
Required material

Read Promoting Open Science Through Research Data
Management, (Borghi and Van Gulick 2022)
Read Transparent and reproducible social science research,
Chapter 10 “Data Sharing”, (Christensen, Freese, and Miguel
2019)
Read Datasheets for datasets, (Gebru et al. 2021)
Read Data and its (dis)contents: A survey of dataset
development and use in machine learning research, (Paullada
et al. 2021)

Key concepts and skills

The FAIR principles provide the foundation from which we
consider data sharing and storage. These specify that data
should be findable, accessible, interoperable, and reusable.
The most important step is the first one, and that is to get the
data off our local computer, and to then make it accessible by
others. A"er that, we build documentation, and datasheets, to
make it easier for others to understand and use it. Finally, we
ideally enable access without our involvement.
At the same time as wanting to share our datasets are widely
as possible, we must respect those whose information are
contained in them. This means, for instance, protecting, to a
reasonable extent, and informed by costs and benefits,
personally identifying information through selective
disclosure, hashing, data simulation, and differential privacy.
Finally, as our data get larger, approaches that were viable
when they were smaller start to break down. We need to
consider efficiency with regard to our data, and explore other
approaches, formats, and languages.

Key packages and functions

Base R

12 Store and shareTelling
Stories
with
Data

Preface

About
the
author

Foundations

1
Telling
stories
with
data

2
Drinking
from a
fire
hose

3 R
essentials

4
Reproducible
workflows

Communication

5
Writing
research

6 Static
communication

7 Interactive
communication

Acquisition

8 Farm

!

Table of
contents

Introduction

Plan

Share
data

Data
documentation

Personally
identifying
information

Data
efficiency

Exercises
and
tutorial

! Edit this
page

%%—“modulo”

arrow (Richardson et al. 2022)
read_parquet()
write_parquet()

openssl (Ooms 2021)
md5()
sha512()

tictoc (Izrailev 2014)
tic()
toc()

12.1 Introduction

A"er we have put together a dataset it is important to store it
appropriately and enable easy retrieval both for ourselves and
others. Wicherts, Bakker, and Molenaar (2011) found that a
reluctance to share data was associated with research papers that
had weaker evidence and more potential errors. While it is
certainly possible to be especially concerned about this, and entire
careers and disciplines are based on the storage and retrieval of
data, to a certain extent, the baseline is not onerous. If we can get
our dataset off our own computer, then we are much of the way
there. Further confirming that someone else can retrieve it and use
it, ideally without our involvement, puts us much further than
most. Just achieving that for our data, models, and code, meets
the “bronze” standard of Heil et al. (2021).

The FAIR principles are useful when we come to think more
formally about data sharing and management. This requires that
datasets are (Wilkinson et al. 2016):

1. Findable. There is one, unchanging, identifier for the dataset
and the dataset has high-quality descriptions and
explanations.

2. Accessible. Standardized approaches can be used to retrieve

8 Farm
data

9
Gather
data

10
Hunt
data

Preparation

11
Clean
and
prepare

12

the data, and these are open and free, possibly with
authentication, and their metadata persist even if the dataset
is removed.

3. Interoperable. The dataset and its metadata use a broadly
applicable language and vocabulary.

4. Reusable. There are extensive descriptions of the dataset and
the usage conditions are made clear along with provenance.

Just because a dataset is FAIR, it is not necessarily an unbiased
representation of the world. Further, it is not necessarily fair in the
everyday way that word is used i.e. impartial and honest (Lima et
al. 2022). FAIR reflects whether a dataset is appropriately available,
not whether it is appropriate.

One reason for the rise of data science is that humans are at the
heart of it. And o"en the data that we are interested in directly
concern humans. This means that there can be tension between
sharing a dataset to facilitate reproducibility and maintaining
privacy. Medicine developed approaches to this over a long time.
And out of that we have seen Health Insurance Portability and
Accountability Act (HIPAA) in the US, and then the more general
General Data Protection Regulation (GDPR) in Europe. Our
concerns in data science tend to be about personally identifying
information (PII). We have a variety of ways to protect especially
private information, such as emails and home addresses. For
instance, we can hash those variables. Sometimes we may
simulate data and distribute that instead of sharing the actual
dataset. More recently, approaches based on differential privacy
are being implemented. The fundamental problem of data privacy
is that increased privacy reduces the usefulness of a dataset. The
trade-off means the appropriate decision is nuanced and depends
on costs and benefits, and we should be especially concerned
about differentiated effects on population minorities.

Finally, in this chapter we consider efficiency. As datasets and code
bases get larger it becomes more difficult to deal with them,
especially if we want them to be shared. We come to concerns
around efficiency, not for its own sake, but to enable us to tell
stories that could not otherwise be told. This might mean moving

beyond CSV files to formats with other properties, or even using
databases, such as SQL.

12.2 Plan

The storage and retrieval of information is especially connected
with libraries. These have existed since antiquity and have well-
established protocols for deciding what information to store and
what to discard, as well as information retrieval. One of the
defining aspects of libraries is deliberate curation and
organization. The use of a cataloging system ensures that books on
similar topics are located close to each other, and there are
typically also deliberate plans for ensuring the collection is up-to-
date. This ensures that information storage and retrieval is
appropriate and efficient.

Data science relies heavily on the internet when it comes to
storage and retrieval. Vannevar Bush, the twentieth-century
engineer, defined a “memex” in 1945 as a device to store books,
records, and communications, in a way that supplements memory
(Bush 1945). The key to it was the indexing, or linking together, of
items. We see this concept echoed just four decades later in the
proposal by Tim Berners-Lee for hypertext (Berners-Lee 1989). This
led to the World Wide Web and defines the way that resources are
identified. They are then transported over the internet, using
Hypertext Transfer Protocol (HTTP).

