=

THE #RDATATBLE PAGKAGE

for tast, flexible and memory efhcient data wrangling

Arun Srinivasan
CO-DEVELOPER, DATA.TABLE

USER TOULOUSE. JUL'19) @ARUN_SRINIV

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

~ A YEAR BEFORE

Homepage: http://r-datatable.com, 5O contributors
Since 2006 on CRAN, >40 releases so far

Does not depend/import any other packages

>7700 unit tests, ~93% coverage (using covr)

>600 packages import/depend/suggest data.table
~18.3 packages per month since Jan’18

10th most starred R package on Github (METACRAN)

>/400 questions on StackOverflow

MONTREAL18, JUL 4-6

http://r-datatable.com

NOW

Homepage: http://r-datatable.com, 50 69 contributors
Since 2006 on CRAN, 540 48 releases so far
Still does not depend/import any other packages

>7700 >9100 unit tests, ~93% ~98% coverage (using covr)

>600 >690 packages import/depend/suggest data.table

15th most depended upon packages (METACRAN)
10tk 9th most starred R package on Github (METACRAN)

>7400 >8800 questions on StackOverflow
>370 issues closed/fixed since then (277 so far in 2019)

http://r-datatable.com

TALK OVERVIEW

Introduce data.table’s syntax / general form with

simple examples

Slightly more involved example to help
understand .SD and .SDcols

Optimisations and new functionalities in data.table

TALK OVERVIEW

Introduce data.table’s syntax / general form with

simple examples

Slightly more involved example to help
understand .SD and .SDcols

Optimisations and new functionalities in data.table

E 1 10
2: 2 11
3: 3 12
4. 4 13
5:] 2 5 14
6: 2 6 15
/: 1 / 16
8: 2 3 17
9.1 1 9 18

DT|,

EXAMPLE 1

Get sum(valA)

for each value of id

. (valA=sum(valA)), by=id]

.() is an alias to List()

EXAMPLE 1

B < 1 10

Bl b 2

3:. C 3 12

4 .) 4 13 Get sum(valA)

sl 5 14 for each value of id

6:12 a 6 15

7:. b /7 16

32 . 8 17 DT[, .(valA=sum(valA)), by=id]
9:. C 9 18

.() is an alias to List() 1

EXAMPLE 1

Group L Group 2

1 10
2 11
C 3 12
- 4 | 13 Get sum(valA)
3 5 14 for each value of id
3 6 15
L |
; 2 :; DT[, .(valA=sum(valA)), by=id]
c

.() is an alias to List()

EXAMPLE 1 CONTD ...

Get sum(valA)

for each value of id

(@) Q O o Q @ @ O O

DT[, .(valA=sum(valA)), by=id]

E 1 10
2: 2 11
3: 3 12
4. 4 13
5:] 2 5 14
6: 2 6 15
/: 1 / 16
8: 2 3 17
9.1 1 9 18

EXAMPLE 2

Get sum(valA)

for each value of id

where code != "b"

DT[code != "b", .(valA=sum(valA)), by=id]

E 1 10
2 2 11
3: 3 12
4. 4 | 13
S: 5 14
6: 6 15
e / 16
8: 8 17
ok 9 18

EXAMPLE 2

Get sum(valA)

for each value of id

where code != "b"

DT[code != "b", .(valA=sum(valA)), by=id]

i

EXAMPLE 2

Get sum(valA)

for each value of id

where code != "b"

DT[code != "b", .(valA=sum(valA)), by=id]

i

EXAMPLE 2

Group L Group 2

Get sum(valA)

for each value of id

where code != "b"

'

DT[code != "b", .(valA=sum(valA)), by=id]

EXAMPLE 2 CONTD ...

Get sum(valA)

for each value of id

where code != "b"

DT[code != "b", .(valA=sum(valA)), by=id]

GENERAL FORM

DT[code != "b", .(valA=sum(valA)), by=id]

by |

TALK OVERVIEW

Introduce data.table’s syntax / general form with

simple examples

Slightly more involved example to help
understand .SD and .SDcols

Optimisations and new functionalities in data.table

N e e T L F o o I e

- N = NN

O 00 N O U N W N —

11

12
13
14
15
16
1/
18

S0 AND .SDCOLS

Get sum of each of val

cols for each id where

code '="b"

DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns(“*val")]

O 0N R w2

\ I

C 1 10
b 2 11
C 3 12
C 4 | 13
2 a 5 14
2 a 6 15
1 b / 16
2 a 8 17
1 C 9 18

S0 AND .SDCOLS

Get sum of each of val

cols for each id where

code '="b"

DT[code != "b", lapply(.SD, sum), by=id,
1 .SDcols=patterns(“*val")]

S0 AND .SDCOLS

Get sum of each of val

cols for each id where

code !'="b"

DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns(“*val")] 1

S0 AND .SDCOLS
qroup1l Group 2

c 1 10 a S 14
c 3 12 a 6 15
Get sumof eachofval | . 4 13 s 8 17
cols for each id where c 9 18
code !="b"
Subset
of Data
DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns("Aval")]

S0 AND .SDCOLS

Group 1 GQroup 2

1 10 5 14
3 12 6 15
Get sum of each of val 4 13 8 17
cols for each id where 9 18
code !="b"
Subset
of Data
DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns("Aval")]

t

S0 AND .SDCOLS GONTD ...

