-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·242 lines (220 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 12 14:10:21 2020
@author: af1tang
"""
import torch, os, pickle
import numpy as np
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from transformers import AdamW, get_linear_schedule_with_warmup
from load_configs import model, tokenizer, stats, opts, device, create_dir, p1_tok, p2_tok, start_tok
from utils import *
## model saving ##
def checkpoint(model, tokenizer, optimizer, scheduler, stats):
create_dir(opts.output_dir)
model.save_pretrained(opts.output_dir)
tokenizer.save_pretrained(opts.output_dir)
torch.save(opts, os.path.join(opts.output_dir, "training_opts.bin"))
torch.save(optimizer.state_dict(), os.path.join(opts.output_dir, 'optimizer.pt'))
torch.save(scheduler.state_dict(), os.path.join(opts.output_dir, 'scheduler.pt'))
with open(os.path.join(opts.output_dir, 'stats.pkl'), 'wb') as f: pickle.dump(stats,f)
## Training Pipeline ##
def train_loop(data, model, tokenizer, stats=None):
inps = [[start_tok] for i in range(len(data))]#[data[i]['inp'] for i in range(len(data))]
convos = [data[i]['inp'] + data[i]['labels'] for i in range(len(data))]
P1 = [ [p1_tok] + tokenizer.encode("person 1: ") + flatten(data[i]['p_src']) + [tokenizer.sep_token_id] for i in range(len(data))]
P2 = [ [p2_tok] + tokenizer.encode("person 2: ") + flatten(data[i]['p_trg']) + [tokenizer.sep_token_id] for i in range(len(data))]
databunch = list(zip(inps,convos, P1, P2))
train_dataset = ConvDataset(databunch)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=opts.batch_size,
collate_fn=collate_tuple, drop_last=True)
del inps, convos, P1, P2, databunch
# calculate total steps
if opts.max_steps > 0:
t_total = opts.max_steps
opts.num_train_epochs = opts.max_steps // (len(train_dataloader) // opts.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // opts.gradient_accumulation_steps * opts.num_train_epochs
## set up optimizers and schedulers ##
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": opts.weight_decay},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0} ]
optimizer = AdamW(optimizer_grouped_parameters, lr=opts.lr, eps=opts.eps)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=opts.warmup_steps,
num_training_steps=t_total)
# loading optimizer settings
if (opts.model_name_or_path and os.path.isfile(os.path.join(opts.model_name_or_path, "optimizer.pt"))
and os.path.isfile(os.path.join(opts.model_name_or_path, "scheduler.pt")) ):
# load optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(opts.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(opts.model_name_or_path, "scheduler.pt")))
if opts.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=opts.fp16_opt_level)
if stats is not None:
global_step = len(stats)
epochs_trained = global_step // (len(train_dataloader) // opts.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // opts.gradient_accumulation_steps)
print("Resuming Training ... ")
else:
print("New Training ... ")
stats = {}
global_step, epochs_trained, steps_trained_in_current_epoch = 0,0,0
## start training ##
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
print("Re-sizing model ... ")
model.resize_token_embeddings(len(tokenizer))
for epoch in range(epochs_trained, opts.num_train_epochs):
data_iter = iter(train_dataloader)
for step in range(len(train_dataloader)):
# skip previous steps if re-training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
# process batch
batch = data_iter.next()
if opts.use_token_ids:
inp, labels, p1, p2, m_x, m_y, m_p1, m_p2, px, py, pp1, pp2, tx, ty, tp1, tp2 = map(to_var,batch ); del batch
else:
inp, labels, p1, p2, m_x, m_y, m_p1, m_p2, px, py, pp1, pp2 = map(to_var,batch ); del batch
tx, ty, tp1, tp2 = None,None,None,None
ctx = torch.cat([p1,p2, inp], dim=-1); del p1,p2,inp # context = p1 | p2 | x
p_ctx = torch.cat([pp1,pp2, px], dim=-1); del pp1,pp2,px # positional id's of context
m_ctx = torch.cat([m_p1, m_p2, m_x], dim=-1); del m_p1,m_p2, m_x # attention masks of context
m_full = torch.cat([m_ctx, m_y], dim=-1) # concat masks into 1 attention mask
if tx is not None:
t_ctx = torch.cat([tp1, tp2, tx], dim=-1); del tp1, tp2, tx # token id's of context
# forward pass #
model.train()
# forward through history (obtain "past" contextual states)
# (k,v) x bs x heads x t x dim
if opts.use_token_ids:
_, past = model(ctx, attention_mask=m_ctx, position_ids = p_ctx, token_type_ids = t_ctx); del _, m_ctx
outp = model(labels, attention_mask=m_full, position_ids = py, token_type_ids = ty,
past=past, labels=labels)
else:
_, past = model(ctx, attention_mask=m_ctx, position_ids = p_ctx); del _, m_ctx
outp = model(labels, attention_mask=m_full, position_ids = py,
past=past, labels=labels)
# forward through prediction
# (loss), lm_logits, presents, (all hidden_states), (attentions)
loss = outp[0]; del outp
if opts.gradient_accumulation_steps > 1:
loss = loss / opts.gradient_accumulation_steps
# backward
if opts.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
# gradient accumulation
if (step+1) % opts.gradient_accumulation_steps == 0:
if opts.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), opts.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), opts.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# reporting
if global_step % opts.logging_steps ==0:
stats[global_step] = {'loss': (tr_loss - logging_loss) / opts.logging_steps,
'lr': scheduler.get_last_lr()[0]}
logging_loss = tr_loss
print('Epoch: %d | Iter: %d | loss: %.3f | lr: %s ' %(
epoch, global_step, stats[global_step]['loss'], str(stats[global_step]['lr'])) )
if global_step % opts.save_steps==0:
print("Saving stuff ... ")
checkpoint(model, tokenizer, optimizer, scheduler, stats)
plot_losses(stats, title='loss' )
plot_losses(stats, title='lr')
print("Done.")
