
UAV	Processing	README	
Rob	Holman	

June,	2016,	Version	2.0	
	
1.		Background:	
UAV’s	offer	a	complementary	method	to	collect	Argus-like	data	without	installing	an	
Argus	station.		In	some	ways	the	process	is	much	simpler	and	more	flexible	but	it	
comes	at	a	disadvantage	of	much	increased	book-keeping	and	case-by-case	
processing.		This	README	offers	some	guidance	and	suggestions	on	how	to	handle	
this	in	an	organized	and	predictable	way	so	that	the	data	locations	and	organization	
is	obvious	even	well	into	the	future	after	details	have	been	forgotten.		These	notes	
describe	the	algorithm	in	the	CIL	toolbox	UAVProcessing	and	the	CIL	standards	for	
data	storage	and	archiving.	
	
Note	that	this	would	be	a	good	case	for	using	a	gui,	if	someone	would	make	one.			
	
This	README	is	also	a	living	document.		Send	suggestions	to	Rob	Holman.	
	
2.		Data	Organization:	
We	elected	to	base	our	organization	on	the	long-proven	Argus	organization.		Thus,	
data	are	kept	under	/ftp/pub	with	a	station	name	taken	from	the	UAV.		For	
illustration,	we	will	use	the	case	of	Aerielle,	a	DJI	Phantom	3	quadcopter.		Folders	
under	/ftp/pub/Aerielle	contain	lens	calibration	images	and	results	as	well	as	
stationInfo,	in	this	case	the	history	of	the	UAV	and	usage	and	any	other	relevant	
details.			
	
Keeping	with	Argus	conventions,	data	are	stored	next	under	year/camera/day.		So	
for	example,	/ftp/pub/Aerielle/2015/cx/280_Oct.07	contains	derived	image	
products	(cx)	for	flights	from	October	7,	2015	including	rectified	image	products	
like	time	exposures	and	time	stacks	if	these	have	been	created.		Folder	names	can	be	
personalized	in	the	inputFile	(described	below).		Similarly,	the	routine	
argusFilename	takes	care	of	constructing	useful	filenames	and	is	included	in	the	
toolbox	in	the	folder	‘neededCILRoutines’.		If	you	don’t	have	your	own	version,	
please	move	this	from	that	folder	into	CILProcessing	(or	somewhere	on	your	path).	
	
Typically,	the	actual	data	collection	for	a	run	will	consist	of	a	snapshot	followed	by	a	
movie	of	sufficient	length	to	perform	cBathy	analysis	(hopefully	17.1	minute).		The	
snapshot	is	taken	as	a	simple	record	of	the	scene	and	also	because	it	will	be	
geotagged,	so	can	be	used	as	a	source	of	estimated	lat-long	of	the	parked	UAV.			For		
a	phantom	3	these	geotags	appear	to	be	quite	useful	(~5-10	m	accuracy)	but	for	the	
Phantom	2	they	are	truncated	at	integer	seconds	so	are	only	accurate	to	~30	m.		The	
movie	is	often	too	long	to	be	stored	as	a	single	MP4	file	so	might	be	split	into	two	
consecutive	files	automatically	by	the	Phantom.		Note	that	DJI	files	are	stored	with	
simple	names	like	DJI_0001	so	it	is	the	responsibility	of	the	user	to	manually	convert	
these	into	more	useful	names	and	store	them	in	an	appropriate	location.			
	



Because	MP4	videos	are	usually	multi-gigabyte	files,	they	would	rapidly	overwhelm	
our	online	disk	storage	capabilities	(in	the	same	sense	that	we	don’t	save	30	Hz	full-
frame	video	from	Argus	stations).		Thus	our	choice	is	that	these	are	stored	offline	on	
a	LaCie	USB	disk	under	some	obvious	structure	like	
/media/Lacie/Aerielle/bathyDuckDataCollects/100615/exampleFolder	(where	
exampleFolder	is	the	specific	folder	name	for	one	data	collection,	usually	including	
at	least	one	snap	and	one	or	more	mp4	movies).		To	access	the	individual	2	Hz	
frames	from	the	30	Hz	movie	to	do	Argus-like	analysis,	we	use	the	routine	
loadAndPartitionMovies	which	partitions	the	movie	into	2Hz	frames	using	the	
command	“every	15	soureFn	destinationFn”	where	sourceFn	and	destinationFn	are	
your	source	and	destination	filenames	(“every”	is	a	local	Perl	script	that	used	the	
mplayer	video	player	routines.		Users	are	responsible	for	breaking	out	their	own	
frames).		For	the	CIL,	we	store	frames	as	a	series	of	png’s	in	a	scratch	area,	e.g.	
/scratch/temp/Holman/Aerielle/2015/localFolderName.		This	component	of	
operations	will	vary	to	suit	the	needs	and	tools	of	each	research	group.		However,	
we	have	found	that	using	the	Argus	conventions	for	derived	products	greatly	
simplifies	our	logistics.	
	
