From 3256d2cc0f91dad1f2c91ebad2c6efbe6611d688 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 00:28:54 +0200 Subject: [PATCH 01/15] feat: added MNIST, Fashion-MNIST and KMNIST datasets --- poetry.lock | 423 ++++++++++--------- pyproject.toml | 12 +- src/safeds_datasets/image/__init__.py | 5 + src/safeds_datasets/image/_mnist/__init__.py | 5 + src/safeds_datasets/image/_mnist/_mnist.py | 202 +++++++++ 5 files changed, 437 insertions(+), 210 deletions(-) create mode 100644 src/safeds_datasets/image/__init__.py create mode 100644 src/safeds_datasets/image/_mnist/__init__.py create mode 100644 src/safeds_datasets/image/_mnist/_mnist.py diff --git a/poetry.lock b/poetry.lock index 10be993..7ad6647 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. [[package]] name = "anyio" @@ -671,13 +671,13 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "filelock" -version = "3.13.4" +version = "3.14.0" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"}, - {file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"}, + {file = "filelock-3.14.0-py3-none-any.whl", hash = "sha256:43339835842f110ca7ae60f1e1c160714c5a6afd15a2873419ab185334975c0f"}, + {file = "filelock-3.14.0.tar.gz", hash = "sha256:6ea72da3be9b8c82afd3edcf99f2fffbb5076335a5ae4d03248bb5b6c3eae78a"}, ] [package.extras] @@ -894,38 +894,6 @@ files = [ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] -[[package]] -name = "imageio" -version = "2.34.1" -description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." -optional = false -python-versions = ">=3.8" -files = [ - {file = "imageio-2.34.1-py3-none-any.whl", hash = "sha256:408c1d4d62f72c9e8347e7d1ca9bc11d8673328af3913868db3b828e28b40a4c"}, - {file = "imageio-2.34.1.tar.gz", hash = "sha256:f13eb76e4922f936ac4a7fec77ce8a783e63b93543d4ea3e40793a6cabd9ac7d"}, -] - -[package.dependencies] -numpy = "*" -pillow = ">=8.3.2" - -[package.extras] -all-plugins = ["astropy", "av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] -all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] -build = ["wheel"] -dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"] -docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"] -ffmpeg = ["imageio-ffmpeg", "psutil"] -fits = ["astropy"] -full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"] -gdal = ["gdal"] -itk = ["itk"] -linting = ["black", "flake8"] -pillow-heif = ["pillow-heif"] -pyav = ["av"] -test = ["fsspec[github]", "pytest", "pytest-cov"] -tifffile = ["tifffile"] - [[package]] name = "iniconfig" version = "2.0.0" @@ -937,6 +905,20 @@ files = [ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] +[[package]] +name = "intel-openmp" +version = "2021.4.0" +description = "Intel OpenMP* Runtime Library" +optional = false +python-versions = "*" +files = [ + {file = "intel_openmp-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:41c01e266a7fdb631a7609191709322da2bbf24b252ba763f125dd651bcc7675"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:3b921236a38384e2016f0f3d65af6732cf2c12918087128a9163225451e776f2"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:e2240ab8d01472fed04f3544a878cda5da16c26232b7ea1b59132dbfb48b186e"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:6e863d8fd3d7e8ef389d52cf97a50fe2afe1a19247e8c0d168ce021546f96fc9"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:eef4c8bcc8acefd7f5cd3b9384dbf73d59e2c99fc56545712ded913f43c4a94f"}, +] + [[package]] name = "ipykernel" version = "6.29.4" @@ -1080,13 +1062,13 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "joblib" -version = "1.4.0" +version = "1.4.2" description = "Lightweight pipelining with Python functions" optional = false python-versions = ">=3.8" files = [ - {file = "joblib-1.4.0-py3-none-any.whl", hash = "sha256:42942470d4062537be4d54c83511186da1fc14ba354961a2114da91efa9a4ed7"}, - {file = "joblib-1.4.0.tar.gz", hash = "sha256:1eb0dc091919cd384490de890cb5dfd538410a6d4b3b54eef09fb8c50b409b1c"}, + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, ] [[package]] @@ -1555,25 +1537,6 @@ files = [ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] -[[package]] -name = "lazy-loader" -version = "0.4" -description = "Makes it easy to load subpackages and functions on demand." -optional = false -python-versions = ">=3.7" -files = [ - {file = "lazy_loader-0.4-py3-none-any.whl", hash = "sha256:342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc"}, - {file = "lazy_loader-0.4.tar.gz", hash = "sha256:47c75182589b91a4e1a85a136c074285a5ad4d9f39c63e0d7fb76391c4574cd1"}, -] - -[package.dependencies] -packaging = "*" - -[package.extras] -dev = ["changelist (==0.5)"] -lint = ["pre-commit (==3.7.0)"] -test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] - [[package]] name = "levenshtein" version = "0.25.1" @@ -2125,6 +2088,24 @@ files = [ griffe = ">=0.44" mkdocstrings = ">=0.24.2" +[[package]] +name = "mkl" +version = "2021.4.0" +description = "IntelĀ® oneAPI Math Kernel Library" +optional = false +python-versions = "*" +files = [ + {file = "mkl-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:67460f5cd7e30e405b54d70d1ed3ca78118370b65f7327d495e9c8847705e2fb"}, + {file = "mkl-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:636d07d90e68ccc9630c654d47ce9fdeb036bb46e2b193b3a9ac8cfea683cce5"}, + {file = "mkl-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:398dbf2b0d12acaf54117a5210e8f191827f373d362d796091d161f610c1ebfb"}, + {file = "mkl-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:439c640b269a5668134e3dcbcea4350459c4a8bc46469669b2d67e07e3d330e8"}, + {file = "mkl-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:ceef3cafce4c009dd25f65d7ad0d833a0fbadc3d8903991ec92351fe5de1e718"}, +] + +[package.dependencies] +intel-openmp = "==2021.*" +tbb = "==2021.*" + [[package]] name = "mpmath" version = "1.3.0" @@ -2447,12 +2428,13 @@ nvidia-nvjitlink-cu12 = "*" [[package]] name = "nvidia-nccl-cu12" -version = "2.19.3" +version = "2.20.5" description = "NVIDIA Collective Communication Library (NCCL) Runtime" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl", hash = "sha256:a9734707a2c96443331c1e48c717024aa6678a0e2a4cb66b2c364d18cee6b48d"}, + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, ] [[package]] @@ -2781,6 +2763,50 @@ files = [ dev = ["pre-commit", "tox"] testing = ["pytest", "pytest-benchmark"] +[[package]] +name = "polars" +version = "0.20.25" +description = "Blazingly fast DataFrame library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "polars-0.20.25-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:126e3b7d9394e4b23b4cc48919b7188203feeeb35d861ad808f281eaa06d76e2"}, + {file = "polars-0.20.25-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:3bda62b681726538714a1159638ab7c9eeca6b8633fd778d84810c3e13b9c7e3"}, + {file = "polars-0.20.25-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62c8826e81c759f07bf5c0ae00f57a537644ae05fe68737185666b8ad8430664"}, + {file = "polars-0.20.25-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:0fb5e7a4a9831fba742f1c706e01656607089b6362a5e6f8d579b134a99795ce"}, + {file = "polars-0.20.25-cp38-abi3-win_amd64.whl", hash = "sha256:9eaeb9080c853e11b207d191025e0ba8fd59ea06a36c22d410a48f2f124e18cd"}, + {file = "polars-0.20.25.tar.gz", hash = "sha256:4308d63f956874bac9ae040bdd6d62b2992d0b1e1349301bc7a3b59458189108"}, +] + +[package.dependencies] +numpy = {version = ">=1.16.0", optional = true, markers = "extra == \"numpy\""} +pyarrow = {version = ">=7.0.0", optional = true, markers = "extra == \"pyarrow\""} + +[package.extras] +adbc = ["adbc-driver-manager", "adbc-driver-sqlite"] +all = ["polars[adbc,async,cloudpickle,connectorx,deltalake,fastexcel,fsspec,gevent,numpy,pandas,plot,pyarrow,pydantic,pyiceberg,sqlalchemy,timezone,torch,xlsx2csv,xlsxwriter]"] +async = ["nest-asyncio"] +cloudpickle = ["cloudpickle"] +connectorx = ["connectorx (>=0.3.2)"] +deltalake = ["deltalake (>=0.15.0)"] +fastexcel = ["fastexcel (>=0.9)"] +fsspec = ["fsspec"] +gevent = ["gevent"] +matplotlib = ["matplotlib"] +numpy = ["numpy (>=1.16.0)"] +openpyxl = ["openpyxl (>=3.0.0)"] +pandas = ["pandas", "pyarrow (>=7.0.0)"] +plot = ["hvplot (>=0.9.1)"] +pyarrow = ["pyarrow (>=7.0.0)"] +pydantic = ["pydantic"] +pyiceberg = ["pyiceberg (>=0.5.0)"] +pyxlsb = ["pyxlsb (>=1.0)"] +sqlalchemy = ["pandas", "sqlalchemy"] +timezone = ["backports-zoneinfo", "tzdata"] +torch = ["torch"] +xlsx2csv = ["xlsx2csv (>=0.8.0)"] +xlsxwriter = ["xlsxwriter"] + [[package]] name = "prometheus-client" version = "0.20.0" @@ -2862,6 +2888,54 @@ files = [ [package.extras] tests = ["pytest"] +[[package]] +name = "pyarrow" +version = "16.0.0" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyarrow-16.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:22a1fdb1254e5095d629e29cd1ea98ed04b4bbfd8e42cc670a6b639ccc208b60"}, + {file = "pyarrow-16.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:574a00260a4ed9d118a14770edbd440b848fcae5a3024128be9d0274dbcaf858"}, + {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0815d0ddb733b8c1b53a05827a91f1b8bde6240f3b20bf9ba5d650eb9b89cdf"}, + {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df0080339387b5d30de31e0a149c0c11a827a10c82f0c67d9afae3981d1aabb7"}, + {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:edf38cce0bf0dcf726e074159c60516447e4474904c0033f018c1f33d7dac6c5"}, + {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:91d28f9a40f1264eab2af7905a4d95320ac2f287891e9c8b0035f264fe3c3a4b"}, + {file = "pyarrow-16.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:99af421ee451a78884d7faea23816c429e263bd3618b22d38e7992c9ce2a7ad9"}, + {file = "pyarrow-16.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d22d0941e6c7bafddf5f4c0662e46f2075850f1c044bf1a03150dd9e189427ce"}, + {file = "pyarrow-16.