printTable(int n){!/method not synchronized

for(int i=1;i<=5; i++){

System.out.println(n* i);

try{

Thread.s1eep(400);

}catch(Exception e){System.out.println(e);}

class MyThreadl extends Thread{

Tablet;

100/ PA G E

Dezyne Ecole College

MyThreadl(Table t){

this.t=t;

public void run(){

t .printTable(S);

}

class MyThread2 extends Thread{

Tablet;

MyThread2(Table t){

this.t=t;

public void run(){

t.printTable(lOO);

}

}

class TestSynchronizationl{

public static void main(String args[J){

Table obj= new Table();//only one object

MyThreadl tl=new MyThreadl(obj);

MyThread2 t2=new MyThread2(obj);

tl.start();

t2.start();

101 I P AGE

Java Programming

Dezyne Ecole College Java Programming

}

}

Output:

5

100

10

200

15

300

20

400

25

500

1. Java Synchronized Method

• If you declare any method as synchronized, it is known as synchronized method.

• Synchronized method is used to lock an object for any shared resource.
• When a thread invokes a synchronized method, it automatically acquires the lock for that

object and releases it when the thread completes its task.

/ /example of java synchronized method

class Table{

synchro nized void printTable(int n){/ /synchronized method

for(int i=l ; i<=S;i++){

System.out.println(n * i);

try{

102 I PAGE

Dezyne Ecole College

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

class MyThreadl extends Thread{

Tablet;

class MyThread2 extends Thread{

Tablet;

MyThread2(Table t){

this.t=t;

public void run(){

t .printTable(l00);

103 I P A G E

Java Programming

Dezyne Ecole College

public class TestSynchron ization2{

public static void main(String args[)){

Table obj= new Table();! /only one object

MyThreadl tl=new MyThreadl(obj);

MyThread2 t2=new MyThread2(obj);

tl.start();

t2.start();

Output:

5

10

15

20

25

100

200

300

400

500

Synchronized Block in Java

Java Programming

• Synchronized block can be used to perform synchronization on an . .
method. Y specific resource of the

• Suppose we have SO lines of code in our method but
, we want to sy h . such cases, we can use synchronized block. nc ron1ze only 5 lines, in

104 I P AGE

Dezyne Ecole College Java Programming

• If we put all the codes of the method in the synchronized block, It will work same as the
synchronized method.

Points to Remember

• Synchronized block is used to lock an object for any shared resource.

• Scope of synchronized block is smaller than the method.

synchronized (object reference expression) (

//code block

Example of Synchronized Block
class Table

void printTable(int n){

synchronized(this){//synchronized block

for(int i=l;i<=S;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}//end of the method

class MyThreadl extends Thread{

Tablet;

MyThreadl(Table t){

this.t=t;

105 IP A GE

}

Dezyne Ecole College

public void run(){

t.printTable(S);

}

class MyThread2 extends Thread{

Tablet;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(lOO);

}

}

::>

public class TestSynchronizedBlockl{

public static void main(String args[]){

Table obj= new Table();//only one object

MyThreadl tl=new MyThreadl(obj);

MyThread2 t2=new MyThread2(obj);

tl .start();

t2 .st a rt();

}

}

106 I P AGE

Java Programmmg

..
• •
•
• •
' f
f

Dezyne Ecole College

Output:

5

10

15

20

25

100

200

300

400

500

Inter-thread Communication in Java

Java Programming

o Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

o Cooperation (Inter-thread communication) is a mechanism in which a thread is paused

running in its critical section and another thread is allowed to enter (or lock) in the same

critical section to be executed.

o It is implemented by following methods of Object class:

• waitO
• notifyO
• notifyAIIO

1) waitO method

The wait() method causes current thread to release the lock and wait until either another thread

invokes the notify() method or the notifyAII() method for this object, or a specified amount of time

has elapsed.

2) notifyO method

The notify() method wakes up a single thread that is waiting on this object's monitor. If any threads

are waiting on this object, one ofthem is chosen to be awakened. The choice is arbitrary and occurs

at the discretion of the implementation.

Syntax:

public final void notify()

107 I P A GE

Dezyne Ecole College

3) notifyAII() method

Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAII()

Understanding the process of inter-thread communication

Entry Set The Owner Wait Set

(waiting to be notified)

releayQ Q
ente/ ~

2
cq ~ @

1
__ $

G) 0 ~ 0 ~ ~otlfied)

I
O I acquire O 0

release and fG' ® (wait ing to be

'--· ______ _.__ __ exiv~ resurrencted

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

2. Lock is acquired by on thread.

Java Programming

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it releases

the lock and exits.

4. If you call notify() or notifyAII() method, thread moves to the notified state (runnable state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the object.