3.		Processing	Organization:	
Data	analysis	involves	two	major	components,	reading	in	and	geolocating	each	of	
the	N	frames,	then	the	creation	of	image	products	and	the	extraction	of	pixel	time	
series	for	a	number	of	designed	pixel	instruments.		The	latter	step	is	like	Argus	
sampling.		Because	each	collect	is	different	from	the	previous,	this	requires	
specification	of	a	number	of	inputs,	described	in	the	next	section.			
	
The	analysis	uses	a	number	of	structures	to	simplify	the	variable	space.		These	
include:	

• gcp		 -	ground	control	points,	described	in	appendix	A	
• insts		 -	pixel	instruments,	described	in	appendix	B	
• inputs		 -	described	below	
• meta	 -	metadata,	built	during	analysis	and	saved	for	the	record	in	cx	

(appendix	C)	
• stack	 -	temporary	stack	data	structure.			
• Images	 -	collection	of	regular	rectified	Argus	image	products.	

	
Geo-location	requires	solving	the	image	geometry	for	each	frame.		This	is	a	too	
complicated	to	describe	in	depth	here	so	the	user	is	referred	to	texts	like	Hartley	
and	Zisserman	[2003]	or	a	soon	to	be	completed	companion	paper	that	will	be	
included	in	the	toolbox	(“Surf	Zone	Characterization	Using	a	Small	Quadcopter:	
Technical	Issues	and	Procedures”).		But	it	is	important	to	have	at	least	a	broad	
understanding	of	the	process.			
	
Solution	requires	knowing	things	about	the	physical	camera	and	lens,	called	the	
intrinsic	parameters,	and	also	things	about	the	installation,	called	the	extrinsic	
parameters.		The	intrinsic	parameters	are	found	by	lens	calibration	in	the	lab	and	



are	well	handled	by	free	toolboxes	available	on	the	web.		We	use	the	excellent	
Caltech	Lens	Calibration	software	
(http://www.vision.caltech.edu/bouguetj/calib_doc/)	with	those	results	
implemented	through	a	lens	calibration	profile	(lcp)	structure	that	is	created	by	the	
m-file	makeLCPP3.m.		You	will	need	to	modify	this	routine	with	entries	for	your	
camera.			
	
There	are	six	extrinsic	parameters,	the	x,	y,	and	z	locations	of	the	camera	and	the	
three	viewing	angles,	azimuth	(taken	here	as	the	compass-like	rotation	clockwise	
from	the	positive	y-axis),	tilt	(zero	at	nadir,	rising	to	90°	at	the	horizon),	and	roll	
(rotation	about	the	look	direction,	positive	in	the	counter-clockwise	direction	as	
viewed	from	the	camera).		If	you	know	all	of	these	parameters	accurately,	you	can	
geo-locate	object	in	images.		If	you	do	not,	you	need	to	do	a	least	squares	solution	for	
those	you	don’t	know	using	ground	control	points	(GCPs,	points	in	the	image	that	
you	know	the	world	location	of	and	can	also	locate	by	cursor	in	the	image).		Since	
each	GCP	located	by	clicking	in	the	image	provides	2	pieces	of	input	(U	and	V	
coordinate),	we	must	see	enough	GCPs	so	that	twice	that	number	exceeds	the	
number	of	unknowns.		Thus	for	six	unknowns	we	require	4	GCPs	(2*4	>	6).		In	fact,	
these	points	cannot	also	be	collinear	and	they	really	should	be	spread	across	the	
image	for	a	good	solution.		For	terrestrial	work	this	is	usually	possible,	but	for	surf	
zone	work	we	may	see	only	one	or	two	identifiable	points	on	the	shore,	near	the	
edge	of	the	field	of	view.			Thus	we	often	must	find	alternate	sources	for	these	
parameters	so	that	we	can	reduce	the	number	of	degrees	of	freedom	below	6	(and	
hopefully	remove	the	non-collinear	restriction).			
	