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:266ddb7e823f03733c15adc8b5078db2df6980f9aa93d6bb57ece615df4e0ba7"}, + {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cc23090224b6594f5a92d26ad47465af47c1d9c079dd4a0061ae39551889efe"}, + {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56850a0afe9ef37249d5387355449c0f94d12ff7994af88f16803a26d38f2016"}, + {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:705db70d3e2293c2f6f8e84874b5b775f690465798f66e94bb2c07bab0a6bb55"}, + {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:5448564754c154997bc09e95a44b81b9e31ae918a86c0fcb35c4aa4922756f55"}, + {file = "pyarrow-16.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:729f7b262aa620c9df8b9967db96c1575e4cfc8c25d078a06968e527b8d6ec05"}, + {file = "pyarrow-16.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:fb8065dbc0d051bf2ae2453af0484d99a43135cadabacf0af588a3be81fbbb9b"}, + {file = "pyarrow-16.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:20ce707d9aa390593ea93218b19d0eadab56390311cb87aad32c9a869b0e958c"}, + {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5823275c8addbbb50cd4e6a6839952682a33255b447277e37a6f518d6972f4e1"}, + {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab8b9050752b16a8b53fcd9853bf07d8daf19093533e990085168f40c64d978"}, + {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:42e56557bc7c5c10d3e42c3b32f6cff649a29d637e8f4e8b311d334cc4326730"}, + {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a7abdee4a4a7cfa239e2e8d721224c4b34ffe69a0ca7981354fe03c1328789b"}, + {file = "pyarrow-16.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:ef2f309b68396bcc5a354106741d333494d6a0d3e1951271849787109f0229a6"}, + {file = "pyarrow-16.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:ed66e5217b4526fa3585b5e39b0b82f501b88a10d36bd0d2a4d8aa7b5a48e2df"}, + {file = "pyarrow-16.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc8814310486f2a73c661ba8354540f17eef51e1b6dd090b93e3419d3a097b3a"}, + {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c2f5e239db7ed43e0ad2baf46a6465f89c824cc703f38ef0fde927d8e0955f7"}, + {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f293e92d1db251447cb028ae12f7bc47526e4649c3a9924c8376cab4ad6b98bd"}, + {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:dd9334a07b6dc21afe0857aa31842365a62eca664e415a3f9536e3a8bb832c07"}, + {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d91073d1e2fef2c121154680e2ba7e35ecf8d4969cc0af1fa6f14a8675858159"}, + {file = "pyarrow-16.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:71d52561cd7aefd22cf52538f262850b0cc9e4ec50af2aaa601da3a16ef48877"}, + {file = "pyarrow-16.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b93c9a50b965ee0bf4fef65e53b758a7e8dcc0c2d86cebcc037aaaf1b306ecc0"}, + {file = "pyarrow-16.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d831690844706e374c455fba2fb8cfcb7b797bfe53ceda4b54334316e1ac4fa4"}, + {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35692ce8ad0b8c666aa60f83950957096d92f2a9d8d7deda93fb835e6053307e"}, + {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dd3151d098e56f16a8389c1247137f9e4c22720b01c6f3aa6dec29a99b74d80"}, + {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:bd40467bdb3cbaf2044ed7a6f7f251c8f941c8b31275aaaf88e746c4f3ca4a7a"}, + {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:00a1dcb22ad4ceb8af87f7bd30cc3354788776c417f493089e0a0af981bc8d80"}, + {file = "pyarrow-16.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:fda9a7cebd1b1d46c97b511f60f73a5b766a6de4c5236f144f41a5d5afec1f35"}, + {file = "pyarrow-16.0.0.tar.gz", hash = "sha256:59bb1f1edbbf4114c72415f039f1359f1a57d166a331c3229788ccbfbb31689a"}, +] + +[package.dependencies] +numpy = ">=1.16.6" + [[package]] name = "pycparser" version = "2.22" @@ -3057,7 +3131,6 @@ files = [ {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, @@ -3623,78 +3696,33 @@ files = [ [[package]] name = "safe-ds" -version = "0.21.0" +version = "0.23.0" description = "A user-friendly library for Data Science in Python." optional = false -python-versions = "<3.13,>=3.11" -files = [ - {file = "safe_ds-0.21.0-py3-none-any.whl", hash = "sha256:1fb06031a4a9fc5d32cb05eb87e6ab40afd5201dc4b1372bdae26879ed85c731"}, - {file = "safe_ds-0.21.0.tar.gz", hash = "sha256:ef338a996a52210cf79a314c175d72c11a41c55bcd5153541f79bcd40795f0af"}, -] +python-versions = "^3.11,<3.13" +files = [] +develop = false [package.dependencies] -apipkg = ">=3.0.2,<4.0.0" -ipython = ">=8.8.0,<9.0.0" +apipkg = "^3.0.2" levenshtein = ">=0.21.1,<0.26.0" -matplotlib = ">=3.6.3,<4.0.0" -openpyxl = ">=3.1.2,<4.0.0" -pandas = ">=2.0.0,<3.0.0" +matplotlib = "^3.6.3" +openpyxl = "^3.1.2" +pandas = "^2.0.0" pillow = ">=9.5,<11.0" -scikit-image = ">=0.21,<0.23" -scikit-learn = ">=1.2.0,<2.0.0" -seaborn = ">=0.13.0,<0.14.0" -statsmodels = ">=0.14.1,<0.15.0" -torch = ">=2.2.0,<3.0.0" -torchvision = ">=0.17.0,<0.18.0" -xxhash = ">=3.4.1,<4.0.0" - -[[package]] -name = "scikit-image" -version = "0.22.0" -description = "Image processing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "scikit_image-0.22.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:74ec5c1d4693506842cc7c9487c89d8fc32aed064e9363def7af08b8f8cbb31d"}, - {file = "scikit_image-0.22.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:a05ae4fe03d802587ed8974e900b943275548cde6a6807b785039d63e9a7a5ff"}, - {file = "scikit_image-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a92dca3d95b1301442af055e196a54b5a5128c6768b79fc0a4098f1d662dee6"}, - {file = "scikit_image-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3663d063d8bf2fb9bdfb0ca967b9ee3b6593139c860c7abc2d2351a8a8863938"}, - {file = "scikit_image-0.22.0-cp310-cp310-win_amd64.whl", hash = "sha256:ebdbdc901bae14dab637f8d5c99f6d5cc7aaf4a3b6f4003194e003e9f688a6fc"}, - {file = "scikit_image-0.22.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:95d6da2d8a44a36ae04437c76d32deb4e3c993ffc846b394b9949fd8ded73cb2"}, - {file = "scikit_image-0.22.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:2c6ef454a85f569659b813ac2a93948022b0298516b757c9c6c904132be327e2"}, - {file = "scikit_image-0.22.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e87872f067444ee90a00dd49ca897208308645382e8a24bd3e76f301af2352cd"}, - {file = "scikit_image-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5c378db54e61b491b9edeefff87e49fcf7fdf729bb93c777d7a5f15d36f743e"}, - {file = "scikit_image-0.22.0-cp311-cp311-win_amd64.whl", hash = "sha256:2bcb74adb0634258a67f66c2bb29978c9a3e222463e003b67ba12056c003971b"}, - {file = "scikit_image-0.22.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:003ca2274ac0fac252280e7179ff986ff783407001459ddea443fe7916e38cff"}, - {file = "scikit_image-0.22.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:cf3c0c15b60ae3e557a0c7575fbd352f0c3ce0afca562febfe3ab80efbeec0e9"}, - {file = "scikit_image-0.22.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5b23908dd4d120e6aecb1ed0277563e8cbc8d6c0565bdc4c4c6475d53608452"}, - {file = "scikit_image-0.22.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be79d7493f320a964f8fcf603121595ba82f84720de999db0fcca002266a549a"}, - {file = "scikit_image-0.22.0-cp312-cp312-win_amd64.whl", hash = "sha256:722b970aa5da725dca55252c373b18bbea7858c1cdb406e19f9b01a4a73b30b2"}, - {file = "scikit_image-0.22.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:22318b35044cfeeb63ee60c56fc62450e5fe516228138f1d06c7a26378248a86"}, - {file = "scikit_image-0.22.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:9e801c44a814afdadeabf4dffdffc23733e393767958b82319706f5fa3e1eaa9"}, - {file = "scikit_image-0.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c472a1fb3665ec5c00423684590631d95f9afcbc97f01407d348b821880b2cb3"}, - {file = "scikit_image-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b7a6c89e8d6252332121b58f50e1625c35f7d6a85489c0b6b7ee4f5155d547a"}, - {file = "scikit_image-0.22.0-cp39-cp39-win_amd64.whl", hash = "sha256:5071b8f6341bfb0737ab05c8ab4ac0261f9e25dbcc7b5d31e5ed230fd24a7929"}, - {file = "scikit_image-0.22.0.tar.gz", hash = "sha256:018d734df1d2da2719087d15f679d19285fce97cd37695103deadfaef2873236"}, -] - -[package.dependencies] -imageio = ">=2.27" -lazy_loader = ">=0.3" -networkx = ">=2.8" -numpy = ">=1.22" -packaging = ">=21" -pillow = ">=9.0.1" -scipy = ">=1.8" -tifffile = ">=2022.8.12" +polars = {version = "^0.20.24", extras = ["numpy", "pyarrow"]} +scikit-learn = "^1.2.0" +seaborn = "^0.13.0" +statsmodels = "^0.14.1" +torch = "^2.3.0" +torchvision = "^0.18.0" +xxhash = "^3.4.1" -[package.extras] -build = ["Cython (>=0.29.32)", "build", "meson-python (>=0.14)", "ninja", "numpy (>=1.22)", "packaging (>=21)", "pythran", "setuptools (>=67)", "spin (==0.6)", "wheel"] -data = ["pooch (>=1.6.0)"] -developer = ["pre-commit", "tomli"] -docs = ["PyWavelets (>=1.1.1)", "dask[array] (>=2022.9.2)", "ipykernel", "ipywidgets", "kaleido", "matplotlib (>=3.5)", "myst-parser", "numpydoc (>=1.6)", "pandas (>=1.5)", "plotly (>=5.10)", "pooch (>=1.6)", "pydata-sphinx-theme (>=0.14.1)", "pytest-runner", "scikit-learn (>=1.1)", "seaborn (>=0.11)", "sphinx (>=7.2)", "sphinx-copybutton", "sphinx-gallery (>=0.14)", "sphinx_design (>=0.5)", "tifffile (>=2022.8.12)"] -optional = ["PyWavelets (>=1.1.1)", "SimpleITK", "astropy (>=5.0)", "cloudpickle (>=0.2.1)", "dask[array] (>=2021.1.0)", "matplotlib (>=3.5)", "pooch (>=1.6.0)", "pyamg", "scikit-learn (>=1.1)"] -test = ["asv", "matplotlib (>=3.5)", "numpydoc (>=1.5)", "pooch (>=1.6.0)", "pytest (>=7.0)", "pytest-cov (>=2.11.0)", "pytest-faulthandler", "pytest-localserver"] +[package.source] +type = "git" +url = "https://github.com/Safe-DS/Library.git" +reference = "HEAD" +resolved_reference = "0564b523c46df74ac235c22783dcbf3d515ed122" [[package]] name = "scikit-learn" @@ -3928,6 +3956,19 @@ files = [ [package.dependencies] mpmath = ">=0.19" +[[package]] +name = "tbb" +version = "2021.12.0" +description = "IntelĀ® oneAPI Threading Building Blocks (oneTBB)" +optional = false +python-versions = "*" +files = [ + {file = "tbb-2021.12.