Example of Inter Thread Communication in Java

class Customer{

int amount=l0000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw ... ");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit .. . ");

try{wait();}catch(Exception e){}

}
this.amount-=amount;

System.out. println("withdraw completed .. . ");

}

108 I P AGE

Dezyne Ecole College

synchronized void deposlt(lnt amount){

System.out.prlnt ln("golng to deposit .. . ");

th is.amount+=amount;
System.out. prlntln("deposlt com pleted .. . ");

notify();
}
}

class Test{

public stat ic void main(Strlng args[)){

fin al Customer c=new Customer();

new Thread(){
public void run(){c.wlthdraw(lS000);}

}.start();

new Thread(){
public void run(){c.deposit(l0000);}
}.start(); ·

}}

Output:

going to withdraw ...

Less balance; waiting for deposit...

going to deposit ...

deposit completed ...

w ithdraw completed

Java Thread suspend() method

Java Programming

• The suspend() method of thread class puts the thread from running to waiting state. This

method is used if you want to stop the thread execution and start it again when a certain

event occurs.
• This method allows a thread to temporarily cease execution. The suspended thread can be

resumed using t he resume() method.

Syntax
public final void suspend()

Return

This method does not return any value.

Example

publ ic class JavaSuspendExp extends Thread

{
public void run()

{

109 I P AG E

Dezyne Ecole College

for(int i=l; i<S; i++)

{
try
{

I I t hread to sleep for 500 milliseconds

sleep(S00);

System.out. println (Th read.cu rrentTh read ().get Na me());

}catch (lnterruptedException e){System.out.println(e);}

System.out. println(i);

public static void main(String args[])
{

I I creating three threads

JavaSuspendExp tl=new JavaSuspendExp ();

JavaSuspendExp t2=new JavaSuspendExp ();

JavaSuspendExpt3=newJavaSuspendExp(t

I I call run() method

tl.start();

t2.sta rt();

I I suspend t2 thread

t2.suspend();

I I call run() method

t3 .Sta rt(};

Output:

Thread-0

1
Thread-2

1
Thread-0

2
Thread-2

2
Thread-0

3
Thread-2

3
Thread-0

4
Thread-2

4

Java Programming

Dezyne Ecole College Java Programming

Java Thread resume() method

The resume() method of thread class is only used with suspend() method. This method is used to

resume a thread which was suspended using suspend() method. This method allows the suspended

thread to start again.

Syntax

public final void resume()

Return value

This method does not return any value.

Example
public class JavaResumeExp extends Thread
{ .

public void run()

{
for(int i=l; i<S; i++)

{
try
{

// thread to sleep for 500 milliseconds

sleep(S00);

System.out.println(Thread.currentThread().getName());

}catch(lnterruptedException e){System.out.println(e);}

System.out.println(i);

public static void main(String args[])

{
I I creating three threads

JavaResumeExp tl=new JavaResumeExp ();

JavaResumeExp t2=new JavaResumeExp ();

JavaResumeExp t3=new JavaResumeExp ();

I I call run() method

tl.start();

t2.start();

t2 .suspend(); // suspend t2 thread

// ca II run() method

t3.start();

t2.resume(); // resume t2 thread

Output:

Thread-0

1
Thread-2

111 J P AG E

Dezyne Ecole College

1
Thread-1
1
Thread-0
2
Thread-2
2
Thread-1
2
Thread-0
3
Thread-2
3
Thread-1
3
Thread-0
4
Thread-2
4
Thread-1
4

Java Thread stopQ method

Java Programming

The stop() method of thread class terminates the thread execution. Once a thread is stopped, it
cannot be restarted by start() method.

Syntax
public final void stop()

Example
public class JavaStopExp extends Thread

{
public void run()

{
for(int i=1; i<S; i++)
{

try
{

// thread to sleep for 500 milliseconds
sleep(S00);
System.out.println(Thread.currentThread().getName());

}catch (I nte rru pted Except ion e){System.out. println (e);}
System.out.println(i);

}
}
public static void main(String args[J)

{
// creating three threads

112 I P AGE

Dezyne Ecole College

JavaStopExp tl=new JavaStopExp ();

JavaStopExp t2=new JavaStopExp ();

JavaStopExp t3=new JavaStopExp ();

// call run() method

tl.start();

t2.start();

II stop t3 thread

t3.stop();
System.out.println("Thread t3 is stopped");

Determining When a Thread Ends

Java Programming

• It is often useful to know when a thread has ended. For example, in the preceding examples,
for the sake of illustration it was helpful to keep the main thread alive until the other threads

ended.
• In those examples, th is was accomplished by having the main thread sleep longer than the

child threads that it spawned. This is, of course, hardly a satisfactory or generalizable solution!

• Fortunately, Thread provides two means by which you can determine if a thread has ended.

First, you can call isAlive() on the thread. Its general form is shown here:

• final boolean isAlive()

• The isAlive() method returns true if the thread upon which it is called is still running. It

returns false otherwise.

113 I P A G E

Dezyne Ecole College
Java Programming

University Pattern Questions
1. W hat is objec-t oriented programming (OOP)?
2. W hat is abst raction?
3 . Define polymorphism in OOP?
4 . What is the advantage of inheritance in OOP?
5. W hat is a constructor?
6. W hat is a class in OOP?