It	is	rare	to	find	sufficiently	accurate	information	of	the	azimuth	and	tilt	of	an	
airborne	camera	so	these	variables	almost	always	must	be	solved	for.		However	the	
camera	location	is	often	available	in	the	imagery,	for	example	by	using	exiftool	on	a	
snapshot	(usually	taken	just	before	a	video).		Latitude-longitude	information	on	a	
Phantom	3	seems	to	be	accurate	to	a	few	meters	and	is	a	good	choice.		Vertical	
position	can	be	less	accurate	(for	example,	it	is	often	expressed	relative	to	the	
takeoff	point,	rather	than	in	the	ground	coordinate	system)	but	could	be	used	if	no	
better	GCPs	are	available.		Finally,	it	is	reasonable	to	assume	for	a	good	stabilized	
gimbal	as	on	the	Phantom	3	that	roll	is	stable	and	perhaps	taken	as	equal	to	zero	
within	a	first	approximation.		Thus	it	is	possible	to	reduce	to	as	low	as	two	
unknowns	which	can	be	solved	with	just	two	GCPs	anywhere	on	the	image	(in	fact,	
the	solution	will	be	found	with	just	one	GCP,	but	not	in	a	least	squares	sense).	
	
The	choice	of	which	of	the	six	unknowns	is	taken	to	be	known	is	selected	by	the	
input	variable	inputs.knownFlags	in	which	each	element	equals	1	for	a	known	
variable	and	0	if	that	variable	is	to	be	found	by	least	squares	solution.		Thus		

	
knownFlags	=	[1	1	0	0	0	1]	
	

would	mean	that	the	x	and	y	camera	locations	and	the	roll	would	be	considered	
fixed	(supplied	values	in	the	input	file	are	used	exactly	as	supplied)	while	zCam,	



azimuth	and	tilt	(variables	3,	4,	5)	will	be	solved	for	(supplied	values	are	used	as	
seeds	for	the	nonlinear	search).				
	
While	clicking	on	GCPs	in	an	image	is	a	reasonable	approach	to	solve	for	the	
geometry	of	one	initial	image,	it	would	be	exceedingly	tedious	to	require	this	for	
every	frame	of	a	movie	where	the	viewing	angles	vary	slowly	due	to	UAV	drift.		
Instead,	we	would	prefer	to	use	control	points	that	can	be	automatically	found	in	
each	frame,	for	example	something	that	is	brighter	than	its	surroundings.		We	call	
these	reference	points	and	let	the	user	identify	a	number	of	these	in	the	
initialization	process.		This	process	is	described	below.	
	
3.1		User	Inputs:	
The	following	are	the	required	inputs	for	an	analysis.		This	example	file	is	from	a	test	
work	case	and	has	pathnames	that	are	appropriate	for	CIL	conventions	rather	than	
some	of	the	demo	inputs	in	the	toolbox.	
	

%	Demo	input	file	for	UAV	processing.	
%	The	user	is	responsible	for	correcting	content	for	each	new	analysis	
	
%	1.		paths,	names	and	time	stamp	info:	
inputs.stationStr	=	'Aerielle';			
inputs.dateVect	=	[2015	10	08	10+4	57	0];							%	date/time	of	first	frame	
inputs.dt	=	0.5/(24*3600);											%	delta	t	(s)	converted	to	datenums	
inputs.frameFn	=	'201510081057AzMovie';												%	root	of	frames	folder	
name	
inputs.gcpFn	=	'/ftp/pub/Aerielle/2015/cx/281_Oct.08/gcp20151008.mat';	
inputs.instsFn	=	
'/home/holman/ruby/research/UAVTesting/bathyDuck2015/makeInstsSho
rtRuns';												%	instrument	m-file	location	

	
%	2.		Geometry	solution	Inputs:	
%	The	six	extrinsic	variables,	the	camera	location	and	viewing	angles	
%	in	the	order	[	xCam	yCam	zCam	Azimuth	Tilt	Roll].	
%	Some	may	be	known	and	some	unknown.		Enter	1	in	knownFlags	for	
known	
%	variable.		For	example,	knownFlags	=	[1	1	0	0	0	1]	means	that	camX	and	
%	camY	and	roll	are	known	so	should	not	be	solved	for.			
%	Enter	values	for	all	parameters	below.		If	the	variable	is	known,	the	
%	routine	will	use	this	data.		If	not,	this	will	be	the	seed	for	the	
%	nonlinear	search.	
inputs.knownFlags	=	[0	0	0	0	0	1];	
lat	=	dms2degrees([36	10	54.36]);											%	data	from	exiftool.	
long	=	dms2degrees([-75	44	56.60]);									
[x,y]	=	ll2Argus('argus02b',lat,long);						%	convert	to	local	coords	
inputs.xyCam	=	[x	y];	
inputs.zCam	=	64;													%	based	on	last	data	run																	



inputs.azTilt	=	[0	70]	/	180*pi;										%	first	guess	
inputs.roll	=	0	/	180*pi;		
	
%	3.		GCP	info	
%	the	length	of	gcpList	and	value	of	nRefs	must	be	>=	length(beta0)/2	
inputs.gcpList	=	[11	12	32	28];						%	use	these	gcps	for	init	beta	soln	
inputs.nRefs	=	4;																				%	number	of	ref	points	for	stabilization	
inputs.zRefs	=	7;																				%	assumed	z	level	of	ref	points	
	