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:f2cc9a7f8ababaa506cbff796ce97c3bf91062ba521e15054394f773375d81d8"}, + {file = "tbb-2021.12.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:a925e9a7c77d3a46ae31c34b0bb7f801c4118e857d137b68f68a8e458fcf2bd7"}, + {file = "tbb-2021.12.0-py3-none-win32.whl", hash = "sha256:b1725b30c174048edc8be70bd43bb95473f396ce895d91151a474d0fa9f450a8"}, + {file = "tbb-2021.12.0-py3-none-win_amd64.whl", hash = "sha256:fc2772d850229f2f3df85f1109c4844c495a2db7433d38200959ee9265b34789"}, +] + [[package]] name = "terminado" version = "0.18.1" @@ -3951,32 +3992,15 @@ typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] [[package]] name = "threadpoolctl" -version = "3.4.0" +version = "3.5.0" description = "threadpoolctl" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.4.0-py3-none-any.whl", hash = "sha256:8f4c689a65b23e5ed825c8436a92b818aac005e0f3715f6a1664d7c7ee29d262"}, - {file = "threadpoolctl-3.4.0.tar.gz", hash = "sha256:f11b491a03661d6dd7ef692dd422ab34185d982466c49c8f98c8f716b5c93196"}, -] - -[[package]] -name = "tifffile" -version = "2024.4.24" -description = "Read and write TIFF files" -optional = false -python-versions = ">=3.9" -files = [ - {file = "tifffile-2024.4.24-py3-none-any.whl", hash = "sha256:8d0b982f4b01ace358835ae6c2beb5a70cb7287f5d3a2e96c318bd5befa97b1f"}, - {file = "tifffile-2024.4.24.tar.gz", hash = "sha256:e329f36ac8ff3bbe7dd04609340be26b03c4b9e9a69235fc3ab33434157c38ea"}, + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] -[package.dependencies] -numpy = "*" - -[package.extras] -all = ["defusedxml", "fsspec", "imagecodecs (>=2023.8.12)", "lxml", "matplotlib", "zarr"] - [[package]] name = "tinycss2" version = "1.3.0" @@ -4008,42 +4032,28 @@ files = [ [[package]] name = "torch" -version = "2.2.2" +version = "2.3.0+cu121" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.2.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:bc889d311a855dd2dfd164daf8cc903a6b7273a747189cebafdd89106e4ad585"}, - {file = "torch-2.2.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:15dffa4cc3261fa73d02f0ed25f5fa49ecc9e12bf1ae0a4c1e7a88bbfaad9030"}, - {file = "torch-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:11e8fe261233aeabd67696d6b993eeb0896faa175c6b41b9a6c9f0334bdad1c5"}, - {file = "torch-2.2.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:b2e2200b245bd9f263a0d41b6a2dab69c4aca635a01b30cca78064b0ef5b109e"}, - {file = "torch-2.2.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:877b3e6593b5e00b35bbe111b7057464e76a7dd186a287280d941b564b0563c2"}, - {file = "torch-2.2.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:ad4c03b786e074f46606f4151c0a1e3740268bcf29fbd2fdf6666d66341c1dcb"}, - {file = "torch-2.2.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:32827fa1fbe5da8851686256b4cd94cc7b11be962862c2293811c94eea9457bf"}, - {file = "torch-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:f9ef0a648310435511e76905f9b89612e45ef2c8b023bee294f5e6f7e73a3e7c"}, - {file = "torch-2.2.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:95b9b44f3bcebd8b6cd8d37ec802048c872d9c567ba52c894bba90863a439059"}, - {file = "torch-2.2.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:49aa4126ede714c5aeef7ae92969b4b0bbe67f19665106463c39f22e0a1860d1"}, - {file = "torch-2.2.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:cf12cdb66c9c940227ad647bc9cf5dba7e8640772ae10dfe7569a0c1e2a28aca"}, - {file = "torch-2.2.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:89ddac2a8c1fb6569b90890955de0c34e1724f87431cacff4c1979b5f769203c"}, - {file = "torch-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:451331406b760f4b1ab298ddd536486ab3cfb1312614cfe0532133535be60bea"}, - {file = "torch-2.2.2-cp312-none-macosx_10_9_x86_64.whl", hash = "sha256:eb4d6e9d3663e26cd27dc3ad266b34445a16b54908e74725adb241aa56987533"}, - {file = "torch-2.2.2-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:bf9558da7d2bf7463390b3b2a61a6a3dbb0b45b161ee1dd5ec640bf579d479fc"}, - {file = "torch-2.2.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cd2bf7697c9e95fb5d97cc1d525486d8cf11a084c6af1345c2c2c22a6b0029d0"}, - {file = "torch-2.2.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b421448d194496e1114d87a8b8d6506bce949544e513742b097e2ab8f7efef32"}, - {file = "torch-2.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:3dbcd563a9b792161640c0cffe17e3270d85e8f4243b1f1ed19cca43d28d235b"}, - {file = "torch-2.2.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:31f4310210e7dda49f1fb52b0ec9e59382cfcb938693f6d5378f25b43d7c1d29"}, - {file = "torch-2.2.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:c795feb7e8ce2e0ef63f75f8e1ab52e7fd5e1a4d7d0c31367ade1e3de35c9e95"}, - {file = "torch-2.2.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:a6e5770d68158d07456bfcb5318b173886f579fdfbf747543901ce718ea94782"}, - {file = "torch-2.2.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:67dcd726edff108e2cd6c51ff0e416fd260c869904de95750e80051358680d24"}, - {file = "torch-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:539d5ef6c4ce15bd3bd47a7b4a6e7c10d49d4d21c0baaa87c7d2ef8698632dfb"}, - {file = "torch-2.2.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:dff696de90d6f6d1e8200e9892861fd4677306d0ef604cb18f2134186f719f82"}, - {file = "torch-2.2.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:3a4dd910663fd7a124c056c878a52c2b0be4a5a424188058fe97109d4436ee42"}, + {file = "torch-2.3.0+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:0a12aa9aa6bc442dff8823ac8b48d991fd0771562eaa38593f9c8196d65f7007"}, + {file = "torch-2.3.0+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:002027d18a9c054f08fe9cf7a729e041229e783e065a71349015dcccc9a7137e"}, + {file = "torch-2.3.0+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:5df7e3cb3961018a891e4edef1e0bc1f3304a8d943f81b24a8c6bf687ca49a67"}, + {file = "torch-2.3.0+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:f7876ec20b42dd569e7a11c5af36febccc03830f63dfdedbd4026506e086cab6"}, + {file = "torch-2.3.0+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:f15b6f549eebc6e6b22b26754e4f1d7e4469bcd2d4ba1eaab57268ad80bcca96"}, + {file = "torch-2.3.0+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:58ac08166e7a3665362960ff013edd06c90a0926de62de47a930c03563b0ac0f"}, + {file = "torch-2.3.0+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:9598b959f564ee3ebe3603b0ba01d24174ca8016feca98104f0301f1490617ca"}, + {file = "torch-2.3.0+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:d7620f3c92e33030274b7b369a93d13ec3b35c965e790d6df27fc6d964a4c829"}, + {file = "torch-2.3.0+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:3cc15e4c2682a85518121a2050d6be7976d98fc4843bbc13b6f5bee275a1b6ee"}, + {file = "torch-2.3.0+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:77b690e7e0fd472a5d0146394f74fac82ab1e10b822baa9b955dec0667fe83c6"}, ] [package.dependencies] filelock = "*" fsspec = "*" jinja2 = "*" +mkl = {version = ">=2021.1.1,<=2021.4.0", markers = "platform_system == \"Windows\""} networkx = "*" nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} @@ -4054,58 +4064,53 @@ nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linu nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} sympy = "*" -triton = {version = "2.2.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} +triton = {version = "2.3.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} typing-extensions = ">=4.8.0" [package.extras] opt-einsum = ["opt-einsum (>=3.3)"] optree = ["optree (>=0.9.1)"] +[package.source] +type = "legacy" +url = "https://download.pytorch.org/whl/cu121" +reference = "torch_cuda121" + [[package]] name = "torchvision" -version = "0.17.2" +version = "0.18.0+cu121" description = "image and video datasets and models for torch deep learning" optional = false python-versions = ">=3.8" files = [ - {file = "torchvision-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:1f2910fe3c21ad6875b2720d46fad835b2e4b336e9553d31ca364d24c90b1d4f"}, - {file = "torchvision-0.17.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ecc1c503fa8a54fbab777e06a7c228032b8ab78efebf35b28bc8f22f544f51f1"}, - {file = "torchvision-0.17.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:f400145fc108833e7c2fc28486a04989ca742146d7a2a2cc48878ebbb40cdbbd"}, - {file = "torchvision-0.17.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e9e4bed404af33dfc92eecc2b513d21ddc4c242a7fd8708b3b09d3a26aa6f444"}, - {file = "torchvision-0.17.2-cp310-cp310-win_amd64.whl", hash = "sha256:ba2e62f233eab3d42b648c122a3a29c47cc108ca314dfd5cbb59cd3a143fd623"}, - {file = "torchvision-0.17.2-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:9b83e55ee7d0a1704f52b9c0ac87388e7a6d1d98a6bde7b0b35f9ab54d7bda54"}, - {file = "torchvision-0.17.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e031004a1bc432c980a7bd642f6c189a3efc316e423fc30b5569837166a4e28d"}, - {file = "torchvision-0.17.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:3bbc24b7713e8f22766992562547d8b4b10001208d372fe599255af84bfd1a69"}, - {file = "torchvision-0.17.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:833fd2e4216ced924c8aca0525733fe727f9a1af66dfad7c5be7257e97c39678"}, - {file = "torchvision-0.17.2-cp311-cp311-win_amd64.whl", hash = "sha256:6835897df852fad1015e6a106c167c83848114cbcc7d86112384a973404e4431"}, - {file = "torchvision-0.17.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:14fd1d4a033c325bdba2d03a69c3450cab6d3a625f85cc375781d9237ca5d04d"}, - {file = "torchvision-0.17.