At its most fundamental, the internet is about storing and
retrieving data. It is based on making various files on a computer
available to others. When we consider the storage and retrieval of
our datasets we want to especially contemplate for how long it is
important that they are stored and for whom (Michener 2015). For
instance, if we want some dataset to be available for a decade, and
widely available, then it becomes important to store it in open and
persistent formats, such as CSV (Hart et al. 2016). But if we are just
using a dataset as part of an intermediate step, and we have the
raw data and the scripts to create it, then it might be fine to not

iPad /

worry too much about such considerations.

Storing raw data is important and there are many cases where raw
data have revealed or hinted at fraud (Simonsohn 2013). Shared
data also enhances the credibility of our work, by enabling others
to verify it, and can lead to the generation of new knowledge as
others use it to answer different questions (Christensen, Freese,
and Miguel 2019). Christensen et al. (2019) suggests that research
that shares its data may be more highly cited.

We invite scrutiny and make it as easy as possible for criticism. We
do this even when it is the difficult choice and results in discomfort
because we know that is the only way to contribute to the stock of
lasting knowledge. For instance, Piller (2022) details potential
fabrication in research about Alzheimer’s disease, where one of the
issues that researchers face when trying to understand whether
the results are legitimate is a lack of access to unpublished images.

12.3 Share data

12.3.1 GitHub
The easiest place to get started with storing a dataset is GitHub
because that is already built into our workflow. For instance, if we
push a dataset to a public repository, then our dataset becomes
available. One benefit of this is that if we have set-up our
workspace appropriately, then we likely store our raw data, and
the tidy data, as well as the scripts that are needed to transform
one to the other. We are most of the way to the “bronze” standard
of Heil et al. (2021) without changing anything.

As an example of how we have stored some data, we can access
“raw_data.csv” from the “starter_folder”, (which we recommend
using for the papers in Appendix C). We navigate to the file in
GitHub (“inputs” -> “data” -> “raw_data.csv”), and then click
“Raw” (Figure 12.1).

iPad /

iPad /

iPad /

iPad /

iPad /

We can then add that URL as an argument to read_csv() .

A tibble: 1 × 3
 first_col second_col third_col
 <chr> <chr> <chr>
1 some raw data

While we can store and retrieve a dataset easily in this way, it lacks
explanation, a formal dictionary, and aspects such as a license that
would bring it closer to aligning with the FAIR principles. Another
practical concern is that the maximum file size on GitHub is 100MB.
And a final concern, for some, is that GitHub is owned by Microso",
a for-profit US technology firm.

Figure 12.1: Getting the necessary link to be able to read a CSV
from a GitHub repository

library(tidyverse)

data_location <-
 paste0(
 "https://raw.githubusercontent.com/RohanAlexander/"
 "starter_folder/main/inputs/data/raw_data.csv"
)

starter_data <-
 read_csv(file = data_location)

starter_data

12.3.2 R packages for data
To this point we have largely used R packages for their code,
although we have seen a few that were focused on sharing data,
for instance, troopdata (Flynn 2021) and babynames (Wickham
2019) in Chapter 7. We can build an R package for our dataset and
then add it to GitHub and potentially eventually CRAN. This will
make it easy to store and retrieve because we can obtain the
dataset by loading the package. In contrast to the CSV-based
approach, it also means a dataset brings its documentation along
with it. This will be the first R package that we build. In Chapter 14,
we return to R packages and use them to deploy models.

To get started, create a new package (“File” -> “New project” ->
“New Directory” -> “R Package”). Give the package a name, such as
“favcolordata” and select “Open in new session”. Create a new
folder called “data”. We simulate a dataset of people and their
favourite colors to include in our R package.

library(tidyverse)

set.seed(853)

color_data <-
 tibble(
 name =
 c(
 "Edward",
 "Helen",
 "Hugo",
 "Ian",
 "Monica",
 "Myles",
 "Patricia",
 "Roger",
 "Rohan",
 "Ruth"
),
 fav_color =
 sample(
 x = colors(),

To this point we have largely been using CSV files for our datasets.
To include our data in this R package, we save our dataset in a
different format, “.rda”, using save() .

Then we create an R file “data.R” in the “R” folder. This file will only
contain documentation using roxygen2 comments. These start
with #' , and we follow the documentation for troopdata
closely.

 size = 10,
 replace = TRUE
)
)

save(color_data, file = "data/color_data.rda")

#' Favorite color of various people data
#'
#' @description \code{favcolordata} returns a dataframe
#' of the favorite color of various people.
#'
#' @return Returns a dataframe of the favorite color
#' of various people.
#'
#' @docType data
#'
#' @usage data(color_data)
#'
#' @format A dataframe of individual-level observations
#' with the following variables:
#'
#' \describe{
#' \item{\code{name}}{A character vector of individual names.}
#' \item{\code{fav_color}}{A character vector of one
#' of: black, white, rainbow.}
#' }
#'
#' @keywords datasets
#'
#' @source \url{tellingstorieswithdata.com/12-store_and_share.html}
#'

Finally, add a README that provides a summary of all of this for
someone coming to the project for the first time. Examples of
packages with excellent READMEs include ggplot2 ,
pointblank , modelsummary , and janitor .

We can now go to the “Build” tab and click “Install and Restart”.
A"er this, the package “favcolordata”, will be loaded and the data
can be accessed locally using “color_data”. If we were to push this
package to GitHub, then anyone would be able to install the
package using devtools (Wickham, Hester, and Chang 2020) and
use our dataset. Indeed, the following will work.

This has addressed many of the issues that we faced earlier. For
instance, we have included a README and a data dictionary, of
sorts, in terms of the descriptions that we added. But if we were to
try to put this package onto CRAN, then we might face some
issues. For instance, the maximum size of a package is 5MB and we
would quickly come up against that. We have also largely forced
users to use R. While there are benefits of that, we may like to be
more language agnostic (Tierney and Ram 2020), especially if we
are concerned about the FAIR principles.

The definitive guide to including data in R packages is Wickham
(2022, chap. 8).