%	4.		Processing	parameters	
inputs.doImageProducts	=	1;																				%	usually	1.	
inputs.showFoundRefPoints	=	0;																	%	to	display	ref	points	as	check	
inputs.rectxy	=	[50	0.5	500	400	0.5	1000];					%	rectification	specs	
inputs.rectz	=	0;																														%	rectification	z-level	
	
%	residual	calculations	-	NO	USER	INPUT	HERE	
inputs	=	makeUAVPn(inputs);													%	make	the	path	to	find	init-file	
inputs.dn0	=	datenum(inputs.dateVect);	
bs	=	[inputs.xyCam	inputs.zCam	inputs.azTilt	inputs.roll];		%	fullvector	
inputs.beta0	=	bs(find(~inputs.knownFlags));	
inputs.knowns	=	bs(find(inputs.knownFlags));	

	
	
The	inputs	are	in	four	categories.	
1.		Paths,	names	and	time	stamps.		StationStr	is	the	name	of	the	particular	UAV	while	
dateVect	is	a	1x6	vector	of	[yyyy	mm	dd	hh	mm	ss]	where	the	hour	is	forced	to	GMT	
(in	this	example	from	Duck,	NC,	during	summer,	this	is	a	4	hour	correction),	
consistent	with	Argus	standards	of	recording	times	in	GMT	(an	option	you	may	not	
want	to	use).		dt	is	the	frame	sampling	interval	(1/2	second	here,	expressed	as	a	
matlab	datenum).		FrameFn	is	the	filename	of	the	folder	in	which	the	individual	
frames	are	stored.		Our	current	standard	is	to	append	the	numbers	1	or	2	to	this	
root	to	specify	the	first	and	second	half	of	split	MP4	movies.	The	user	must	also	
specify	gcpFn,	a	gcp	file,	and	instsFn,	a	file	creating	the	pixel	instruments.		Examples	
are	included	in	Appendices	A	and	B.			
	
2.		Geometry	solution	inputs.		This	section	defines	which	of	the	six	extrinsic	camera	
parameters	[xCam	yCam	zCam	azimuth	tilt	roll]	are	known	a	priori	and	defines	
those	values	as	well	as	initial	guesses	at	the	unknown	parameters.		In	this	case	
xyCam	is	defined	using	lat-long	measurments	from	exiftool	of	the	snapshot.		These	
are	then	converted	to	Argus	coordinates	using	ll2Argus	(you	will	need	an	alternate	
routine).		For	this	case,	only	the	roll	is	assumed	to	be	known	(set	to	value	0°).		The	
other	variables	are	just	initial	values	for	the	nonlinear	search.		In	this	case	I	have	
guessed	that	the	azimuth	and	tilt	are	0°	(looking	along	the	+y	axis)	and	70°	(20°	
below	horizontal).		All	angles	must	be	converted	to	radians	(hence	the	/180*pi).		
	



3.		GCP	Info.		This	section	would	be	better	handled	by	a	gui,	if	someone	wanted	to	
build	one.		As	it	is,	you	need	to	look	at	the	first	frame	(or	an	equivalent	snapshot)	
independently	and	decide	which	GCPs	you	can	see.	The	vector	gcpList	refers	to	the	
selected	GCPs	by	their	number	in	the	gcp	structure.		In	this	case	I	am	using	four	
GCPs	(so	I	can	solve	for	all	six	geometry	variables	if	I	want).		The	user	must	also	
identify	a	number	of	reference	points	that	he	will	establish	in	the	initialization	
process.		Reference	points	are	just	virtual	GCPs	whose	effective	location	is	found	by	
finding	their	image	location	then	converting	to	an	equivalent	xyz	location	assuming	
the	vertical	location	is	defined	by	the	variable	zRefs.		In	this	example	I	use	a	vertical	
level	of	7	m,	roughly	the	height	of	the	pier	and	dune.		Results	are	insensitive	to	this	
choice	(as	long	as	it	is	closer	to	the	correct	ground	location	that	it	is	to	the	zCam).	
	
4.		Processing	Parameters.		This	section	allows	you	to	choose	to	do	image	products	
(timex,	brightest	and	darkest)	and	whether	to	show	how	well	the	reference	point	
identification	is	working	(for	possible	debugging).		It	also	defines	the	rectification	
box	in	x	and	y	(rectxy	=	[xmin	dx	xmax	ymin	dy	ymax])	and	the	vertical	level	for	
rectification	(usually	mean	sea	level).			
	