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9c3acbebbe379af112b62b535820174277b1f3eed30df264a4e458d58ee4e5b2"}, - {file = "torchvision-0.17.2-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:77d680adf6ce367166a186d2c7fda3a73807ab9a03b2c31a03fa8812c8c5335b"}, - {file = "torchvision-0.17.2-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:f1c9ab3152cfb27f83aca072cac93a3a4c4e4ab0261cf0f2d516b9868a4e96f3"}, - {file = "torchvision-0.17.2-cp312-cp312-win_amd64.whl", hash = "sha256:3f784381419f3ed3f2ec2aa42fb4aeec5bf4135e298d1631e41c926e6f1a0dff"}, - {file = "torchvision-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:b83aac8d78f48981146d582168d75b6c947cfb0a7693f76e219f1926f6e595a3"}, - {file = "torchvision-0.17.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1ece40557e122d79975860a005aa7e2a9e2e6c350a03e78a00ec1450083312fd"}, - {file = "torchvision-0.17.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:32dbeba3987e20f2dc1bce8d1504139fff582898346dfe8ad98d649f97ca78fa"}, - {file = "torchvision-0.17.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:35ba5c1600c3203549d2316422a659bd20c0cfda1b6085eec94fb9f35f55ca43"}, - {file = "torchvision-0.17.2-cp38-cp38-win_amd64.whl", hash = "sha256:2f69570f50b1d195e51bc03feffb7b7728207bc36efcfb1f0813712b2379d881"}, - {file = "torchvision-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:4868bbfa55758c8107e69a0e7dd5e77b89056035cd38b767ad5b98cdb71c0f0d"}, - {file = "torchvision-0.17.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:efd6d0dd0668e15d01a2cffadc74068433b32cbcf5692e0c4aa15fc5cb250ce7"}, - {file = "torchvision-0.17.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7dc85b397f6c6d9ef12716ce0d6e11ac2b803f5cccff6fe3966db248e7774478"}, - {file = "torchvision-0.17.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d506854c5acd69b20a8b6641f01fe841685a21c5406b56813184f1c9fc94279e"}, - {file = "torchvision-0.17.2-cp39-cp39-win_amd64.whl", hash = "sha256:067095e87a020a7a251ac1d38483aa591c5ccb81e815527c54db88a982fc9267"}, + {file = "torchvision-0.18.0+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:13e1b48dc5ce41ccb8100ab3dd26fdf31d8f1e904ecf2865ac524493013d0df5"}, + {file = "torchvision-0.18.0+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:4ab207a0f35c8c2a43da91f19ee9248520239633dc8e11a9e4a2e77b076bb9db"}, + {file = "torchvision-0.18.0+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:1e516779520fc92157d6cb245ac0fd3f79872fe81c84b8593a8f2e998106f5b1"}, + {file = "torchvision-0.18.0+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:3e5557512ec9a31a6ce33a1107827427ef50ad65e88cd35012161d7392ef144b"}, + {file = "torchvision-0.18.0+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:700f6019bebee9e0ee8b0bcbdb1588809c94a2eb947a1fde2e06adc34b60da2a"}, + {file = "torchvision-0.18.0+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:e09966baf7945085d7725ac7c944172c632516643d603bde5855f6b3cf68efcf"}, + {file = "torchvision-0.18.0+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:c2483b2cc62278fbaa6b67d2a9d808d245044f8b64a821596eae68ec6a0d5ed0"}, + {file = "torchvision-0.18.0+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:1d637b1428a076dfaff71ca0a5b8ef200b5b5ff7dfe2ed9359be0eff43734e5a"}, + {file = "torchvision-0.18.0+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:1bfe0c67fd5461a3a593f8f17e1544f07a6bd6686e155200dd244947074fcd51"}, + {file = "torchvision-0.18.0+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:611bb0b42c51de0c1bbcc8e90f88b4d48c8b99451bdb2e4761028b93cb086437"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -torch = "2.2.2" +torch = "2.3.0" [package.extras] scipy = ["scipy"] +[package.source] +type = "legacy" +url = "https://download.pytorch.org/whl/cu121" +reference = "torch_cuda121" + [[package]] name = "tornado" version = "6.4" @@ -4143,17 +4148,17 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "triton" -version = "2.2.0" +version = "2.3.0" description = "A language and compiler for custom Deep Learning operations" optional = false python-versions = "*" files = [ - {file = "triton-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2294514340cfe4e8f4f9e5c66c702744c4a117d25e618bd08469d0bfed1e2e5"}, - {file = "triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da58a152bddb62cafa9a857dd2bc1f886dbf9f9c90a2b5da82157cd2b34392b0"}, - {file = "triton-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af58716e721460a61886668b205963dc4d1e4ac20508cc3f623aef0d70283d5"}, - {file = "triton-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8fe46d3ab94a8103e291bd44c741cc294b91d1d81c1a2888254cbf7ff846dab"}, - {file = "triton-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8ce26093e539d727e7cf6f6f0d932b1ab0574dc02567e684377630d86723ace"}, - {file = "triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:227cc6f357c5efcb357f3867ac2a8e7ecea2298cd4606a8ba1e931d1d5a947df"}, + {file = "triton-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ce4b8ff70c48e47274c66f269cce8861cf1dc347ceeb7a67414ca151b1822d8"}, + {file = "triton-2.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c3d9607f85103afdb279938fc1dd2a66e4f5999a58eb48a346bd42738f986dd"}, + {file = "triton-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:218d742e67480d9581bafb73ed598416cc8a56f6316152e5562ee65e33de01c0"}, + {file = "triton-2.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:381ec6b3dac06922d3e4099cfc943ef032893b25415de295e82b1a82b0359d2c"}, + {file = "triton-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:038e06a09c06a164fef9c48de3af1e13a63dc1ba3c792871e61a8e79720ea440"}, + {file = "triton-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d8f636e0341ac348899a47a057c3daea99ea7db31528a225a3ba4ded28ccc65"}, ] [package.dependencies] @@ -4453,4 +4458,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.11,<3.13" -content-hash = "030a0f2df08d4c30995cfc264f110ea46654fa0f4f5895b741cecce3a24524f3" +content-hash = "eeda7efdf1d52eb79b00ad5def6a8ac416a6d4d81b33e218e5e31743e77f173e" diff --git a/pyproject.toml b/pyproject.toml index 9f4acfd..50f2c2c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,7 +14,7 @@ packages = [ [tool.poetry.dependencies] python = "^3.11,<3.13" -safe-ds = ">=0.17,<0.22" +safe-ds = "0.23.0" [tool.poetry.group.dev.dependencies] pytest = ">=7.2.1,<9.0.0" @@ -34,6 +34,10 @@ mkdocs-section-index = "^0.3.9" mkdocs-jupyter = ">=0.23,<0.25" mkdocs-exclude = "^1.0.2" + +[tool.poetry.group.image_dataset_dev.dependencies] +safe-ds = {git = "https://github.com/Safe-DS/Library.git"} + [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" @@ -46,3 +50,9 @@ markers = [ [tool.black] line-length = 120 + + +[[tool.poetry.source]] +name = "torch_cuda121" +url = "https://download.pytorch.org/whl/cu121" +priority = "explicit" diff --git a/src/safeds_datasets/image/__init__.py b/src/safeds_datasets/image/__init__.py new file mode 100644 index 0000000..4e9487b --- /dev/null +++ b/src/safeds_datasets/image/__init__.py @@ -0,0 +1,5 @@ +"""Image datasets.""" + +from ._mnist import load_fashion_mnist, load_kmnist, load_mnist + +__all__ = ["load_fashion_mnist", "load_kmnist", "load_mnist"] diff --git a/src/safeds_datasets/image/_mnist/__init__.py b/src/safeds_datasets/image/_mnist/__init__.py new file mode 100644 index 0000000..7491a04 --- /dev/null +++ b/src/safeds_datasets/image/_mnist/__init__.py @@ -0,0 +1,5 @@ +"""MNIST like Datasets.""" + +from ._mnist import load_fashion_mnist, load_kmnist, load_mnist + +__all__ = ["load_fashion_mnist", "load_kmnist", "load_mnist"] diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py new file mode 100644 index 0000000..5e25c46 --- /dev/null +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -0,0 +1,202 @@ +import gzip +import os +import struct +import sys +import urllib.request +from array import array +from pathlib import Path +from urllib.error import HTTPError + +import torch +from safeds._config import _init_default_device +from safeds.data.image.containers import ImageList +from safeds.data.image.containers._single_size_image_list import _SingleSizeImageList +from safeds.data.labeled.containers import ImageDataset +from safeds.data.tabular.containers import Column + +_mnist_links: list[str] = ["http://yann.lecun.com/exdb/mnist/", "https://ossci-datasets.s3.amazonaws.com/mnist/"] +_mnist_files: dict[str, str] = { + "train-images-idx3": "train-images-idx3-ubyte.gz", + "train-labels-idx1": "train-labels-idx1-ubyte.gz", + "test-images-idx3": "t10k-images-idx3-ubyte.gz", + "test-labels-idx1": "t10k-labels-idx1-ubyte.gz", +} +_mnist_labels: dict[int, str] = {0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9"} +_mnist_folder: str = "mnist" + +_fashion_mnist_links: list[str] = ["http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"] +_fashion_mnist_files: dict[str, str] = _mnist_files +_fashion_mnist_labels: dict[int, str] = {0: "T-shirt/top", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle boot"} +_fashion_mnist_folder: str = "fashion-mnist" + +_kuzushiji_mnist_links: list[str] = ["http://codh.rois.ac.jp/kmnist/dataset/kmnist/"] +_kuzushiji_mnist_files: dict[str, str] = _mnist_files +_kuzushiji_mnist_labels: dict[int, str] = {0: "\u304a", 1: "\u304d", 2: "\u3059", 3: "\u3064", 4: "\u306a", 5: "\u306f", 6: "\u307e", 7: "\u3084", 8: "\u308c", 9: "\u3092"} +_kuzushiji_mnist_folder: str = "kmnist" + + +def load_mnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Column], ImageDataset[Column]]: + """ + Load the `MNIST `_ datasets. + + Parameters + ---------- + path: + the path were the files are stored or will be downloaded to + download: + weather the files should be downloaded to the given path + + Returns + ------- + train_dataset, test_dataset: + The train and test datasets. + + Raises + ------ + FileNotFoundError + if a file of