12.3.3 Depositing data
While it is possible that a dataset will be cited if it is available
through GitHub or an R package, this becomes more likely if the
dataset is deposited somewhere. There are several reasons for

"color_data"

library(devtools)

install_github("RohanAlexander/favcolordata")

library(favcolordata)

color_data

this, but one is that it seems a bit more formal. Another is that it is
associated with a DOI. Zenodo and Open Science Framework (OSF)
are two that are commonly used. For instance, Carleton (2021)
uses Zenodo to share the dataset and analysis supporting
Carleton, Campbell, and Collard (2021), and Geuenich et al.
(2021b) use Zenodo to share the dataset that underpins Geuenich
et al. (2021a). Similarly, Arel-Bundock et al. (2022) use OSF to share
code and data.

Another option is to use a dataverse, such as the Harvard
Dataverse or the Australian Data Archive. This is a common
requirement for journal publications. One nice aspect of this is that
we can use dataverse (Kuriwaki, Beasley, and Leeper 2022) to
retrieve the dataset as part of a reproducible workflow.

In general, these options are free and provide a DOI that can be
useful for citation purposes. The use of data deposits such as these
is a critical way to offload responsibility for the continued hosting
of the dataset (which in this case is a good thing) and prevent the
dataset from being lost. It also establishes a single point of truth,
which should act to reduce errors (Byrd et al. 2020). Finally, it
makes access to the dataset independent of the original
researchers, and results in persistent metadata.

12.4 Data documentation

Dataset documentation has long consisted of a data dictionary.
This may be just a list of the variables, a few sentences of
description, and ideally a source. For instance, the data dictionary
of the ACS, which was introduced in Chapter 8, is particularly
comprehensive. And OSF provides instructions for how to make a
data dictionary.

Datasheets (Gebru et al. 2021) are an increasingly critical aspect of
data science because of the contribution they make to
documentation. Datasheets are basically nutrition labels for
datasets. The process of creating them enables us to think more
carefully about what we will feed our model. More importantly,

iPad /

iPad /

they enable others to better understand what we fed our model.
One important task is going back and putting together datasheets
for datasets that are widely used. For instance, researchers went
back and wrote a datasheet for one of the most popular datasets in
computer science, and they found that around 30 per cent of the
data were duplicated (Bandy and Vincent 2021).

Timnit Gebru is the founder of the Distributed Artificial Intelligence
Research Institute (DAIR). A"er taking a PhD in Computer Science from
Stanford University, she joined Microso" and then Google. One notable
paper is Bender et al. (2021), which discussed the dangers of language
models being too large. She has made many other substantial
contributions to fairness and accountability, especially Buolamwini and
Gebru (2018), which demonstrated racial bias in facial analysis
algorithms.

Instead of telling us how unhealthy various foods are, a datasheet
tells us things like:

Who put the dataset together?
Who paid for the dataset to be created?
How complete is the dataset?
Which variables are present, and, equally, not present, for
particular observations?

Sometimes we have done a lot of work to create a datasheet. In
that case, we may like to publish and share it on its own, for
instance, Biderman, Bicheno, and Gao (2022) and Bandy and
Vincent (2021). But typically a datasheet might live in an appendix
to the paper, for instance Zhang et al. (2022), or be included in a
file adjacent to the dataset.

As an example, a datasheet for the dataset that underpins
Alexander and Hodgetts (2021) is included in Appendix D. The text
of the questions directly comes from Gebru et al. (2021). When we
create datasheets for a dataset, especially a dataset that we did
not put together ourselves, it is possible that the answer to some
questions will simply be “Unknown”, but we should do what we

Shoulders of giants

can to minimize that.

The datasheet template created by Gebru et al. (2021) is not the
final word. It is possible to improve on it, and add additional detail
sometimes. For instance, Miceli, Posada, and Yang (2022) argue for
the addition of questions to do with power relations.

12.5 Personally identifying
information

By way of background, Christensen, Freese, and Miguel (2019, 180)
define a variable as confidential if the researchers know who is
associated with each observation, but the public version of the
dataset removes this association. A variable is anonymous if even
the researchers do not know.

Personally identifying information (PII) is that which enables us to
link an observation in our dataset with an actual person. For
instance, email addresses are o"en PII, as are names and
addresses. While some variable may not be PII for many
respondents, it could be PII for some. For instance, consider a
survey that is representative of the population age distribution.
There is not likely to be many respondents aged over 100, and so
the variable age may then become PII. The same scenario happens
with income, wealth, and many other variables. One response to
this is for data to be censored, which was discussed in Chapter 8.
For instance, we may record age between 0 and 90, and then group
everyone over that into “90+”. Another is to construct age-groups:
“18-29”, “30-44”, …. Notice that with both these solutions we have
had to trade-off privacy for usefulness. More concerningly, a
variable may be PII, not by itself, but when combined with another
variable.

Our primary concern should be with ensuring that the privacy of
our dataset is appropriate, given the expectations of the
reasonable person. This requires weighing costs and benefits. In
national security settings there has been considerable concern

about the over-classification of documents (Lin 2014). The reduced
circulation of information because of this may result in unrealized
benefits. To avoid this in data science, the test of the need to
protect a dataset needs to be made by the reasonable person
weighing up costs and benefits. It is easy, but wrong, to say that no
data should be released unless it is perfectly anonymized, because
the fundamental problem of data privacy would mean such data
would have little utility. That approach, possibly motivated by the
precautionary principle, would be too conservative and could
cause considerable loss in terms of unrealized benefits.

Randomized response (Greenberg et al. 1969) is a clever way that
anonymity can be ensured without much overhead. Each
respondent, flips a coin before they answer a question and does
not show the researcher the outcome of the coin flip. The
respondent is instructed to respond truthfully to the question if
the coin lands on heads, but to always give some particular (but
still plausible) response if tails. The results of the other options can
then be re-weighted to provide an estimate, without a researcher
ever knowing the truth about any particular respondent. This is
especially used in association with snowball sampling, discussed
in Chapter 8. One issue with randomized response is that the
resulting dataset can be only used to answer specific questions.
This requires careful planning and the dataset will be of less
general value.