return stats
def evaluate_loop(data, model, tokenizer, mode='PM-GPT'):
# prepare validation dataloader
if mode == 'PM-GPT':
inps = [[start_tok] for i in range(len(data))] #[data[i]['inp'] for i in range(len(data))]
convos = [data[i]['inp'] + data[i]['labels'] for i in range(len(data))]
P1 = [ [p1_tok] + tokenizer.encode("person 1: ") + flatten(data[i]['p_src']) + [tokenizer.sep_token_id] for i in range(len(data))]
P2 = [ [p2_tok] + tokenizer.encode("person 2: ") + flatten(data[i]['p_trg']) + [tokenizer.sep_token_id] for i in range(len(data))]
else:
inps = [data[i]['inp'] for i in range(len(data))]
convos = [data[i]['labels'] for i in range(len(data))]
P1 = [ tokenizer.encode("person 1: ") + flatten(data[i]['p_src']) for i in range(len(data))]
P2 = [ tokenizer.encode("person 2: ") + flatten(data[i]['p_trg']) for i in range(len(data))]
databunch = list(zip(inps,convos, P1, P2))
val_dataset = ConvDataset(databunch)
val_sampler = SequentialSampler(val_dataset)
val_dataloader = DataLoader(val_dataset, sampler=val_sampler, batch_size=opts.batch_size,
collate_fn=collate_tuple, drop_last=True)
del inps, convos, P1, P2, data
data_iter = iter(val_dataloader)
# evaluation loop
print("Validating ... ")
with torch.no_grad():
eval_stats, total_steps, val_loss, val_f1_score = {}, 0, 0.0, 0.0
model.resize_token_embeddings(len(tokenizer))
model.eval()
for step in range(len(val_dataloader)):
# process batch
batch = data_iter.next()
if opts.use_token_ids:
inp, labels, p1, p2, m_x, m_y, m_p1, m_p2, px, py, pp1, pp2, tx, ty, tp1, tp2 = map(to_var,batch ); del batch
else:
inp, labels, p1, p2, m_x, m_y, m_p1, m_p2, px, py, pp1, pp2 = map(to_var,batch ); del batch
tx, ty, tp1, tp2 = None,None,None,None
ctx = torch.cat([p1,p2, inp], dim=-1) # context = p1 | p2 | x
p_ctx = torch.cat([pp1,pp2, px], dim=-1) # positional id's of context
m_ctx = torch.cat([m_p1, m_p2, m_x], dim=-1) # attention masks of context
m_full = torch.cat([m_ctx, m_y], dim=-1) # concat masks into 1 attention mask
if tx is not None:
t_ctx = torch.cat([tp1, tp2, tx], dim=-1) # token id's of context
# forward pass #
if opts.use_token_ids:
_, past = model(ctx, attention_mask=m_ctx, position_ids = p_ctx, token_type_ids = t_ctx); del _, m_ctx
outp = model(labels, attention_mask=m_full, position_ids = py, token_type_ids = ty,
past=past, labels=labels)
elif mode != 'PM-GPT':
_, past = model(inp)
outp = model(labels, past=past, labels=labels)
else:
_, past = model(ctx, attention_mask=m_ctx, position_ids = p_ctx); del _, m_ctx
outp = model(labels, attention_mask=m_full, position_ids = py,
past=past, labels=labels)
# forward through prediction
loss = outp[0]
# f1 score calc
#ytrue = to_data(labels[..., 1:].contiguous().view(-1))
ytrue=np.array( filter_turn_indices(to_data(labels[...,1:].contiguous().view(-1)) ) )
#ypred = to_data(outp[1][..., :,:].contiguous().topk(1)[1].view(-1))
ypred=np.array( filter_turn_indices(to_data( outp[1][..., :-1, :].contiguous().topk(1)[1].view(-1)) ) )
min_len = min(len(ypred), len(ytrue))
hits = [set(ypred[i]).intersection(set(ytrue[i])) for i in range(min_len)]#set(ytrue).intersection(set(ypred))
prec = [len(hits[i])/len(ypred[i]) for i in range(min_len)]
rec = [len(hits[i])/len(ytrue[i]) for i in range(min_len)]
f1 = np.mean([2*(prec[i]*rec[i])/(prec[i] + rec[i]+1e-3) for i in range(min_len)])
val_f1_score += f1
val_loss += loss.mean().item()
total_steps +=1
if total_steps%20 ==0: print(total_steps)
val_loss = val_loss / total_steps
val_f1_score = val_f1_score / total_steps
perplexity = torch.exp(torch.tensor(val_loss)).item()
eval_stats = {'perplexity': perplexity, 'loss': val_loss, 'f1': val_f1_score}
print("Done.")
return eval_stats
if __name__ == '__main__':
with open(opts.raw_data_path, 'rb') as f: data = pickle.load(f)
stats = train_loop(data, model, tokenizer, stats)
with open(opts.val_data_path, 'rb') as f: data = pickle.load(f)
eval_stats = evaluate_loop(data, model, tokenizer)