the dataset cannot be found + """ + path = Path(path) / _mnist_folder + path.mkdir(parents=True, exist_ok=True) + path_files = os.listdir(path) + missing_files = [] + for file_path in _mnist_files.values(): + if file_path not in path_files: + missing_files.append(file_path) + if len(missing_files) > 0: + if download: + _download_mnist_like(path, {name: f_path for name, f_path in _mnist_files.items() if f_path in missing_files}, _mnist_links) + else: + raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") + return _load_mnist_like(path, _mnist_files, _mnist_labels) + + +def load_fashion_mnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Column], ImageDataset[Column]]: + """ + Load the `Fashion-MNIST `_ datasets. + + Parameters + ---------- + path: + the path were the files are stored or will be downloaded to + download: + weather the files should be downloaded to the given path + + Returns + ------- + train_dataset, test_dataset: + The train and test datasets. + + Raises + ------ + FileNotFoundError + if a file of the dataset cannot be found + """ + path = Path(path) / _fashion_mnist_folder + path.mkdir(parents=True, exist_ok=True) + path_files = os.listdir(path) + missing_files = [] + for file_path in _fashion_mnist_files.values(): + if file_path not in path_files: + missing_files.append(file_path) + if len(missing_files) > 0: + if download: + _download_mnist_like(path, {name: f_path for name, f_path in _fashion_mnist_files.items() if f_path in missing_files}, _fashion_mnist_links) + else: + raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") + return _load_mnist_like(path, _fashion_mnist_files, _fashion_mnist_labels) + + +def load_kmnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Column], ImageDataset[Column]]: + """ + Load the `Kuzushiji-MNIST `_ datasets. + + Parameters + ---------- + path: + the path were the files are stored or will be downloaded to + download: + weather the files should be downloaded to the given path + + Returns + ------- + train_dataset, test_dataset: + The train and test datasets. + + Raises + ------ + FileNotFoundError + if a file of the dataset cannot be found + """ + path = Path(path) / _kuzushiji_mnist_folder + path.mkdir(parents=True, exist_ok=True) + path_files = os.listdir(path) + missing_files = [] + for file_path in _kuzushiji_mnist_files.values(): + if file_path not in path_files: + missing_files.append(file_path) + if len(missing_files) > 0: + if download: + _download_mnist_like(path, {name: f_path for name, f_path in _kuzushiji_mnist_files.items() if f_path in missing_files}, _kuzushiji_mnist_links) + else: + raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") + return _load_mnist_like(path, _kuzushiji_mnist_files, _kuzushiji_mnist_labels) + + +def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, str]) -> tuple[ImageDataset[Column], ImageDataset[Column]]: + _init_default_device() + + path = Path(path) + test_labels: Column | None = None + train_labels: Column | None = None + test_image_list: ImageList | None = None + train_image_list: ImageList | None = None + for file_name, file_path in files.items(): + if "idx1" in file_name: + with gzip.open(path / file_path, mode='rb') as label_file: + magic, size = struct.unpack(">II", label_file.read(8)) + if magic != 2049: + raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") + if "train" in file_name: + train_labels = Column(file_name, [labels[l] for l in array("B", label_file.read())]) + else: + test_labels = Column(file_name, array("B", label_file.read())) + else: + with gzip.open(path / file_path, mode='rb') as image_file: + magic, size, rows, cols = struct.unpack(">IIII", image_file.read(16)) + if magic != 2051: + raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2051.") + image_data = array("B", image_file.read()) + image_tensor = torch.empty(size, 1, rows, cols) + for i in range(size): + image_tensor[i, 0] = torch.frombuffer(image_data[i * rows * cols:(i + 1) * rows * cols], dtype=torch.uint8).reshape(rows, cols) + image_list = _SingleSizeImageList() + image_list._tensor = image_tensor + image_list._tensor_positions_to_indices = list(range(size)) + image_list._indices_to_tensor_positions = image_list._calc_new_indices_to_tensor_positions() + if "train" in file_name: + train_image_list = image_list + else: + test_image_list = image_list + if train_image_list is None or test_image_list is None or train_labels is None or test_labels is None: + raise ValueError + return ImageDataset[Column](train_image_list, train_labels, 32, shuffle=True), ImageDataset[Column](test_image_list, test_labels, 32) + + +def _download_mnist_like(path: str | Path, files: dict[str, str], links: list[str]) -> None: + path = Path(path) + for file_name, file_path in files.items(): + for link in links: + try: + print(f"Trying to download file {file_name} via {link + file_path}") + urllib.request.urlretrieve(link + file_path, path / file_path, reporthook=_report_download_progress) + print() + break + except HTTPError as e: + print(e) + + +def _report_download_progress(current_packages: int, package_size: int, file_size: int) -> None: + percentage = min(((current_packages * package_size) / file_size) * 100, 100) + sys.stdout.write(f"\rDownloading... {percentage:.1f}%") + sys.stdout.flush() From d87f65a06c6538b6b6bc4e7e984f7f611cd7caa8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 00:48:32 +0200 Subject: [PATCH 02/15] refactor: linter --- src/safeds_datasets/image/_mnist/_mnist.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 5e25c46..6ce594e 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -2,18 +2,22 @@ import os import struct import sys +import tempfile import urllib.request from array import array from pathlib import Path +from typing import TYPE_CHECKING from urllib.error import HTTPError import torch from safeds._config import _init_default_device -from safeds.data.image.containers import ImageList from safeds.data.image.containers._single_size_image_list import _SingleSizeImageList from safeds.data.labeled.containers import ImageDataset from safeds.data.tabular.containers import Column +if TYPE_CHECKING: + from safeds.data.image.containers import ImageList + _mnist_links: list[str] = ["http://yann.lecun.com/exdb/mnist/", "https://ossci-datasets.s3.amazonaws.com/mnist/"] _mnist_files: dict[str, str] = { "train-images-idx3": "train-images-idx3-ubyte.gz", @@ -158,7 +162,7 @@ def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, if magic != 2049: raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") if "train" in file_name: - train_labels = Column(file_name, [labels[l] for l in array("B", label_file.read())]) + train_labels = Column(file_name, [labels[label_index] for label_index in array("B", label_file.read())]) else: test_labels = Column(file_name, array("B", label_file.read())) else: @@ -188,12 +192,12 @@ def _download_mnist_like(path: str | Path, files: dict[str, str], links: list[st for file_name, file_path in files.items(): for link in links: try: - print(f"Trying to download file {file_name} via {link + file_path}") + print(f"Trying to download file {file_name} via {link + file_path}") # noqa: T201 urllib.request.urlretrieve(link + file_path, path / file_path, reporthook=_report_download_progress) - print() + print() # noqa: T201 break except HTTPError as e: - print(e) + print(f"An error occurred while downloading: {e}") # noqa: T201 def _report_download_progress(current_packages: int, package_size: int, file_size: int) -> None: From 869011117327f724b8ac29f22876d4a17f7df1a3 Mon Sep 17 00:00:00 2001 From: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com> Date: Wed, 8 May 2024 22:50:03 +0000 Subject: [PATCH 03/15] style: apply automated linter fixes --- src/safeds_datasets/image/_mnist/_mnist.py | 63 +++++++++++++++++----- 1 file changed, 51 insertions(+), 12 deletions(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 6ce594e..463e41a 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -2,7 +2,6 @@ import os import struct import sys -import tempfile import urllib.request from array import array from pathlib import Path @@ -30,12 +29,34 @@ _fashion_mnist_links: list[str] = ["http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"] _fashion_mnist_files: dict[str, str] = _mnist_files -_fashion_mnist_labels: dict[int, str] = {0: "T-shirt/top", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle boot"} +_fashion_mnist_labels: dict[int, str] = { + 0: "T-shirt/top", + 1: "Trouser", + 2: "Pullover", + 3: "Dress", + 4: "Coat", + 5: "Sandal", + 6: "Shirt", + 7: "Sneaker", + 8: "Bag", + 9: "Ankle boot", +} _fashion_mnist_folder: str = "fashion-mnist" _kuzushiji_mnist_links: list[str] = ["http://codh.rois.ac.jp/kmnist/dataset/kmnist/"] _kuzushiji_mnist_files: dict[str, str] = _mnist_files -_kuzushiji_mnist_labels: dict[int, str] = {0: "\u304a", 1: "\u304d", 2: "\u3059", 3: "\u3064", 4: "\u306a", 5: "\u306f", 6: "\u307e", 7: "\u3084", 8: "\u308c", 9: "\u3092"} +_kuzushiji_mnist_labels: dict[int, str] = { + 0: "\u304a", + 1: "\u304d", + 2: "\u3059", + 3: "\u3064", + 4: "\u306a", + 5: "\u306f", + 6: "\u307e", + 7: "\u3084", + 8: "\u308c", + 9: "\u3092", +} _kuzushiji_mnist_folder: str = "kmnist" @@ -69,7 +90,9 @@ def load_mnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Co missing_files.append(file_path) if len(missing_files) > 0: if download: - _download_mnist_like(path, {name: f_path for name, f_path in _mnist_files.items() if f_path in missing_files}, _mnist_links) + _download_mnist_like( + path, {name: f_path for name, f_path in _mnist_files.items() if f_path in missing_files}, _mnist_links, + ) else: raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") return _load_mnist_like(path, _mnist_files, _mnist_labels) @@ -105,7 +128,11 @@ def load_fashion_mnist(path: str | Path, download: bool = True) -> tuple[ImageDa missing_files.append(file_path) if len(missing_files) > 0: if download: - _download_mnist_like(path, {name: f_path for name, f_path in _fashion_mnist_files.items() if f_path in missing_files}, _fashion_mnist_links) + _download_mnist_like( + path, + {name: f_path for name, f_path in _fashion_mnist_files.items() if f_path in missing_files}, + _fashion_mnist_links, + ) else: raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") return _load_mnist_like(path, _fashion_mnist_files, _fashion_mnist_labels) @@ -141,13 +168,19 @@ def load_kmnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[C missing_files.append(file_path) if len(missing_files) > 0: if download: - _download_mnist_like(path, {name: f_path for name, f_path in _kuzushiji_mnist_files.items() if f_path in missing_files}, _kuzushiji_mnist_links) + _download_mnist_like( + path, + {name: f_path for name, f_path in _kuzushiji_mnist_files.items() if f_path in missing_files}, + _kuzushiji_mnist_links, + ) else: raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") return _load_mnist_like(path, _kuzushiji_mnist_files, _kuzushiji_mnist_labels) -def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, str]) -> tuple[ImageDataset[Column], ImageDataset[Column]]: +def _load_mnist_like( + path: str | Path, files: dict[str, str], labels: dict[int, str], +) -> tuple[ImageDataset[Column], ImageDataset[Column]]: _init_default_device() path = Path(path) @@ -157,23 +190,27 @@ def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, train_image_list: ImageList | None = None for file_name, file_path in files.items(): if "idx1" in file_name: - with gzip.open(path / file_path, mode='rb') as label_file: + with gzip.open(path / file_path, mode="rb") as label_file: magic, size = struct.unpack(">II", label_file.read(8)) if magic != 2049: raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") if "train" in file_name: - train_labels = Column(file_name, [labels[label_index] for label_index in array("B", label_file.read())]) + train_labels = Column( + file_name, [labels[label_index] for label_index in array("B", label_file.read())], + ) else: test_labels = Column(file_name, array("B", label_file.read())) else: - with gzip.open(path / file_path, mode='rb') as image_file: + with gzip.open(path / file_path, mode="rb") as image_file: magic, size, rows, cols = struct.unpack(">IIII", image_file.read(16)) if magic != 2051: raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2051.") image_data = array("B", image_file.read()) image_tensor = torch.empty(size, 1, rows, cols) for i in range(size): - image_tensor[i, 0] = torch.frombuffer(image_data[i * rows * cols:(i + 1) * rows * cols], dtype=torch.uint8).reshape(rows, cols) + image_tensor[i, 0] = torch.frombuffer( + image_data[i * rows * cols : (i + 1) * rows * cols], dtype=torch.uint8, + ).reshape(rows, cols) image_list = _SingleSizeImageList() image_list._tensor = image_tensor image_list._tensor_positions_to_indices = list(range(size)) @@ -184,7 +221,9 @@ def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, test_image_list = image_list if train_image_list is None or test_image_list is None or train_labels is None or test_labels is None: raise ValueError - return ImageDataset[Column](train_image_list, train_labels, 32, shuffle=True), ImageDataset[Column](test_image_list, test_labels, 32) + return ImageDataset[Column](train_image_list, train_labels, 32, shuffle=True), ImageDataset[Column]( + test_image_list, test_labels, 32, + ) def _download_mnist_like(path: str | Path, files: dict[str, str], links: list[str]) -> None: From fda72fcdbc970d89dd81ea165a404ab87331724b Mon Sep 17 00:00:00 2001 From: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com> Date: Wed, 8 May 2024 22:51:37 +0000 Subject: [PATCH 04/15] style: apply automated linter fixes --- src/safeds_datasets/image/_mnist/_mnist.py | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 463e41a..c8ebd91 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -91,7 +91,9 @@ def load_mnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Co if len(missing_files) > 0: if download: _download_mnist_like( - path, {name: f_path for name, f_path in _mnist_files.items() if f_path in missing_files}, _mnist_links, + path, + {name: f_path for name, f_path in _mnist_files.items() if f_path in missing_files}, + _mnist_links, ) else: raise FileNotFoundError(f"Could not find files {[str(path / file) for file in missing_files]}") @@ -179,7 +181,9 @@ def load_kmnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[C def _load_mnist_like( - path: str | Path, files: dict[str, str], labels: dict[int, str], + path: str | Path, + files: dict[str, str], + labels: dict[int, str], ) -> tuple[ImageDataset[Column], ImageDataset[Column]]: _init_default_device() @@ -196,7 +200,8 @@ def _load_mnist_like( raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") if "train" in file_name: train_labels = Column( - file_name, [labels[label_index] for label_index in array("B", label_file.read())], + file_name, + [labels[label_index] for label_index in array("B", label_file.read())], ) else: test_labels = Column(file_name, array("B", label_file.read())) @@ -209,7 +214,8 @@ def _load_mnist_like( image_tensor = torch.empty(size, 1, rows, cols) for i in range(size): image_tensor[i, 0] = torch.frombuffer( - image_data[i * rows * cols : (i + 1) * rows * cols], dtype=torch.uint8, + image_data[i * rows * cols : (i + 1) * rows * cols], + dtype=torch.uint8, ).reshape(rows, cols) image_list = _SingleSizeImageList() image_list._tensor = image_tensor @@ -222,7 +228,9 @@ def _load_mnist_like( if train_image_list is None or test_image_list is None or train_labels is None or test_labels is None: raise ValueError return ImageDataset[Column](train_image_list, train_labels, 32, shuffle=True), ImageDataset[Column]( - test_image_list, test_labels, 32, + test_image_list, + test_labels, + 32, ) From c674e1496cbbf26e16b29f9b5447c41f966ebf3b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 01:12:14 +0200 Subject: [PATCH 05/15] test: added tests --- src/safeds_datasets/image/_mnist/_mnist.py | 11 ++- tests/safeds_datasets/image/__init__.py | 0 .../safeds_datasets/image/_mnist/__init__.py | 0 .../image/_mnist/test_mnist.py | 74 +++++++++++++++++++ 4 files changed, 79 insertions(+), 6 deletions(-) create mode 100644 tests/safeds_datasets/image/__init__.py create mode 100644 tests/safeds_datasets/image/_mnist/__init__.py create mode 100644 tests/safeds_datasets/image/_mnist/test_mnist.py diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 6ce594e..0ab6f5a 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -2,7 +2,6 @@ import os import struct import sys -import tempfile import urllib.request from array import array from pathlib import Path @@ -160,16 +159,16 @@ def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, with gzip.open(path / file_path, mode='rb') as label_file: magic, size = struct.unpack(">II", label_file.read(8)) if magic != 2049: - raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") + raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2049.") # pragma: no cover if "train" in file_name: train_labels = Column(file_name, [labels[label_index] for label_index in array("B", label_file.read())]) else: - test_labels = Column(file_name, array("B", label_file.read())) + test_labels = Column(file_name, [labels[label_index] for label_index in array("B", label_file.read())]) else: with gzip.open(path / file_path, mode='rb') as image_file: magic, size, rows, cols = struct.unpack(">IIII", image_file.read(16)) if magic != 2051: - raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2051.") + raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2051.") # pragma: no cover image_data = array("B", image_file.read()) image_tensor = torch.empty(size, 1, rows, cols) for i in range(size): @@ -183,7 +182,7 @@ def _load_mnist_like(path: str | Path, files: dict[str, str], labels: dict[int, else: test_image_list = image_list if train_image_list is None or test_image_list is None or train_labels is None or test_labels is None: - raise ValueError + raise ValueError # pragma: no cover return ImageDataset[Column](train_image_list, train_labels, 32, shuffle=True), ImageDataset[Column](test_image_list, test_labels, 32) @@ -197,7 +196,7 @@ def _download_mnist_like(path: str | Path, files: dict[str, str], links: list[st print() # noqa: T201 break except HTTPError as e: - print(f"An error occurred while downloading: {e}") # noqa: T201 + print(f"An error occurred while downloading: {e}") # noqa: T201 # pragma: no cover def _report_download_progress(current_packages: int, package_size: int, file_size: int) -> None: diff --git a/tests/safeds_datasets/image/__init__.py b/tests/safeds_datasets/image/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/safeds_datasets/image/_mnist/__init__.py b/tests/safeds_datasets/image/_mnist/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/safeds_datasets/image/_mnist/test_mnist.py b/tests/safeds_datasets/image/_mnist/test_mnist.py new file mode 100644 index 0000000..a436aa8 --- /dev/null +++ b/tests/safeds_datasets/image/_mnist/test_mnist.py @@ -0,0 +1,74 @@ +import os +import tempfile +from pathlib import Path + +import pytest +from safeds.data.labeled.containers import ImageDataset + +from safeds_datasets.image import load_mnist, _mnist, load_fashion_mnist, load_kmnist + + +class TestMNIST: + + def test_should_download_and_return_mnist(self): + with tempfile.TemporaryDirectory() as tmpdirname: + train, test = load_mnist(tmpdirname, True) + files = os.listdir(Path(tmpdirname) / _mnist._mnist._mnist_folder) + for mnist_file in _mnist._mnist._mnist_files.values(): + assert