Zook et al. (2017) recommend considering whether data even need
to be gathered in the first place. For instance, if a phone number is
not absolutely required then it might be better to not ask for it,
rather than need to worry about protecting it before data
dissemination.

GDPR and HIPAA are two legal structures that govern data in
Europe and the US, respectively. Due to the influence of these
regions, they have a significant effect outside those regions also.
GDPR concerns data generally, while HIPAA is focused on
healthcare. GDPR applies to all personal data, which is defined as:

iPad /

iPad /

iPad /

iPad /

iPad /

iPad /

iPad /

…any information relating to an identified or identifiable
natural person (“data subject”); an identifiable natural
person is one who can be identified, directly or indirectly, in
particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or
to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social
identity of that natural person;

Council of European Union (2016), Article 4, “Definitions”

HIPAA refers to the privacy of medical records in the US and
codifies the idea that the patient should have access to their
medical records, and that only the patient should be able to
authorize access to their medical records (Annas 2003). HIPAA only
applies to certain entities. This means it sets a standard, but
coverage is inconsistent. For instance, a person’s social media
posts about their health would generally not be subject to it, nor
would knowledge of a person’s location and how active they are,
even though based on that information we may be able to get
some idea of their health (Cohen and Mello 2018). Such data are
hugely valuable (Ross 2022).

There are a variety of ways of protecting PII, while still sharing
some data, that we will now go through. We focus here initially on
what we can do when the dataset is considered by itself, which is
the main concern. But sometimes the combination of several
variables, none of which are PII in and of themselves, can be PII.
For instance, age is unlikely PII by itself, but age combined with
city, education, and a few other variables could be. One concern is
that re-identification could occur by combining datasets and this is
a potential role for differential privacy.

12.5.1 Hashing and salting
A cryptographic hash is a one-way transformation, such that the
same input always provides the same output, but given the
output, it is not reasonably possible to obtain the input. For

instance, a function that doubled its input always gives the same
output, for the same input, but is also easy to reverse, so would
not work well as a hash. In contrast, the modulo, which for a non-
negative number is the remainder a"er division and can be
implemented in R using %% , would would be difficult to reverse.

Knuth (1998, 514) relates an interesting etymology for “hash”. He
first defines “to hash” as relating to chop up or make a mess, and
then explaining that hashing relates to scrambling the input and
using this partial information to define the output. A collision is
when different inputs map to the same output, and one feature of
a good hashing algorithm is that collisions are reduced. As
mentioned, one simple approach is to rely on the modulo
operator. For instance, if we were interested in 10 different
groupings for the integers 1 through to 10, then modulo would
enable this. A better approach would be for the number of
groupings to be a larger number, because this would reduce the
number of values with this same hash outcome.

For instance, consider some information that we would like to
keep private, such as names and ages of respondents.

A tibble: 4 × 2
 names ages
 <chr> <dbl>
1 Rohan 36
2 Monica 35
3 Edward 3
4 Hugo 1

library(tidyverse)

some_private_information <-
 tibble(
 names = c("Rohan", "Monica", "Edward", "Hugo"),
 ages = c(36, 35, 3, 1)
)

some_private_information

One option for the names would be to use a function that just took
the first letter of each name. And one option for the ages would be
to convert them to Roman numerals.

A tibble: 4 × 2
 names ages
 <chr> <roman>
1 R XXXVI
2 M XXXV
3 E III
4 H I

While the approach for the first variable, names, is good because
the names cannot be backed out, the issue is that as the dataset
grows there are likely to be lots of “collisions”—situations where
different inputs, say “Rohan” and “Robert”, both get the same
output, in this case “R”. It is the opposite situation for the
approach for the second variable, ages. In this case, there will
never be any collisions—“36” will be the only input that ever maps
to “XXXVI”. However, it is easy to back out the actual data, for
anyone who knows roman numerals.

Rather than write our own hash functions, we can use crytographic
hash functions such as md5() from openssl (Ooms 2021).

A tibble: 4 × 4

some_private_information |>
 mutate(
 names = substring(names, 1, 1),
 ages = as.roman(ages)
)

library(openssl)

some_private_information |>
 mutate(
 md5_names = md5(names),
 md5_ages = md5(ages |> as.character())
)

 names ages md5_names
md5_ages
 <chr> <dbl> <hash>
<hash>
1 Rohan 36 02df8936eee3d4d2568857ed530671b2
19ca14e7ea6328a42e0eb13d585e4c22
2 Monica 35 09084cc0cda34fd80bfa3cc0ae8fe3dc
1c383cd30b7c298ab50293adfecb7b18
3 Edward 3 243f63354f4c1cc25d50f6269b844369
eccbc87e4b5ce2fe28308fd9f2a7baf3
4 Hugo 1 1b3840b0b70d91c17e70014c8537dbba
c4ca4238a0b923820dcc509a6f75849b

We could share either of these transformed variables and be
comfortable that it would be difficult for someone to use only that
information to recover the names of our respondents. That is not
to say that it is impossible. If we made a mistake, such as
accidentally pushing the original dataset to GitHub then they
could be recovered. And it is likely that various governments have
the ability to reverse the cryptographic hashes used here.

One issue that remains is that anyone can take advantage of the
key feature of hashes to back out the input. That feature is that the
same input always gets the same output, to test various options
for inputs. For instance, they could, themselves try to hash
“Rohan”, and then noticing that the hash is the same as the one
that we published in our dataset, know that data relates to that
particular individual. We could try to keep our hashing approach
secret, but that is difficult as there are only a few that are widely
used. One approach is to add a salt that we keep secret. This
slightly changes the input. For instance, we could add the salt
`_is_a_person’ to all our names and then hash that, although a
large random number might be a better option. Provided the salt is
not shared, then it would be difficult for most people to reverse
our approach in that way.

some_private_information |>
 mutate(names = paste0(names, "_is_a_person")) |>
 mutate(
 md5_of_salt = md5(names)

iPad /

iPad /

iPad /

12.5.2 Data simulation
One common approach to deal with the issue of being unable to
share the actual data that underpins an analysis, is to use data
simulation. We have used data simulation throughout this book
toward the start of the workflow to help us to think more deeply
about our dataset before we turn to it. We can use data simulation
again at the end, to ensure that others cannot think about our
actual dataset. The workflow advocated in this book makes this
relatively straight-forward.

