This is part of the Rethinking Alignment (Re-Align) project by AI2 Mosaic.
📑 Paper: "The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning" (ICLR 2024).
🛜 Website: https://allenai.github.io/re-align/.
🤗 Demo: BaseChat [https://huggingface.co/spaces/allenai/BaseChat_URIAL].
URIAL is a simple, tuning-free alignment method, URIAL (Untuned LLMs with Restyled In-context ALignment). URIAL achieves effective alignment purely through in-context learning (ICL), requiring as few as three constant stylistic examples and a system prompt. It's a strong baseline method for LLM alignment and shows comparable performance to fine-tuning based alignment. Apart from that, URIAL can also be used to study the science of LLMs, helping to understand alignment in a more controlled and interpretable manner.
conda create -n urial python=3.10
conda activate urial
pip install vllm
# conda create -p /net/nfs/mosaic/yuchenl/envs/urial python=3.10
# conda activate /net/nfs/mosaic/yuchenl/envs/urial
pip install -r requirements.new.txt
An example script for running mistral (base) with urial prompts for alpaca_eval
:
urial="inst_1k_v4" # urial prompt name --> `urial_prompts/{urial}.txt`
output_dir="result_dirs/alpaca_eval/vllm_urial=${urial}/"
CUDA_VISIBLE_DEVICES=0 python src/unified_infer.py \
--urial $urial \
--engine vllm \
--model_name "mistralai/Mistral-7b-v0.1" \
--tensor_parallel_size 1 \
--dtype bfloat16 \
--data_name "alpaca_eval" \
--top_p 1.0 --temperature 0.3 --repetition_penalty 1.1 \
--batch_size 16 --max_tokens 2048 \
--output_folder $output_dir/
For more details, please refer to URIAL/src/unified_infer.py
. Note that you can use the same method to run inference with aligned LLMs (by not setting --urial
) too and also for other datasets. You could customize your own data/models in URIAL/src/unified_utils.py
.
🖼️ Click here to see a figure for the illustration of URIAL and other tuning-free Alignment methods.
As discussed here, a URIAL Prompt consists of K-shot stylistic in-context examples and a system prompt. The folder urial_prompts
contains:
Suggested versions:
inst_1k_v4.help
(no refusal; K=3 examples; ~1k tokens)inst_1k_v4
(safer; K=3 examples; ~1k tokens)
Previous versions (used for the experiments in the arXiv version).
URIAL-main (K=3; 1k tokens)
->inst_1k.txt
URIAL-main (K=8; 2k tokens)
->inst_2k.txt
URIAL-main (K=1; 0.5k tokens)
->inst_1shot.txt
URIAL-ablation (K=3; 1k tokens)
->inst_1k_v2.txt
URIAL-ablation (K=0; 0.15k tokens)
->inst_only.txt
Show Tables
mistral-urial (#char=1105.7) VS Mistral-7B-Instruct-v0.1 (#char=1074.1) ⬇️
model | helpfulness | factuality | depth | engagement | clarity | safety |
---|---|---|---|---|---|---|
mistral-urial Win: | 31.93 | 12.30 | 42.61 | 35.90 | 22.36 | 1.12 |
mistral-urial Tie: | 38.88 | 73.04 | 19.63 | 31.68 | 60.62 | 98.39 |
mistral-urial Lose: | 29.19 | 14.66 | 37.76 | 32.42 | 17.02 | 0.50 |
Llama-2-7b-urial (#char=1236.1) VS Llama-2-7b-chat-hf (#char=1455.7) ⬇️
model | helpfulness | factuality | depth | engagement | clarity | safety |
