diff --git a/README.md b/README.md index f62d765f4..f79bdf45a 100644 --- a/README.md +++ b/README.md @@ -38,7 +38,7 @@ $samples = $labels = []; for ($label = 0; $label < 10; $label++) { foreach (glob("training/$label/*.png") as $file) { $samples[] = [imagecreatefrompng($file)]; - $labels[] = "$label"; + $labels[] = "#$label"; } } ``` @@ -144,7 +144,7 @@ $samples = $labels = []; for ($label = 0; $label < 10; $label++) { foreach (glob("testing/$label/*.png") as $file) { $samples[] = [imagecreatefrompng($file)]; - $labels[] = "$label"; + $labels[] = "#$label"; } } @@ -186,6 +186,8 @@ To generate the report, pass in the predictions along with the labels from the t ```php $results = $report->generate($predictions, $dataset->labels()); + +echo $results; ``` Now we're ready to run the validation script from the command line. @@ -196,100 +198,106 @@ $ php validate.php Below is an excerpt from an example report. As you can see, our model was able to achieve 99% accuracy on the testing set. ```json -[ - { +{ + "breakdown": { "overall": { - "accuracy": 0.9947324640239088, - "precision": 0.9741087612434818, - "recall": 0.9740133353147777, - "specificity": 0.997067020596092, - "negative_predictive_value": 0.9970704601333621, - "false_discovery_rate": 0.02589123875651811, - "miss_rate": 0.02598666468522217, - "fall_out": 0.0029329794039080204, - "false_omission_rate": 0.002929539866638009, - "f1_score": 0.9740148371825065, - "mcc": 0.9711116777704213, - "informedness": 0.9710803559108697, - "markedness": 0.9711792213768439, - "true_positives": 9742, - "true_negatives": 87678, - "false_positives": 258, - "false_negatives": 258, + "accuracy": 0.9936867061871887, + "accuracy_balanced": 0.9827299300164292, + "f1_score": 0.9690024869169903, + "precision": 0.9690931602689105, + "recall": 0.9689771553342812, + "specificity": 0.9964827046985771, + "negative_predictive_value": 0.9964864183831919, + "false_discovery_rate": 0.030906839731089673, + "miss_rate": 0.031022844665718752, + "fall_out": 0.003517295301422896, + "false_omission_rate": 0.0035135816168081367, + "threat_score": 0.939978395041131, + "mcc": 0.9655069498416134, + "informedness": 0.9654598600328583, + "markedness": 0.9655795786521022, + "true_positives": 9692, + "true_negatives": 87228, + "false_positives": 308, + "false_negatives": 308, "cardinality": 10000 }, - "label": { - "0": { - "accuracy": 0.9965220949263502, - "precision": 0.9768145161290323, - "recall": 0.9887755102040816, - "specificity": 0.9973851750795816, - "negative_predictive_value": 0.998747723132969, - "false_discovery_rate": 0.02318548387096775, - "miss_rate": 0.011224489795918391, - "fall_out": 0.0026148249204184237, - "false_omission_rate": 0.0012522768670309992, - "f1_score": 0.9827586206896551, - "mcc": 0.9808471473208658, - "informedness": 0.9861606852836631, - "markedness": 0.9755622392620014, - "true_positives": 969, - "true_negatives": 8773, - "false_positives": 23, - "false_negatives": 11, + "classes": { + "#0": { + "accuracy": 0.9961969369924967, + "accuracy_balanced": 0.9924488163078695, + "f1_score": 0.9812468322351747, + "precision": 0.9748237663645518, + "recall": 0.9877551020408163, + "specificity": 0.9971425305749229, + "negative_predictive_value": 0.9986263736263736, + "false_discovery_rate": 0.025176233635448186, + "miss_rate": 0.01224489795918371, + "fall_out": 0.0028574694250771415, + "false_omission_rate": 0.0013736263736263687, + "threat_score": 0.96318407960199, + "informedness": 0.984897632615739, + "markedness": 0.984897632615739, + "mcc": 0.9791571571236778, + "true_positives": 968, + "true_negatives": 8724, + "false_positives": 25, + "false_negatives": 12, "cardinality": 980, - "density": 0.098 + "proportion": 0.098 }, - "2": { - "accuracy": 0.9937774150770172, - "precision": 0.9718172983479106, - "recall": 0.9689922480620154, - "specificity": 0.9966936495268498, - "negative_predictive_value": 0.996352860724869, - "false_discovery_rate": 0.02818270165208936, - "miss_rate": 0.03100775193798455, - "fall_out": 0.003306350473150199, - "false_omission_rate": 0.0036471392751310505, - "f1_score": 0.970402717127608, - "mcc": 0.9669272305002852, - "informedness": 0.9656858975888651, - "markedness": 0.9681701590727796, - "true_positives": 1000, - "true_negatives": 8742, - "false_positives": 29, - "false_negatives": 32, + "#2": { + "accuracy": 0.9917118592039292, + "accuracy_balanced": 0.9774202967570631, + "f1_score": 0.960698689956332, + "precision": 0.9620991253644315, + "recall": 0.9593023255813954, + "specificity": 0.9955382679327308, + "negative_predictive_value": 0.9951967063129002, + "false_discovery_rate": 0.03790087463556846, + "miss_rate": 0.04069767441860461, + "fall_out": 0.004461732067269186, + "false_omission_rate": 0.004803293687099752, + "threat_score": 0.9243697478991597, + "informedness": 0.9548405935141262, + "markedness": 0.9548405935141262, + "mcc": 0.9560674244463004, + "true_positives": 990, + "true_negatives": 8702, + "false_positives": 39, + "false_negatives": 42, "cardinality": 1032, - "density": 0.1032 + "proportion": 0.1032 }, } }, - { - "0": { - "0": 969, - "2": 5, - "7": 1, - "4": 1, - "8": 3, - "5": 2, - "6": 6, - "3": 1, - "1": 0, - "9": 4 + "matrix": { + "#0": { + "#0": 968, + "#5": 2, + "#2": 5, + "#9": 3, + "#8": 3, + "#6": 8, + "#7": 2, + "#3": 1, + "#1": 0, + "#4": 1 + }, + "#5": { + "#0": 2, + "#5": 859, + "#2": 3, + "#9": 7, + "#8": 7, + "#6": 5, + "#7": 0, + "#3": 6, + "#1": 1, + "#4": 0 }, - "2": { - "0": 2, - "2": 1000, - "7": 9, - "4": 4, - "8": 5, - "5": 0, - "6": 1, - "3": 4, - "1": 4, - "9": 0 - } } -] +} ``` ### Next Steps diff --git a/train.php b/train.php index 8c6f3ad55..0602d7fb5 100644 --- a/train.php +++ b/train.php @@ -29,7 +29,7 @@ for ($label = 0; $label < 10; $label++) { foreach (glob("training/$label/*.png") as $file) { $samples[] = [imagecreatefrompng($file)]; - $labels[] = "$label"; + $labels[] = "#$label"; } } diff --git a/validate.php b/validate.php index d1cad13f6..d58ae1bc7 100644 --- a/validate.php +++ b/validate.php @@ -18,7 +18,7 @@ for ($label = 0; $label < 10; $label++) { foreach (glob("testing/$label/*.png") as $file) { $samples[] = [imagecreatefrompng($file)]; - $labels[] = "$label"; + $labels[] = "#$label"; } }