The approach is to understand the critical features of the dataset
and the appropriate distribution. For instance, if our data were the
ages of some population, then we may want to use the Poisson
distribution and experiment with different parameters for the rate.
Having simulated a dataset, we conduct our analysis using this
simulated dataset and ensure that the results are broadly similar
to when we use the real data. We can then release the simulated
dataset along with our code.

For more nuanced situations, Koenecke and Varian (2020)
recommend using the synthetic data vault (Patki, Wedge, and
Veeramachaneni 2016) and then the use of Generative Adversarial
Networks, such as implemented by Athey et al. (2021).

12.5.3 Differential privacy

A tibble: 4 × 3
 names ages md5_of_salt
 <chr> <dbl> <hash>
1 Rohan_is_a_person 36
3ab064d7f746fde604122d072fd4fa97
2 Monica_is_a_person 35
50bb9dfffa926c855b830845ac61b659
3 Edward_is_a_person 3
9845500d4070c0cbba7c6b81ed306027
4 Hugo_is_a_person 1
b9b8c4e9870aca482cf062da4681b232

)

iPad /

iPad /

iPad /

Differential privacy is a mathematical definition of privacy (Dwork
and Roth 2013, 6). It is important to be clear that it is not only one
algorithm, it is a definition that many algorithms implement. The
main issue it solves is that there are a lot of datasets available. This
means there is always the possibility that some combination of
them could be combined to identify respondents even if PII were
removed from each of these individual datasets. Rather than
needing to anticipate how various datasets could be combined to
re-identify individuals and adjust variables to remove this
possibility, a dataset that is created using a differentially private
approach provides assurances that privacy will be maintained.

Cynthia Dwork is Gordon McKay Professor of Computer Science,
Harvard University. A"er taking a PhD in Computer Science from Cornell
University, she was a Post-Doctoral Research Fellow at MIT and then
worked at IBM, Compaq, and Microso" Research where she is a
Distinguished Scientist. She joined Harvard in 2017. One of her major
contributions is differential privacy (Dwork et al. 2006), which has been
widely adapted.

To motivate the definition, consider a dataset of responses and PII
that only has one person in it. The release of that dataset, as is,
would perfectly identify them. At the other end of the scale,
consider a dataset that does not contain a particular person. The
release of that dataset could never be linked to them because they
are not in it. Differential privacy, then, is about the inclusion or
exclusion of particular individuals in a dataset. An algorithm is
differentially private if the inclusion or exclusion of any particular
person in a dataset has at most some given factor of an effect on
the probability of some output (Oberski and Kreuter 2020).

More specifically, from Asquith et al. (2022), consider
Equation 12.1:

Here, “ is a differentially private algorithm, and are datasets

Shoulders of giants

Pr[M(d) ∈ S]
Pr[M(d′) ∈ S]

≤ eϵ (12.1)

M d d′

that differ only in terms of one row, is a set of output from the
algorithm” and controls the amount of privacy that is provided to
respondents. The fundamental problem of data privacy is that we
cannot have completely anonymized data that remains useful
(Dwork and Roth 2013, 6). Instead, we must trade-off utility and
privacy.

A dataset is differentially private to different levels of privacy,
based on how much it changes when one person’s results are
included or excluded. This is the key parameter, because at the
same time as deciding how much of an individual’s information we
are prepared to give up, or “leak”, we are deciding how much
random noise to add which will impact our output. The choice of
this level is a nuanced one and should involve extensive
consideration of the costs of undesired disclosures, compared with
the benefits of additional research. For public data that will be
released under differential privacy, this ratio decidendi must be
public because of the costs that are being imposed. Indeed, Tang
et al. (2017) argue that even in the case of private companies, such
as Apple, users should have a choice about the level of privacy
loss.

A variant of differential privacy has recently been implemented by
the US census. This has been shown to not universally protect
respondent privacy, and yet it is expected to have a significant
effect on redistricting (Kenny et al. 2021) even though redistricting
is considered a high priority use case (Hawes 2020). Suriyakumar
et al. (2021) found that such a model will be disproportionately
affected by large demographic groups. The implementation of
differential privacy is expected to result in some publicly available
data that are unusable in the social sciences (Ruggles et al. 2019).
And even the ACS, introduced in Chapter 8, may be replaced with
synthetic content. The issue with this approach is that even if it is
fine for what is of interest and known now, because it is model
based, it cannot account for the unknowable answers to questions
that we do not even think to ask.

The implementation of differential privacy is a costs and benefits

S

ϵ

iPad /

iPad /

iPad /

iPad /

iPad /

iPad /

iPad /

iPad /

issue (Hotz et al. 2022). Stronger privacy protection fundamentally
must mean less information (Bowen 2022, 39). The costs of this
have been convincingly shown, while the benefits have not. As
always in data science, it is important to consider who this affects.
At issue, with all privacy enhancing approaches but especially with
hurried implementations of differential privacy, is concerns around
our ability to answer questions that we cannot even think to ask
today.

12.6 Data efficiency

For the most part, done is better than perfect, and unnecessary
optimization is a waste of resources. However, at a certain point,
we need to adapt new ways of dealing with data, especially as our
datasets start to get larger. Here we discuss iterating through
multiple files, and then turn to changing data formats, beginning
with Apache Arrow, and finally SQL.