The	final	input	group	requires	no	user	input,	with	one	exception.		makeUAVPn	is	a	
routine	that	creates	standard	path	and	folder	names	for	CIL	processing	standards.		
These	include	1)	dayFn	(an	Argus	standard	day	filename,	for	example	‘274_Oct.01’	
where	all	cx	data	for	that	day	will	be	stored),	2)	pnIn,	the	pathname	for	the	input	
png	image	frames	(the	folder	in	which	frameFn	resides),	and	3)	pncx,	the	standard	
CIL	pathname	for	storing	cx	results.		The	names	you	wish	to	use	will	likely	be	
different	from	our	default	names	so	you	may	need	to	modify	these	routines.			
	
3.1	Initialization	
Prior	to	bulk	processing,	several	initialization	steps	are	required.		First,	the	input	
structure	must	be	initialized,	for	example	by	calling	the	m-file	demoInputFile.m.		At	
present	the	name	of	this	routine	is	hardcoded	into	the	sampling	program	on	line	14	
but	this	could	be	deleted	and	the	input	file	name	called	before	calling	the	sampling	
program.		The	routine	then	creates	the	cx	output	directory	(if	not	already	existing),	
initializes	the	instruments,	creates	the	stack	structure	and	finds	all	of	the	frames.			
	
3.2	First	Frame	Processing	
If	this	is	the	first	time	processing	this	video	(i.e.	there	is	no	pre-existing	metadata	
file	in	cx),	initialization	is	done	by	the	routine	initUAVAnalysis.		The	first	step	is	to	
show	the	image	and	digitize	the	selected	gcps	(input.gcpList)	to	solve	for	the	
geometry	of	the	first	frame.		Figure	1	shows	the	demo	example	with	a	good	fit	
(comparing	clicked	green	symbols	to	red	best	fit	locations).			
	
The	second	step	is	to	identify	a	number	of	visual	reference	points	that	can	used	to	
correct	wander	in	the	view	of	subsequent	frames.		GCPs	are	often	very	small	(e.g.	the	
first	gcp	in	the	demo	list	which	is	a	tiny	white	dot),	so	are	not	appropriate	for	
automated	recognition.		Instead	the	user	should	identify	a	number	of	features	in	the	
image	that	are	brighter	than	their	surroundings	(darker	reference	points	could	also	



be	implemented	later).		The	number	of	points	is	specified	in	inputs	and	for	a	6	dof	
solution	should	be	at	least	4	(although	I	believe	that	3	is	possible?).		For	each	
reference	point	the	user	specifies	a	small	box	surrounding	the	feature	by	clicking	a	
top-left	then	a	bottom-right	location	(see	example	white	square	in	Figure	1).		A	new	
window	then	shows	the	selected	region	in	false	color	(left	panel,	Figure	2)	so	that	
the	user	can	specify	an	intensity	level	that	will	separate	the	bright	target	from	the	
background,	in	this	case	210	works	well.		The	right	panel	then	shows	the	
thresholded	version,	in	this	case	showing	only	the	white	parts	of	the	target.		A	white	
symbol	shows	the	center	of	mass	(COM)	of	the	selected	area	and	is	used	as	the	
center	location	of	the	reference	point.			
	

	
Figure	1.		First	frame	of	demo	video	showing	the	identified	gcps	(green	asterisks	
show	the	five	locations	clicked	by	the	user	–	gcps	[1	2	3	6	7]	in	inputs.gcpList)	and	
the	best	fit	locations	from	the	fit	(red	circles).		The	first	gcp	(seaward	on	the	pier)	is	
a	tiny	white	point	that	is	hard	to	see.		The	white	square	surrounding	the	bottom	gcp	
indicates	the	selected	sampling	region	for	the	automatic	reference	point	search	for	
this	target	(Figure	2).	
	
NOTES	–	it	is	not	important	that	the	thresholded	shape	looks	symmetric	like	this	
case,	only	that	the	chosen	threshold	isolates	some	feature	repeatedly,	for	example	
not	including	occasional	bits	of	bright	surrounding	background.		Also,	the	first	
reference	point	should	be	chosen	as	the	one	that	is	best	isolated	from	background	
clutter	and	it	should	have	a	border	that	is	large	enough	to	allow	for	expected	inter-
frame	movement.		In	this	case,	the	bottom	left	gcp	happens	to	be	a	very	identifiable	
target,	but	it	could	be	any	white	feature,	usually	not	a	measured	control	point.		The	



algorithm	first	looks	for	the	new	location	(COM,	or	Center	Of	Mass)	of	the	first	
reference	point,	then	adjusts	its	search	for	the	other	points	based	on	the	first	point	
displacement.		Thus,	other	reference	points	can	(and	probably	should)	have	much	
smaller	bounding	boxes.		For	example,	I	used	the	inner	two	gcps	on	the	pier	but	had	
to	keep	the	bounding	boxes	small	to	avoid	including	background	white	breakers.		
The	white	sign	at	x	=	3400,	y	=	1850	would	also	be	a	good	target.		Reference	points	
have	virtual	world	locations	assigned	to	them	based	on	the	inputs.zRefs	vertical	
value	and	are	subsequently	treated	as	recognizable	gcps.		Note	that	the	reference	
points	should	not	lie	along	a	single	line	(a	problem	often	for	beaches)	unless	the	roll	
and/or	camera	position	are	declared	known.		The	user	should	also	be	careful	to	not	
choose	a	reference	point	that	might	drift	out	of	view	due	to	aircraft	drift.	
	