7. How do you declare an object in Java?
8 . W hat is an applet ?
9. Explain importing package in Java?
10. What is the use of interfaces in Java?
11. What are the application areas for Java?
12. What makes Java a secure internet programming language?
13. Explain the usage of "this" keyword in Java?
14. What is multithreading?
15. What is Event handling? Explain Event classes?
16. List and Explain the key characteristics of Java programming language?
17. Write a small program to illustrate the use of classes in Java. Also explain nested classes?
18. Write a small program to explain the usage of methods in Java. Explain method
overloading?
19. Expla in Exception handing mechanism in Java.Illustrate using a small example program?
20. Write short notes on any two ofthe following:

a. Java Packages
b. 1/ 0 (input/output) stream management.
c. Javax.swing package
d. Event Listener interfaces

21.Why Java is platform independent language?
22. What is the range of long data type?
23. What will be the output of following code :

int a=lO;
System.out.println(a»2);

24. W hich operator in Java is known as ternary operator?
25. W hat is byt ecode?
26. Define command line argument.
27. Explain the garbage collection.
28. Describe the JVM and Java APL
29. Defi ne b itw ise and shiftwise operator with example.
30JN hat is base class of all Java classes?
31 What is return type of constructor?

32.. V✓ha t is fina l variable?
33. What is method overloading?Explain it with an example.

34. What ,~ final class? How it is useful?

35_ What 15 coru.t ructor ?Explain various types of constructors w ith suitable example.
36. f l(pfaln the term run t ime polymorph ism .

37_ List va riour. types o f Inheritance.

38_ W rite t he uses of 'thii.' keyword.

39_ W hat is the difference between String and StrlneBuffcr class?

40_ W rite a program to crea te your own exception If marks entered .ire less than o or >l00.

4 1. Explain fife cycle of Thread?

114 I P AGE

Dezyne Ecole College

Java Programming

42.Give an example to explain multithreading concept in Java.

43. Describe the charAt() method related to string.

44. Define access specifiers.

45. What is synchronization?

46. Write the difference between String and StringTokenizer. Explain through example.

47. Distinguish between Final,Finally and Finalize.

48. Explain Legacy classes.

49. What is Thread? Write different ways for creating thread.Explain thread properties with example

50. Create a program which explains Vector and Stack class.

51. What is package?How a user defined package is created?Explain with example.

52. a) What is Object Oriented Programming Paradigm ? Explain briefly some features of java fang.

53. What is JVM ? Explain concept of byte code generation in java.

54. a) What is datatypes ? Explain various datatypes of java.

55. Write a program to sort 10 numbers in ascending order.

56. What is a package. How user defined package is created. Discuss them with example.

57. Explain briefly :

a) Garbage Collector

b) Abstract Class

c) Super Keyword

d) This Keyword

e) Throws i

58. What do you understand by Polymorphism?

59. What is overloading?
I - •• !

60. What is Thread?

61. Differentiate between string and string buffer.

62. Explain the need of interfaces.

63. Give difference between Java and C++. ·,.-,,...."'- .- • .. ··,--

64. Write a program of method overriding. ·· - . ..

65. What is JVM? Explain the advantages of JVM. Also give functionaiit/ of lbader.

66. Write a program to sort elements of one dimensional array. Also include exception handling

code in program.

67. What is inheritance? Explain different types of inheritance with example.

68. What is multithreading? Write a program to implement multithreading.

69. What is package? Write steps to create and run a package. Also give advantage of package.

70. How class path is set for packages.

71. How inheritance is implemented by interface.

72. What is the role of fina lly?

73. How object reference is different from object.

74. Define instance of operator.s

75. Define relational operators and Boolean logic operators.

76. What is the difference between type conversion and type casting?

77. Diffe re ntiate between the use of throw and throws.

78. Explain Thread synchronization and thread exe cution

79. What is conceptual differe nce between a bstraction and encapsulation?

80. How does Java impleme nt the Portability of code ?

81. Write note on New and This.

82. What is an exceptio n? Explain the procedure of how to ha ndle exceptio n.

83. What is package? Write steps to create a nd run a package. Also give advantage of package.

84. Explain the use of 'Static' and 'Fina l' keyword.

85. What is For-Each loop in java. Write a program which shows addition of two 2*2 m atrix's.

86. What is Exception Handling? Expla in the concept of multiple catch statements. Write a progra m

115 I P A GE

Dezyne Ecole College Java Programming

Which implements finally block. . d thod with example?

87. What is need of Synchronization in multithreading? Explai~ synchronize t :~hread priority with

88. What are Threads? How threads are created in Java? Explain the concep
an example.

89. What is abstract class.

90. What is Runnable Interface.

91. What is difference between Class and Interface? Explain it with program. difference between

92. What is multithreading and how java implements it? Also explain

synchronized method and synchronized block with a suitable program.

93. Describe charAt() method related to string.
94. Define Access specifiers.

• •