12.6.1 Iteration
There are a number of ways to become more efficient with our
data, especially as it becomes larger. The first, and most obvious, is
to break larger datasets into smaller pieces. For instance, if we
have a dataset for a year, then we could break it into months, or
even days. To enable this, we need a way of quickly reading in
many different files.

The need to read in multiple files and combine them into the one
tibble is a surprisingly common task. For instance, it may be that
the data for a year, are saved into individual CSV files for each
month. We can use purrr (Henry and Wickham 2020) and fs
(Hester, Wickham, and Csárdi 2021) to do this painlessly. To
illustrate this situation we will simulate data from the exponential
distribution using rexp() . Such data may reflect, say, comments
on a social media platform, where the vast majority of comments
are made by a tiny minority of users. We will use dir_create()
from fs to create a folder, simulate monthly data and save it. We
will then illustrate reading it in.

Having created our dataset with each month saved to a different
CSV, we can now read it in. There are a variety of ways to do this.
The first step is that we need to get a list of all the CSV files in the
directory. We use the “glob” argument here to specify that we are
interested only in the “.csv” files, and that could change to
whatever files it is that we are interested in.

 [1] "april.csv" "august.csv"
"december.csv" "february.csv"
 [5] "january.csv" "july.csv" "june.csv"

library(tidyverse)
library(fs)

dir_create(path = "user_data")

set.seed(853)

simulate_and_save_data <- function(month) {
 number_of_observations <- 1000
 file_name <- paste0("user_data/", month, ".csv")
 user_comments <-
 tibble(
 user = c(1:number_of_observations),
 month = rep(x = month, times = number_of_observations),
 comments = rexp(n = number_of_observations, rate =
)
 write_csv(
 x = user_comments,
 file = file_name
)
}

walk(month.name |> tolower(), simulate_and_save_data)

library(fs)

files_of_interest <-
 dir_ls(path = "user_data/", glob = "*.csv")

files_of_interest

"march.csv"
 [9] "may.csv" "november.csv" "october.csv"
"september.csv"

We can pass this list to read_csv() and it will read them in and
combine them.

A tibble: 12,000 × 3
 user month comments
 <dbl> <chr> <dbl>
 1 1 april 0
 2 2 april 2
 3 3 april 2
 4 4 april 5
 5 5 april 1
 6 6 april 3
 7 7 april 2
 8 8 april 1
 9 9 april 4
10 10 april 3
… with 11,990 more rows

This works well when we have CSV files, but we might not always
have CSV files and so will need another way, and can use
map_dfr() to do this. One nice aspect of this approach is that we
can include the name of the file alongside the observation using
“.id”. Here we specify that we would like that column to be called
“file”, but it could be anything.

year_of_data <-
 read_csv(
 files_of_interest,
 show_col_types = FALSE
)

year_of_data

library(purrr)

year_of_data_using_purrr <-
 files_of_interest |>

A tibble: 12,000 × 4
 file user month comments
 <chr> <dbl> <chr> <dbl>
 1 april.csv 1 april 0
 2 april.csv 2 april 2
 3 april.csv 3 april 2
 4 april.csv 4 april 5
 5 april.csv 5 april 1
 6 april.csv 6 april 3
 7 april.csv 7 april 2
 8 april.csv 8 april 1
 9 april.csv 9 april 4
10 april.csv 10 april 3
… with 11,990 more rows

12.6.2 Apache Arrow
While the use of CSVs is great because they are widely used and
have little overhead, they are also quite minimal. This can lead to
issues, especially in terms of class. There are various alternatives,
including Apache Arrow, which is a columnar data framework.
There is an R implementation of Apache Arrow, arrow
(Richardson et al. 2022). This has the advantage of requiring very
little change from us while delivering significant benefits. This
makes two, distinct, file formats available to us: “.arrow”, and
“.parquet”.

We use “.arrow” when we are actively using the data, for instance,
as we clean, prepare, and model. And we use “.parquet” for data
storage, for instance, saving a copy of the original data, and
making the final dataset available to others. This is because
“.parquet” is focused on size, while “.arrow” is focused on
efficiency.

For long-term storage, we might replace “.csv” files with “.parquet”
files. We can do this by replacing write_csv() with
write_parquet() , and read_csv() with read_parquet() .

 map_dfr(read_csv, .id = "file")

29.3M

8.17M

We get significant file size improvements when we compare the
size of the same datasets saved in each format, especially as they
get larger (Table 12.1).

library(arrow)
library(fs)
library(tidyverse)

number_of_draws <- 1000000

Homage to: https://www.rand.org/pubs/monograph_reports/MR1418.html
a_million_random_digits <-
 tibble(
 numbers = runif(n = number_of_draws),
 letters = sample(x = letters, size = number_of_draws,
 states = sample(x = state.name, size = number_of_draws,
)

write_csv(
 x = a_million_random_digits,
 file = "a_million_random_digits.csv"
)

write_parquet(
 x = a_million_random_digits,
 sink = "a_million_random_digits.parquet"
)

file_size("a_million_random_digits.csv")

file_size("a_million_random_digits.parquet")

Table 12.1: Comparing the file sizes of ‘.csv’ and ‘.parquet’, as the
file size increases, for CSV and Parquet

Number of observations CSV file size Parquet file size

Having considered “.parquet”, and explained the benefits
compared with CSVs for large data that we are storing, we now
consider “.arrow” and the benefit of this file type for large data that
we are actively using. Again, these benefits will be most notable for
larger datasets, and so we will consider the ProPublica US Open
Payments Data, from the Centers for Medicare & Medicaid Services,
which is 6.66 GB and available here. It is available as a CSV file, and
so we will compare reading in the data and creating a summary of
the average total amount of payment on the basis of state using
read_csv() , with the same task using read_csv_arrow() . We
find a considerable speed-up when using read_csv_arrow()
(Table 12.2).