---|---|---|---|---|---|---|
Llama-2-7b-urial Win: | 42.11 | 15.78 | 48.32 | 42.86 | 34.53 | 1.61 |
Llama-2-7b-urial Tie: | 20.87 | 66.58 | 10.68 | 24.10 | 40.75 | 95.90 |
Llama-2-7b-urial Lose: | 37.02 | 17.64 | 40.99 | 33.04 | 24.72 | 2.48 |
Llama-2-70b-urial (#char=1086.5) VS Llama-2-70b-chat-hf (#char=1524.0) ⬇️
model | helpfulness | factuality | depth | engagement | clarity | safety |
---|---|---|---|---|---|---|
Llama-2-70b-urial Win: | 35.28 | 9.44 | 48.20 | 36.02 | 19.75 | 0.62 |
Llama-2-70b-urial Tie: | 42.24 | 81.12 | 15.53 | 39.38 | 68.57 | 97.89 |
Llama-2-70b-urial Lose: | 22.48 | 9.44 | 36.27 | 24.60 | 11.68 | 1.49 |
Scripts for URIAL/Aligned inference: run_scripts/alpaca_eval
Evaluation:
How to run: run_scripts/mt-bench/README.md
model | Turn 1 | Turn 2 | Overall |
---|---|---|---|
openai/gpt-4 |
8.96 | 9.03 | 8.99 |
openai/gpt-3.5-turbo |
8.07 | 7.81 | 7.94 |
Base LLM + URIAL (3-shot ICL) ⬇️ | -------- | -------- | --------- |
meta-llama/Llama-2-70b-hf |
7.61 | 6.61 | 7.11 |
mistralai/Mixtral-8x7B-v0.1 |
7.69 | 6.19 | 6.94 |
mistralai/Mistral-7b-v0.1 |
7.49 | 5.86 | 6.67 |
01-ai/Yi-34B |
7.19 | 6.16 | 6.67 |
google/gemma-7b |
6.97 | 5.04 | 6.00 |
microsoft/phi-2 (2.7B) |
7.04 | 4.66 | 5.85 |
meta-llama/Llama-2-13b-hf |
6.27 | 4.41 | 5.34 |
01-ai/Yi-6B |
5.96 | 3.99 | 4.97 |
meta-llama/Llama-2-7b-hf |
5.75 | 3.91 | 4.83 |
google/gemma-2b |
5.08 | 2.86 | 3.97 |
allenai/OLMo-7B |
3.95 | 2.86 | 3.41 |
Please find more details about our evaluation here: https://github.com/Re-Align/just-eval.
show more (the below content is outdated; will be updated soon)
pip install git+https://github.com/Re-Align/just-eval.git
export OPENAI_API_KEY=<your secret key>
For example, if the output data is result_dirs/urial/inst_1k/Mistral-7B-v0.1.json
, then run the following command to reformat the output data to result_dirs/urial/inst_1k/Mistral-7B-v0.1.to_eval.json
.
python src/scripts/reformat.py result_dirs/urial/inst_1k/Mistral-7B-v0.1.json
to_eval_file="result_dirs/urial/inst_1k/Mistral-7B-v0.1.to_eval.json"
run_name="Mistral-URIAL"
# GPT-4 for first five aspects on 0-800 examples
just_eval \
--mode "score_multi" \
--model "gpt-4-0314" \
--start_idx 0 \
--end_idx 800 \
--first_file $to_eval_file \
--output_file "result_dirs/just-eval_results/${run_name}.score_multi.gpt-4.json"
# GPT-3.5-turbo for the safety aspect on 800-1000 examples
just_eval \
--mode "score_safety" \
--model "gpt-3.5-turbo-0613" \
--first_file $to_eval_file \
--start_idx 800 --end_idx 1000 \
--output_file "result_dirs/just-eval_results/${run_name}.score_safety.chatgpt.json"
@inproceedings{
Lin2024ReAlign,
title={The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning},
author={Bill Yuchen Lin and Abhilasha Ravichander and Ximing Lu and Nouha Dziri and Melanie Sclar and Khyathi Chandu and Chandra Bhagavatula and Yejin Choi},
booktitle={International Conference on Learning Representations},
year={2024},
url={https://arxiv.org/abs/2312.01552}
}