	
	
Figure	2.		Left)	False	color	blow	up	of	the	reference	point	selected	in	Figure	1	as	the	
white	box.		Right)		Thresholded	version	of	the	left	panel.		The	small	white	symbol	
shows	the	center	of	mass	of	the	selected	pixels,	a	very	accurate	measure	of	the	
features	location	that	is	used	for	automatic	co-registration	of	later	images.	
	
The	final	step	of	the	initialization	phase	is	to	fill	in	the	pixels	of	the	pixels	
instruments	and	display	them	in	a	figure	as	a	final	check	that	the	collection	has	
come	out	the	way	that	the	user	had	hoped	(Figure	3).		If	this	is	not	true	the	user	
should	terminate	with	a	control-C	and	adjust	accordingly.		At	this	point,	the	initial	
metadata	file	is	saved	to	disk.	
	
3.3	Analysis	of	Remaining	Frames	
Analysis	of	the	remaining	frames	is	straight-forward.		Each	frame	is	read	in	and,	if	
there	is	no	prior	geometry	from	a	previous	analysis	(no	pre-existing	meta	data	file	
was	found),	a	new	geometry	is	found	using	routine	findNewBeta.		This	automatically	
finds	the	reference	points	and	solves	for	the	new	geometry,	storing	the	result	in	a	



matrix	called	betas.		It	then	samples	the	pixel	instruments	for	this	frame	using	the	
routine	sampleDJIFrame.		If	image	products	(timex,	etc)	have	been	requested	in	the	
inputs,	it	then	collects	that	data	using	buildRectProducts.			
	
3.4	Closing	Out	the	Analysis	
Data	analysis	finishes	when	either	all	the	frames	have	been	analyzed	or	when	the	
findNewBeta	is	no	longer	able	to	find	the	first	reference	point	(usually	because	the	
operator	turned	the	UAV	to	head	for	home	but	left	the	video	running).		At	that	point	
the	final	image	products	are	made	by	routine	makeFinalImages	and	data	are	
organized	to	save	in	the	cx	directory.		All	important	inputs	are	stored	in	a	metadata	
file	using	standard	Argus	naming	conventions.		Note	that	since	the	geometries	
(betas)	are	saved,	new	pixel	tool	analysis	can	be	done	subsequently	using	much	less	
CPU	time,	if	new	instruments	are	desired.		This	is	done	by	changing	the	content	of	
the	instrument	file	then	rerunning	the	sample	program.	
	
Time	stack	data	are	then	saved	in	cx,	again	using	standard	Argus	names	including	
the	instrument	name	selected	by	the	user,	for	example	vBar150.		These	can	be	
plotted	in	standard	ways,	for	example,		

imagesc(stack.xyzAll(:,1),	stack.dn,	stack.data).	
Figure	4	shows	an	example	runup	time	stack,	figure	5	shows	a	vBar	time	stack.	
	
	

	
Figure	3.		Sampling	array	for	demo	data.		The	five	alongshore-oriented	lines	are	the	
vBar	arrays	while	the	two	cross-shore	lines	are	for	runup.		The	regular	matrix	is	for	
cBathy.		The	short	cross-shore	line	by	the	pier	is	designed	to	sample	a	pier	leg	so	



that	residual	vertical	motion	of	the	stabilized	images	can	be	detected	(there	is	a	
similar	alongshore	line	offshore	that	is	less	clear).	
	

	
Figure	4.		Example	runup	time	stack	for	y	=	600	for	the	demo	run.			
	

	
Figure	5.		Example	vBar	stack	for	x	=	175	for	the	demo	run.		Currents	obviously	flow	
north	(down	left)	on	the	north	side	of	the	pier	and	to	the	south	(down	right)	on	the	
south	of	the	pier.	
	
Image	products	are	saved	as	png’s	in	cx	using	standard	naming	conventions	and	in	
matlab	format	using	the	routine	‘printAndSaveImageProducts’.		Matlab	versions	are	



saved	in	files	with	the	image	type	‘imageProducts.mat’.		These	can	be	loaded	and	
shown	using,	for	example	for	Figure	6,	
	 Imagesc(finalImages.x,	finalImages.y,	finalImages.timex)	
	

	
Figure	6.		Rectified	time	exposure	for	the	10/01/15	demo	data	run.			
	