10,000 300.11K 99.57K

100,000 2.93M 1016.46K

1,000,000 29.29M 8.15M

10,000,000 292.88M 79.11M

100,000,000 2.86G 788.82M

library(arrow)
library(tidyverse)
library(tictoc)

tic.clearlog()

tic("CSV - Everything")
tic("CSV - Reading")
open_payments_data_csv <-
 read_csv(
 "OP_DTL_GNRL_PGYR2016_P01172018.csv",
 col_types =
 cols(
 "Teaching_Hospital_ID" = col_double(),
 "Physician_Profile_ID" = col_double(),
 "Applicable_Manufacturer_or_Applicable_GPO_Making_Payment_ID"
 "Total_Amount_of_Payment_USDollars" = col_double
 "Date_of_Payment" = col_date(format = "%m/%d/%Y"
 "Number_of_Payments_Included_in_Total_Amount"

 "Record_ID" = col_double(),
 "Program_Year" = col_double(),
 "Payment_Publication_Date" = col_date(format =
 .default = col_character()
)
)

toc(log = TRUE, quiet = TRUE)

tic("CSV - Manipulate and summarise")
summary_spend_by_state_csv <-
 open_payments_data_csv |>
 rename(
 state = Recipient_State,
 total_payment_USD = Total_Amount_of_Payment_USDollars
) |>
 filter(state %in% c("CA", "OR", "WA")) |>
 mutate(total_payment_USD_thousands = total_payment_USD
 group_by(state) |>
 summarise(average_payment = mean(total_payment_USD,

summary_spend_by_state_csv

toc(log = TRUE, quiet = TRUE)
toc(log = TRUE, quiet = TRUE)

tic("arrow - Everything")
tic("arrow - Reading")
open_payments_data_arrow <-
 read_csv_arrow(
 "OP_DTL_GNRL_PGYR2016_P01172018.csv",
 as_data_frame = FALSE
)
toc(log = TRUE, quiet = TRUE)

tic("arrow - Manipulate and summarise")
summary_spend_by_state_arrow <-
 open_payments_data_arrow |>
 rename(
 state = Recipient_State,
 total_payment_USD = Total_Amount_of_Payment_USDollars
) |>

Crane (2022) provides further information about specific tasks and
Navarro (2022) provides helpful examples of implementation.

12.6.3 SQL
Structured Query Language (SQL) (“see-quell” or “S.Q.L.”) is used
with relational databases. A relational database is a collection of at
least one table, and a table is just some data organized into rows
and columns. If there is more than one table in the database, then
there should be some column that links them. An example is the
AustralianPoliticians datasets that were used in Chapter 3.
Using SQL feels a bit like HTML/CSS in terms of being halfway
between markup and programming. One fun aspect is that, by
convention, commands are written in upper case. Another is that
line spaces mean nothing: include them or do not, but always end

 filter(state %in% c("CA", "OR", "WA")) |>
 mutate(total_payment_USD_thousands = total_payment_USD
 group_by(state) |>
 summarise(average_payment = mean(total_payment_USD,
 collect()

summary_spend_by_state_arrow

toc(log = TRUE, quiet = TRUE)
toc(log = TRUE, quiet = TRUE)

Table 12.2: Comparing the speed of reading and manipulating
using ‘read_csv()’ and ‘read_csv_arrow()’

Which function Task Time (seconds)

CSV Reading 265

CSV Manipulate and summarise 3

CSV Everything 269

arrow Reading 43

arrow Manipulate and summarise 8

arrow Everything 51

a SQL command in a semicolon;

SQL was developed in the 1970s at IBM. While it may be true that
the SQL is never as good as the original, SQL is an especially
popular way of working with data. There are many “flavors” of
SQL, including both closed and open options. Here we introduce
SQLite, which is open source, and pre-installed on Macs. Windows
users can install it from here.

Advanced SQL users do a lot with it alone, but even just having a
working knowledge of SQL increases the number of datasets that
we can access. A working knowledge of SQL is especially useful for
our efficiency because a large number of datasets are stored on
SQL servers, and being able to get data from them ourselves is
handy.

We could use SQL within RStudio, especially drawing on DBI (R
Special Interest Group on Databases (R-SIG-DB), Wickham, and
Müller 2022). Although given the demand for SQL skills,
independent of demand for R skills, it may be a better idea, from a
career perspective to have a working knowledge of it that is
independent of RStudio. We can consider many SQL commands as
straightforward variants of the dplyr verbs that we have used
throughout this book. Indeed, if we wanted to stay within R, then
dbplyr (Wickham, Girlich, and Ruiz 2022) would explicitly allow
us to use dplyr functions and would then automatically translate
them into SQL. Having used mutate() , filter() and
left_join() in the tidyverse means that many of the core
SQL commands will be familiar. That means that the main
difficulty will be getting on top of the order of operations because
SQL can be pedantic.

To get started with SQL, download DB Browser for SQLite (DB4S),
which is free and open-source, and open it (Figure 12.2).

Download “AustralianPoliticians.db” here and then open it with
“Open Database” and navigate to where you downloaded the
database.

There are three key SQL commands that we now cover: SELECT ,
FROM , and WHERE . SELECT allows us to specify particular
columns of the data, and we can consider SELECT in a similar way
to select() . In the same way that we need to specify a dataset
with select() and did that using a pipe operator, we specify a
dataset with FROM . For instance, we could open “Execute SQL”,
and then type the following, and click “Execute”.

The result is that we obtain the column of surnames. We could
select multiple columns by separating them with commas, or all of
them by using an asterisk, although this is not best practice
because if the dataset were to change without us knowing then
our result would differ.

Figure 12.2: Opening DB Browser for SQLite

SELECT
 surname
FROM
 politicians;

SELECT
 uniqueID
 surname

And, finally, if there were repeated rows, then we could just look at
the unique ones using DISTINCT , in a similar way to
distinct() .

So far we have used SELECT along with FROM . The third
command that is commonly used is WHERE , and this will allow us
to focus on particular rows, in a similar way to filter() .