mnist_file in files + assert isinstance(train, ImageDataset) + assert isinstance(test, ImageDataset) + assert len(train) == 60_000 + assert len(test) == 10_000 + train_output = train.get_output() + test_output = test.get_output() + assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._mnist_labels.values()) + + def test_should_raise_if_file_not_found(self): + with tempfile.TemporaryDirectory() as tmpdirname: + with pytest.raises(FileNotFoundError): + load_mnist(tmpdirname, False) + + +class TestFashionMNIST: + + def test_should_download_and_return_mnist(self): + with tempfile.TemporaryDirectory() as tmpdirname: + train, test = load_fashion_mnist(tmpdirname, True) + files = os.listdir(Path(tmpdirname) / _mnist._mnist._fashion_mnist_folder) + for mnist_file in _mnist._mnist._fashion_mnist_files.values(): + assert mnist_file in files + assert isinstance(train, ImageDataset) + assert isinstance(test, ImageDataset) + assert len(train) == 60_000 + assert len(test) == 10_000 + train_output = train.get_output() + test_output = test.get_output() + assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._fashion_mnist_labels.values()) + + def test_should_raise_if_file_not_found(self): + with tempfile.TemporaryDirectory() as tmpdirname: + with pytest.raises(FileNotFoundError): + load_fashion_mnist(tmpdirname, False) + + +class TestKMNIST: + + def test_should_download_and_return_mnist(self): + with tempfile.TemporaryDirectory() as tmpdirname: + train, test = load_kmnist(tmpdirname, True) + files = os.listdir(Path(tmpdirname) / _mnist._mnist._kuzushiji_mnist_folder) + for mnist_file in _mnist._mnist._kuzushiji_mnist_files.values(): + assert mnist_file in files + assert isinstance(train, ImageDataset) + assert isinstance(test, ImageDataset) + assert len(train) == 60_000 + assert len(test) == 10_000 + train_output = train.get_output() + test_output = test.get_output() + assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._kuzushiji_mnist_labels.values()) + + def test_should_raise_if_file_not_found(self): + with tempfile.TemporaryDirectory() as tmpdirname: + with pytest.raises(FileNotFoundError): + load_kmnist(tmpdirname, False) From 6d897d0e5421b184fbeec5fb34572f4b80fd6437 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 01:17:43 +0200 Subject: [PATCH 06/15] refactor: linter --- .../image/_mnist/test_mnist.py | 24 +++++++++---------- 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/tests/safeds_datasets/image/_mnist/test_mnist.py b/tests/safeds_datasets/image/_mnist/test_mnist.py index a436aa8..98d2751 100644 --- a/tests/safeds_datasets/image/_mnist/test_mnist.py +++ b/tests/safeds_datasets/image/_mnist/test_mnist.py @@ -10,9 +10,9 @@ class TestMNIST: - def test_should_download_and_return_mnist(self): + def test_should_download_and_return_mnist(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: - train, test = load_mnist(tmpdirname, True) + train, test = load_mnist(tmpdirname, download=True) files = os.listdir(Path(tmpdirname) / _mnist._mnist._mnist_folder) for mnist_file in _mnist._mnist._mnist_files.values(): assert mnist_file in files @@ -24,17 +24,17 @@ def test_should_download_and_return_mnist(self): test_output = test.get_output() assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._mnist_labels.values()) - def test_should_raise_if_file_not_found(self): + def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: with pytest.raises(FileNotFoundError): - load_mnist(tmpdirname, False) + load_mnist(tmpdirname, download=False) class TestFashionMNIST: - def test_should_download_and_return_mnist(self): + def test_should_download_and_return_mnist(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: - train, test = load_fashion_mnist(tmpdirname, True) + train, test = load_fashion_mnist(tmpdirname, download=True) files = os.listdir(Path(tmpdirname) / _mnist._mnist._fashion_mnist_folder) for mnist_file in _mnist._mnist._fashion_mnist_files.values(): assert mnist_file in files @@ -46,17 +46,17 @@ def test_should_download_and_return_mnist(self): test_output = test.get_output() assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._fashion_mnist_labels.values()) - def test_should_raise_if_file_not_found(self): + def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: with pytest.raises(FileNotFoundError): - load_fashion_mnist(tmpdirname, False) + load_fashion_mnist(tmpdirname, download=False) class TestKMNIST: - def test_should_download_and_return_mnist(self): + def test_should_download_and_return_mnist(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: - train, test = load_kmnist(tmpdirname, True) + train, test = load_kmnist(tmpdirname, download=True) files = os.listdir(Path(tmpdirname) / _mnist._mnist._kuzushiji_mnist_folder) for mnist_file in _mnist._mnist._kuzushiji_mnist_files.values(): assert mnist_file in files @@ -68,7 +68,7 @@ def test_should_download_and_return_mnist(self): test_output = test.get_output() assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._kuzushiji_mnist_labels.values()) - def test_should_raise_if_file_not_found(self): + def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: with pytest.raises(FileNotFoundError): - load_kmnist(tmpdirname, False) + load_kmnist(tmpdirname, download=False) From 578272528f49dbac36997751ee5ec4b2f27cf877 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 01:21:24 +0200 Subject: [PATCH 07/15] refactor: linter --- tests/safeds_datasets/image/_mnist/test_mnist.py | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/tests/safeds_datasets/image/_mnist/test_mnist.py b/tests/safeds_datasets/image/_mnist/test_mnist.py index 98d2751..a692053 100644 --- a/tests/safeds_datasets/image/_mnist/test_mnist.py +++ b/tests/safeds_datasets/image/_mnist/test_mnist.py @@ -25,8 +25,7 @@ def test_should_download_and_return_mnist(self) -> None: assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._mnist_labels.values()) def test_should_raise_if_file_not_found(self) -> None: - with tempfile.TemporaryDirectory() as tmpdirname: - with pytest.raises(FileNotFoundError): + with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): load_mnist(tmpdirname, download=False) @@ -47,8 +46,7 @@ def test_should_download_and_return_mnist(self) -> None: assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._fashion_mnist_labels.values()) def test_should_raise_if_file_not_found(self) -> None: - with tempfile.TemporaryDirectory() as tmpdirname: - with pytest.raises(FileNotFoundError): + with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): load_fashion_mnist(tmpdirname, download=False) @@ -69,6 +67,5 @@ def test_should_download_and_return_mnist(self) -> None: assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._kuzushiji_mnist_labels.values()) def test_should_raise_if_file_not_found(self) -> None: - with tempfile.TemporaryDirectory() as tmpdirname: - with pytest.raises(FileNotFoundError): + with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): load_kmnist(tmpdirname, download=False) From 51902423a8465be0bdec314a92ce0031a3a6dd27 Mon Sep 17 00:00:00 2001 From: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com> Date: Wed, 8 May 2024 23:22:57 +0000 Subject: [PATCH 08/15] style: apply automated linter fixes --- src/safeds_datasets/image/_mnist/_mnist.py | 4 ++- .../image/_mnist/test_mnist.py | 27 +++++++++++++------ 2 files changed, 22 insertions(+), 9 deletions(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 1dc6961..f848453 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -204,7 +204,9 @@ def _load_mnist_like( [labels[label_index] for label_index in array("B", label_file.read())], ) else: - test_labels = Column(file_name, [labels[label_index] for label_index in array("B", label_file.read())]) + test_labels = Column( + file_name, [labels[label_index] for label_index in array("B", label_file.read())], + ) else: with gzip.open(path / file_path, mode="rb") as image_file: magic, size, rows, cols = struct.unpack(">IIII", image_file.read(16)) diff --git a/tests/safeds_datasets/image/_mnist/test_mnist.py b/tests/safeds_datasets/image/_mnist/test_mnist.py index a692053..b526bd8 100644 --- a/tests/safeds_datasets/image/_mnist/test_mnist.py +++ b/tests/safeds_datasets/image/_mnist/test_mnist.py @@ -4,8 +4,7 @@ import pytest from safeds.data.labeled.containers import ImageDataset - -from safeds_datasets.image import load_mnist, _mnist, load_fashion_mnist, load_kmnist +from safeds_datasets.image import _mnist, load_fashion_mnist, load_kmnist, load_mnist class TestMNIST: @@ -22,11 +21,15 @@ def test_should_download_and_return_mnist(self) -> None: assert len(test) == 10_000 train_output = train.get_output() test_output = test.get_output() - assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._mnist_labels.values()) + assert ( + set(train_output.get_unique_values()) + == set(test_output.get_unique_values()) + == set(_mnist._mnist._mnist_labels.values()) + ) def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): - load_mnist(tmpdirname, download=False) + load_mnist(tmpdirname, download=False) class TestFashionMNIST: @@ -43,11 +46,15 @@ def test_should_download_and_return_mnist(self) -> None: assert len(test) == 10_000 train_output = train.get_output() test_output = test.get_output() - assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._fashion_mnist_labels.values()) + assert ( + set(train_output.get_unique_values()) + == set(test_output.get_unique_values()) + == set(_mnist._mnist._fashion_mnist_labels.values()) + ) def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): - load_fashion_mnist(tmpdirname, download=False) + load_fashion_mnist(tmpdirname, download=False) class TestKMNIST: @@ -64,8 +71,12 @@ def test_should_download_and_return_mnist(self) -> None: assert len(test) == 10_000 train_output = train.get_output() test_output = test.get_output() - assert set(train_output.get_unique_values()) == set(test_output.get_unique_values()) == set(_mnist._mnist._kuzushiji_mnist_labels.values()) + assert ( + set(train_output.get_unique_values()) + == set(test_output.get_unique_values()) + == set(_mnist._mnist._kuzushiji_mnist_labels.values()) + ) def test_should_raise_if_file_not_found(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname, pytest.raises(FileNotFoundError): - load_kmnist(tmpdirname, download=False) + load_kmnist(tmpdirname, download=False) From aaaa0562a0325f554591fad0c5d9ae25e784e7f2 Mon Sep 17 00:00:00 2001 From: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com> Date: Wed, 8 May 2024 23:24:23 +0000 Subject: [PATCH 09/15] style: apply automated linter fixes --- src/safeds_datasets/image/_mnist/_mnist.