4		Implementation	Details	
The	toolbox	is	called	UAVProcessing	and	includes	a	Contents.m	file	that	describes	all	
of	the	routines	(‘help	UAVProcessingCodes’).		The	toolbox	includes	a	demo	data	set	
and	all	routines	are	already	set	up	to	allow	automatic	processing	of	this	400	frame	
demo	case	(in	local	folder	demoMovies)	by	typing	‘sampleAerielleVideoDemo’	while	
in	the	toolbox.		Due	to	the	size	of	the	demo	images	(>	1GB)	they	are	not	managed	
using	SVN	but	are	available	from		
http://cil-www.coas.oregonstate.edu/UAVdemoMovies.zip.		This	zip	file	should	be	
unpacked	in	the	toolbox	directory,	creating	a	demoMovies	directory.			
	
Some	routines	are	listed	in	the	help	as	being	‘CIL	routines’	that	are	called	and	are	
located	in	a	folder	called	neededCILRoutines.		If	you	don’t	have	CIL	routines	set	up,	
you	should	either	add	this	folder	to	your	path	or	just	copy	the	routines	to	the	
UAVProcessingCodes	folder.			
	
When	you	run	the	demo,	you	will	have	to	click	on	the	gcps	shown	in	Figure	1,	going	
from	seaward	to	shoreward	on	the	pier,	then	on	the	south	(right),	then	north	(left),	
checkerboard	targets	on	the	dune	crest.		All	targets	are	checkerboards,	but	the	



seaward	one	is	REALLY	hard	to	see	(it	is	just	a	tiny	white	dot).		In	choosing	the	
reference	points,	chose	a	dune	target	as	the	first	point	with	a	box	size	similar	to	that	
shown	in	Figure	1.		Of	the	four	reference	points,	you	can	choose	three	points	on	the	
dune	but	at	least	one	must	not	be	in	line	with	the	others	(on	the	pier	is	the	obvious	
choice).		Click	a	small	surrounding	box	so	there	is	no	chance	of	getting	background	
breakers	in	the	target	search.		Figure	2	in	your	display	will	show	the	video	frame	by	
frame	along	with	the	found	reference	points	(red)	and	geometry	solution	(black	
circles).		This	will	allow	you	to	determine	if	the	tracking	gets	confused.		If	you	want	
to	see	the	reference	point	windows,	set	inputs.showFoundRefPoints	to	1	and	they	
will	be	displayed	in	figure	window	11,	12	….	
	
You	can	change	the	instruments	as	much	as	you	want.	
	
If	you	run	the	analysis,	results	will	be	stored	in	a	default	output	directory,	
determined	by	the	contents	of	makeUAVPn	(set	by	default	to	
demoMovies/demoOutput).		The	default	is	ONLY	for	demonstration	and	should	not	
be	used	for	real	analysis	(set	up	a	good	output	strategy	like	the	one	discussed	above	
and	in	commented	text	in	this	routine).		Note	that	once	you	have	run	the	demo	once,	
the	default	output	folder	will	contain	the	results	including	the	meta	data	file.		Thus	if	
a	second	person	tries	the	demo,	the	program	will	find	the	meta	data	file	and	assume	
that	you	don’t	want	to	redo	geometries.		Delete	files	in	the	output	directory	to	give	a	
second	person	a	fresh	analysis.		Look	in	the	output	directory	for	all	of	your	output.	
	
argusFilename	(in	neededCILRoutines)	usually	looks	to	the	argus	database	for	
information.		The	version	here	has	those	references	removed	so	times	will	be	
whatever	you	want	but	will	say	GMT.		You	will	receive	a	warning	occasionally	that	
the	station	name	was	not	found	in	the	toolbox	so	the	GMT	time	zone	will	be	
assumed.		Ignore	this.	
	
‘every’	is	a	perl	script	to	break	out	frames.		It	is	included	but	likely	won’t	work.		You	
are	responsible	for	breaking	out	your	own	frames.	
	
Exiftool	is	a	free	tool	that	is	available	on	the	web	or	is	commonly	part	of	standard	
computer	software.		It	provides,	among	other	things,	the	GPS	and	vertical	location	of	
the	camera	for	images	(not	for	all	cameras)	that	can	be	used	for	geometry	solutions.		
The	same	info	may	be	available	from	iminfo	in	matlab	or	in	image	library	packages	
like	Portfolio.		Values	must	be	accurate	to	fractions	of	a	second	in	latitude	and	
longitude	to	be	useful.	
	