All the usual logical operators are fine with WHERE , such as “=”,
“!=”, “>”, “<”, “>=”, and “<=”. We could combine conditions using
AND and OR .

FROM
 politicians;

SELECT
 *
FROM
 politicians;

SELECT
 DISTINCT surname
FROM
 politicians;

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians
WHERE
 firstName = "Myles";

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians

If we have a query that gave a lot of results, then we could limit the
number of them with LIMIT .

And we could specify the order of the results with ORDER .

See the rows that are pretty close to a criteria:

The “_” above is a wildcard that matches to any character. So this

WHERE
 firstName = "Myles"
 OR firstName = "Ruth";

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians
WHERE
 firstName = "Robert" LIMIT 5;

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians
WHERE
 firstName = "Robert"
ORDER BY
 surname DESC;

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians
WHERE
 firstName LIKE "Ma__";

provides results that include “Mary”, and “Mark”. LIKE is not case-
sensitive: “Ma__” and “ma__” both return the same results.

Focusing on missing data is possible using “NULL” or “NOT NULL”.

There is an underlying ordering build into number, date and text
fields that means we can use BETWEEN on all those, not just
numeric. For instance, we could look for all surnames that starts
with a letter between X and Z (not including Z).

Using WHERE with a numeric variable means that BETWEEN is
inclusive, compared with the example with letters which is not.

SELECT
 uniqueID,
 surname,
 firstName,
 comment
FROM
 politicians
WHERE
 comment IS NULL;

SELECT
 uniqueID,
 surname,
 firstName
FROM
 politicians
WHERE
 surname BETWEEN "X" AND "Z";

SELECT
 uniqueID,
 surname,
 firstName,
 birthYear
FROM
 politicians
WHERE
 birthYear BETWEEN 1980 AND 1990;

In addition to providing us with dataset observations that match
what we asked for, we can modify the dataset. For instance, we
could edit a value using UPDATE and SET .

We can integrate if-else logic with CASE and ELSE . For instance,
where we add a column called “wasTreasurer”, which is “Yes” in
the case of “Josh Frydenberg”, and “No” in the case of “Kevin
Rudd”, anad “Unsure” for all other cases.

We can create summary statistics using commands such as
COUNT , SUM , MAX , MIN , AVG , and ROUND in the place of
summarize() . COUNT counts the number of rows that are not
empty for some column by passing the column name, and this is
similarly how MIN , etc, work.

UPDATE
 politicians
SET
 surname = "Alexanderrrrrrrr"
WHERE
 uniqueID = "Alexander1951";

SELECT
 uniqueID,
 surname,
 firstName,
 birthYear,
 CASE
 WHEN uniqueID = "Frydenberg1971" THEN "Yes"
 WHEN surname = "Rudd" THEN "No"
 ELSE "Unsure"
 END AS "wasTreasurer"
FROM
 politicians;

SELECT
 COUNT(uniqueID)
FROM
 politicians;

We can get results on the basis of different groups in our dataset
using GROUP BY , in a similar manner to group_by in R.

And finally, we can combine two tables using LEFT JOIN . We
need to be careful to specify the matching columns using dot
notation.

As SQL is not our focus we have only provided a brief overview of
some essential commands. From a career perspective it is
important to develop a comfort with SQL. It is so integrated into
data science that it would be “difficult to get too far without it”
(Robinson and Nolis 2020, 8) and that “almost any” data science
interview will include questions about SQL (Robinson and Nolis
2020, 110).

12.7 Exercises and tutorial

SELECT
 MIN(birthYear)
FROM
 politicians;

SELECT
 COUNT(uniqueID)
FROM
 politicians
GROUP BY
 gender;

SELECT
 politicians.uniqueID,
 politicians.firstName,
 politicians.surname,
 party.partySimplifiedName
FROM
 politicians
LEFT JOIN
 party
 ON politicians.uniqueID = party.uniqueID;

Exercises
1. (Plan) Consider the following scenario: You work for a large

news media company and focus on subscriber management.
Over the course of a year most subscribers will never post a
comment beneath a news article, but a few post an awful lot.
Please sketch what that dataset could look like and then
sketch a graph that you could build to show all observations.

2. (Simulate) Please further consider the scenario described and
simulate the situation.

3. (Acquire) Please describe one possible source of such a
dataset.

4. (Explore) Please use ggplot2 to build the graph that you
sketched.

5. (Communicate) Please write two paragraphs about what you
did.

6. Following Wilkinson et al. (2016), which of the following are
FAIR principles (please select all that apply)?

a. Findable.
b. Approachable.
c. Interoperable.
d. Reusable.
e. Integrated.
f. Fungible.

g. Reduced.
h. Accessible.

7. Please create an R package for a simulated dataset, push it to
GitHub, and submit the link.

8. Please simulate some data, add it to a GitHub repository and
then submit the link.

9. According to Gebru et al. (2021), a datasheet should
document a dataset’s (please select all that apply):

a. composition.
b. recommended uses.
c. motivation.
d. collection process.

10. Do you think that a person’s name is PII?
a. Yes.
b. No.

11. Under what circumstances do you think income is PII (please
write a paragraph or two)?

12. Using openssl::md5() what is the hash of “Rohan” (pick
one)?

a. 243f63354f4c1cc25d50f6269b844369
b. 09084cc0cda34fd80bfa3cc0ae8fe3dc
c. 02df8936eee3d4d2568857ed530671b2
d. 1b3840b0b70d91c17e70014c8537dbba

Tutorial
Please identify a dataset you consider interesting and important,
that does not have a datasheet (Gebru et al. 2021). As a reminder,
datasheets accompany datasets and document “motivation,
composition, collection process, recommended uses,” among
other aspects. Please put together a datasheet for this dataset. You
are welcome to use the template here as a starting point. The
datasheet should be completely contained in its own GitHub
repository. Please submit a PDF.

Paper
At about this point the Dysart Paper in Appendix C would be
appropriate.

" 11 Clean and prepare 13 Exploratory data analysis#