Get sum of each of val

cols for each id where

code !'="b"

DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns(“*val")]

S0 AND .SDCOLS GONTD ...

Get sum of each of val

cols for each id where

code !'="b"

DT[code != "b", lapply(.SD, sum), by=id,
.SDcols=patterns(“*val")]

New vignette in devel version 1.12.3: vignette("datatable-sd-usage”)

TALK OVERVIEW

Introduce data.table’s syntax / general form with

simple examples

Slightly more involved example to help
understand .SD and .SDcols

Optimisations and new functionalities in data.table

HOW T0 BE PERFORMANT?
DT[code != "b", .(valA=sum(valA)), by=id]
|) 2

No shortcuts ... Optimise every single stage

OPTIMISATIONS IN T

Auto indexing:

dt <- data.table(x=sample(1e5, 2e8, TRUE), y=runif(2e8))
200 million rows, 2 cols, ~3GB

Runtl:dt[x %in% 1000 :2000]

Run 2: Reuses index built during Ist run

Optimised for == and %in%

OPTIMISATIONS IN T

Parallel subsets (columns are processed In parallel):

dt <- setDT(lapply(1:20, function(x) sample(100, 5e7, TRUE)))
50 million rows, 20 cols, all Integers, ~3.7GB

Parallel (default): dt[V1 > 50L]

Sequential: with setDTthreads(1L)

Every bit of optimisation matters

(1.7x speedup on 2 threads)

OPTIMISATIONS IN ‘BY

Radix order has been parallelised recently:

dt <- data.table(x=sample(1e5, 2e8, TRUE), y=runif(2e8))
200 million rows, 2 cols, ~3GB

dt[, .N, by=x] (with 2 threads)

Using 1 thread with setDTthreads(1L)

~1.92x speedup

OPTIMISATIONS IN °J

GForce: sum, min, max, mean, median, head, tail etc.

dt <- setDT(lapply(1:20, function(x) sample(160, 5e7, TRUE)))
50 million rows, 20 cols, ~3.7GB

dt[, lapply(.SD, mean), by=V1]

dt[, lapply(.SD, base::mean), by=V1]

nafill:
1 C
2 b

10

14

MORE FUNCTIONALITIES

nafill (DT, “locf”)

setnafill (DT, “locf”)

Ooperates LA pa rallel 4:

acvross cols, see

?waﬁLL

14

MORE FUNCTIONALITIES
nafill:

dt <- setDT(lapply(1:20, function(x) sample(c(NA, 1:10), 5e7, TRUE)))

50 million rows, 20 cols, ~3.7GB

nafill(dt, “locf”) # 2 threads

nafill(dt, “locf”) # 1 thread

Can also be used with ‘by’, e.g.,
DT[, if (cond) nafill(.SD, “locf”) else .SD, by=col]

MORE FUNCTIONALITIES

froll: frollsum, frollmean

1 6 11
2 / 12
3 3 13
4 9 14
S 10 15

setDT(frollsum(DT, 3))

Operates LA parallel
acvross cols, see

2 froll

. NA NA NA
. NA NA NA
6 21 36
9 24 39
12 27 42

coalesce:
1N NA T
2 NA 12 NA
3013 5 1
4. NA NA 14
5. 15 NA NA
5 NA NA NA

MORE FUNCTIONALITIES

coalesce(DT)

Operates LA parallel, see
2coalesce

11

12

13

14

15

NA

SUMMARY

Auto indexing improvements in ‘I’ for other operators could be a great

feature to add.

More performance might be squeezed out of (parallel) radix ordering for

grouping operations by handling special cases more efficiently.
Several new compute functionalities are being added. They can be hooked in
| via GForce for quicker group-by operations.

New vignettes added and several bugs fixed.

THANKS T0

More contributions, activity, and issues fixed / features implemented.
fwrite() can write to zip file directly - Philippe Chataignon
Markus Bonsch on quite a few issues including auto indexing
Hugh Parsonage, Frank, Uwe, Shrektan and others- routine filing of
issues, following up on SO, and fixing issues/suggesting fixes etc.

Renkun-ken and a few others for active dev testing and reporting

THANKS T0

Pasha from H2O.ai and H2O.ai for their contributions and interest
In data.table
CRAN team, Github CI/R developers for providing the means to

catch and fix issues quickly

THANKS T0

Michael Chirico for active contributions on documentations, R-code and
recently C-code too! CJ(O) has been moved to C and parallelised.
Michael has also written a much requested vignette on ND, usage. Please

check out vignette(“datatable-sd-usage”) from v1.2.3+

THANKS T0

Jan has implemented several recent functionalities - coalsce, nafill,

frollmean, frollsum etc. in C/OpenMP

A lot other contributors that I’ve not been able to mention by name

(see: https://github.com/Rdatatable/data.table/graphs/contributors)
And of course, Matt for steering this ship for over 13 years :-) (fread,

fwrite, parallel radix ordering etc.)

https://github.com/Rdatatable/data.table/graphs/contributors

THANKS T0

you for your attention ...

Questions?