	
	
	
	
	 	



Appendix	A:	example	gcp	file	content.	
This	is	a	.mat	file	with	a	vector	of	gcp	structure	having	the	following	fields,	
illustrated	by	the	example	below.			

gcp(3)	=		
	
					num:	3	
				name:	'pier3'	
							x:	120.4070	
							y:	516.6788	
							z:	7.4230	

	
gcp’s	are	referred	to	by	their	numbers.		This	file	must	be	created	from	a	current	
survey,	usually	using	an	m-file	specific	to	the	purpose.		Users	must	know	where	each	
gcp	will	show	up	(or	not)	in	an	image	frame.			
	
	 	



Appendix	B:	Example	Instrument	Design	m-file	
	
Pixel	instruments	are	designed	in	a	simple	m-file,	using	xyz	space.		Below	is	an	
example.		Instruments	are	currently	of	type	line	(contiguous,	for	example	a	vbar	
line)	or	matrix	(an	array	of	non-contiguous	pixels,	for	example	like	cBathy).	
Instruments	have	fields		

- type	
- xyz	
- name	
- shortName	
- x	
- y	
- z	
- xyzAll	

Type	is	‘line’	or	‘matrix’.		Name	and	shortName	are	up	to	the	user	by	we	use	a	
standard	set	of	CIL	names,	for	example	vBar125	means	an	alongshore	oriented	vBar	
array	located	at	x	=	125	m.		runup600	is	a	cross-shore	line	of	pixels	at	y	=	600,	and	
mBW	is	a	cBathy	array	(for	historical	reasons,	dating	from	the	BeachWizard	days).		
Line	instruments	are	specified	by	their	two	xyz	end	points.		In	this	case,	the	x,	y,	and	
z	fields	are	unused.		A	matrix	is	specified	by	those	x	and	y	fields	[xmin	dx	xmax]	and	
[ymin	dy	ymax]	while	the	z	field	specifies	a	scalar	sea	level	to	sample	at.		For	a	
matrix,	the	xyz	field	is	unused.		The	last	two	instruments	below	are	simply	a	cross-
shore	and	alongshore	slice	through	a	known	edge	(of	the	pier)	to	test	the	stability	of	
a	fixed	object	after	image	stabilization.	
	

function	insts	=	makeDJIInsts201510011529	
%			insts	=	makeDJIInsts	
%	
%	creates	pixel	instruments	for	DJI	video.		Types	can	be	line	or	matrix	
	
cnt	=	1;	
	
%	vBar	instruments	
y	=	[450	700];	
x	=	[125:	25:	225];	
z	=	0;	
for	i	=	1:	length(x)	
				insts(cnt).type	=	'line';	
				insts(cnt).xyz	=	[x(i)	y(1)	z;	x(i)	y(2)	z];	
				eval(['insts(cnt).name	=	''vBar'	num2str(x(i))	''';']);	
				eval(['insts(cnt).shortName	=	''vBar'	num2str(x(i))	''';']);	
				cnt	=	cnt+1;	
end	
	
%	some	runup	lines	
x	=	[70	125];	



y	=	[600:50:650];	
z	=	0;	
for	i	=	1:	length(y)	
				insts(cnt).type	=	'line';	
				insts(cnt).xyz	=	[x(1)	y(i)	z;	x(2)	y(i)	z];	
				eval(['insts(cnt).name	=	''runup'	num2str(y(i))	''';']);	
				eval(['insts(cnt).shortName	=	''runup'	num2str(y(i))	''';']);	
				cnt	=	cnt+1;	
end	
	
%	cBathy	array	
x	=	[80	5	400];			%	determine	sample	region	and	spacing	
y	=	[450	5	900];				%	format	is	[min	del	max]	
z	=	0;	
insts(cnt).type	=	'matrix';	
insts(cnt).name	=	'cBathyArray';	
insts(cnt).shortName	=	'mBW';	
insts(cnt).x	=	x;	
insts(cnt).y	=	y;	
insts(cnt).z	=	z;	
cnt	=	cnt+1;	
	
%	make	some	slices	to	check	stability	
insts(cnt).type	=	'line';	
insts(cnt).xyz	=	[300	540	7;	300	500	7];	
insts(cnt).name	=	'x	=	300	pier	transect';	
insts(cnt).shortName	=	'x300Slice';	
cnt	=	cnt+1;	
	
insts(cnt).type	=	'line';	
insts(cnt).xyz	=	[100	520	3;	115	520	3];	
insts(cnt).name	=	'y	=	520	Piling	x-transect';	
insts(cnt).shortName	=	'y517Slice';	
	

	
	
Hartley,	R.,	and	A.	Zisserman	(2003),	Multiple	view	geometry	in	computer	vision,	
second	ed.,	665	pp.,	Cambridge	University	Press.	
	
	