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index f848453..a5dc11b 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -205,7 +205,8 @@ def _load_mnist_like( ) else: test_labels = Column( - file_name, [labels[label_index] for label_index in array("B", label_file.read())], + file_name, + [labels[label_index] for label_index in array("B", label_file.read())], ) else: with gzip.open(path / file_path, mode="rb") as image_file: From 2cdbc5daf8fce14d1eb2681534db2f8dd3e7ce41 Mon Sep 17 00:00:00 2001 From: Alexander <47296670+Marsmaennchen221@users.noreply.github.com> Date: Thu, 9 May 2024 17:30:55 +0200 Subject: [PATCH 10/15] Apply suggestions from code review Co-authored-by: Lars Reimann --- src/safeds_datasets/image/_mnist/_mnist.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index a5dc11b..0c4c1d5 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -69,7 +69,7 @@ def load_mnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[Co path: the path were the files are stored or will be downloaded to download: - weather the files should be downloaded to the given path + whether the files should be downloaded to the given path Returns ------- @@ -109,7 +109,7 @@ def load_fashion_mnist(path: str | Path, download: bool = True) -> tuple[ImageDa path: the path were the files are stored or will be downloaded to download: - weather the files should be downloaded to the given path + whether the files should be downloaded to the given path Returns ------- @@ -149,7 +149,7 @@ def load_kmnist(path: str | Path, download: bool = True) -> tuple[ImageDataset[C path: the path were the files are stored or will be downloaded to download: - weather the files should be downloaded to the given path + whether the files should be downloaded to the given path Returns ------- From 65d6e132f97069e1c45a0b3ad616a41b00c4a6c8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 18:06:04 +0200 Subject: [PATCH 11/15] build: bump safe-ds from 0.23.0 to 0.24.0 --- poetry.lock | 41 +++++++++++++++++++---------------------- pyproject.toml | 12 +----------- 2 files changed, 20 insertions(+), 33 deletions(-) diff --git a/poetry.lock b/poetry.lock index 53b33e4..d20f097 100644 --- a/poetry.lock +++ b/poetry.lock @@ -3131,6 +3131,7 @@ files = [ {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, @@ -3696,33 +3697,29 @@ files = [ [[package]] name = "safe-ds" -version = "0.23.0" +version = "0.24.0" description = "A user-friendly library for Data Science in Python." optional = false -python-versions = "^3.11,<3.13" -files = [] -develop = false +python-versions = "<3.13,>=3.11" +files = [ + {file = "safe_ds-0.24.0-py3-none-any.whl", hash = "sha256:1c350900d1b480a0b2aaacfdd3915059a22bc5a635a14cf92efe56223a7931f6"}, + {file = "safe_ds-0.24.0.tar.gz", hash = "sha256:e8156293f33b7f8dcc4e494327561c9235a54cd8ad3c90876db204fcc0520a2d"}, +] [package.dependencies] -apipkg = "^3.0.2" +apipkg = ">=3.0.2,<4.0.0" levenshtein = ">=0.21.1,<0.26.0" -matplotlib = "^3.6.3" -openpyxl = "^3.1.2" -pandas = "^2.0.0" +matplotlib = ">=3.6.3,<4.0.0" +openpyxl = ">=3.1.2,<4.0.0" +pandas = ">=2.0.0,<3.0.0" pillow = ">=9.5,<11.0" -polars = {version = "^0.20.24", extras = ["numpy", "pyarrow"]} -scikit-learn = "^1.2.0" -seaborn = "^0.13.0" -statsmodels = "^0.14.1" -torch = "^2.3.0" -torchvision = "^0.18.0" -xxhash = "^3.4.1" - -[package.source] -type = "git" -url = "https://github.com/Safe-DS/Library.git" -reference = "HEAD" -resolved_reference = "0564b523c46df74ac235c22783dcbf3d515ed122" +polars = {version = ">=0.20.25,<0.21.0", extras = ["numpy", "pyarrow"]} +scikit-learn = ">=1.2.0,<2.0.0" +seaborn = ">=0.13.0,<0.14.0" +statsmodels = ">=0.14.1,<0.15.0" +torch = ">=2.3.0,<3.0.0" +torchvision = ">=0.18.0,<0.19.0" +xxhash = ">=3.4.1,<4.0.0" [[package]] name = "scikit-learn" @@ -4458,4 +4455,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.11,<3.13" -content-hash = "eeda7efdf1d52eb79b00ad5def6a8ac416a6d4d81b33e218e5e31743e77f173e" +content-hash = "f30dadb994c7fc8f7ce65009427c65c56b6f6483344ec825e3dfec452129bad6" diff --git a/pyproject.toml b/pyproject.toml index 50f2c2c..306c19b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,7 +14,7 @@ packages = [ [tool.poetry.dependencies] python = "^3.11,<3.13" -safe-ds = "0.23.0" +safe-ds = "^0.24.0" [tool.poetry.group.dev.dependencies] pytest = ">=7.2.1,<9.0.0" @@ -34,10 +34,6 @@ mkdocs-section-index = "^0.3.9" mkdocs-jupyter = ">=0.23,<0.25" mkdocs-exclude = "^1.0.2" - -[tool.poetry.group.image_dataset_dev.dependencies] -safe-ds = {git = "https://github.com/Safe-DS/Library.git"} - [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" @@ -50,9 +46,3 @@ markers = [ [tool.black] line-length = 120 - - -[[tool.poetry.source]] -name = "torch_cuda121" -url = "https://download.pytorch.org/whl/cu121" -priority = "explicit" From af4ba2be6642d30877f0c04df2288007ac0e0956 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 9 May 2024 18:26:03 +0200 Subject: [PATCH 12/15] build: changed poetry.lock --- poetry.lock | 92 +++++++++++++++++++++++++++++------------------------ 1 file changed, 51 insertions(+), 41 deletions(-) diff --git a/poetry.lock b/poetry.lock index d20f097..e572e07 100644 --- a/poetry.lock +++ b/poetry.lock @@ -671,13 +671,13 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "filelock" -version = "3.14.0" +version = "3.13.4" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.14.0-py3-none-any.whl", hash = "sha256:43339835842f110ca7ae60f1e1c160714c5a6afd15a2873419ab185334975c0f"}, - {file = "filelock-3.14.0.tar.gz", hash = "sha256:6ea72da3be9b8c82afd3edcf99f2fffbb5076335a5ae4d03248bb5b6c3eae78a"}, + {file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"}, + {file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"}, ] [package.extras] @@ -1062,13 +1062,13 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "joblib" -version = "1.4.2" +version = "1.4.0" description = "Lightweight pipelining with Python functions" optional = false python-versions = ">=3.8" files = [ - {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, - {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, + {file = "joblib-1.4.0-py3-none-any.whl", hash = "sha256:42942470d4062537be4d54c83511186da1fc14ba354961a2114da91efa9a4ed7"}, + {file = "joblib-1.4.0.tar.gz", hash = "sha256:1eb0dc091919cd384490de890cb5dfd538410a6d4b3b54eef09fb8c50b409b1c"}, ] [[package]] @@ -3989,13 +3989,13 @@ typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] [[package]] name = "threadpoolctl" -version = "3.5.0" +version = "3.4.0" description = "threadpoolctl" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, - {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, + {file = "threadpoolctl-3.4.0-py3-none-any.whl", hash = "sha256:8f4c689a65b23e5ed825c8436a92b818aac005e0f3715f6a1664d7c7ee29d262"}, + {file = "threadpoolctl-3.4.0.tar.gz", hash = "sha256:f11b491a03661d6dd7ef692dd422ab34185d982466c49c8f98c8f716b5c93196"}, ] [[package]] @@ -4029,21 +4029,31 @@ files = [ [[package]] name = "torch" -version = "2.3.0+cu121" +version = "2.3.0" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.3.0+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:0a12aa9aa6bc442dff8823ac8b48d991fd0771562eaa38593f9c8196d65f7007"}, - {file = "torch-2.3.0+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:002027d18a9c054f08fe9cf7a729e041229e783e065a71349015dcccc9a7137e"}, - {file = "torch-2.3.0+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:5df7e3cb3961018a891e4edef1e0bc1f3304a8d943f81b24a8c6bf687ca49a67"}, - {file = "torch-2.3.0+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:f7876ec20b42dd569e7a11c5af36febccc03830f63dfdedbd4026506e086cab6"}, - {file = "torch-2.3.0+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:f15b6f549eebc6e6b22b26754e4f1d7e4469bcd2d4ba1eaab57268ad80bcca96"}, - {file = "torch-2.3.0+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:58ac08166e7a3665362960ff013edd06c90a0926de62de47a930c03563b0ac0f"}, - {file = "torch-2.3.0+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:9598b959f564ee3ebe3603b0ba01d24174ca8016feca98104f0301f1490617ca"}, - {file = "torch-2.3.0+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:d7620f3c92e33030274b7b369a93d13ec3b35c965e790d6df27fc6d964a4c829"}, - {file = "torch-2.3.0+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:3cc15e4c2682a85518121a2050d6be7976d98fc4843bbc13b6f5bee275a1b6ee"}, - {file = "torch-2.3.0+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:77b690e7e0fd472a5d0146394f74fac82ab1e10b822baa9b955dec0667fe83c6"}, + {file = "torch-2.3.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:d8ea5a465dbfd8501f33c937d1f693176c9aef9d1c1b0ca1d44ed7b0a18c52ac"}, + {file = "torch-2.3.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:09c81c5859a5b819956c6925a405ef1cdda393c9d8a01ce3851453f699d3358c"}, + {file = "torch-2.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:1bf023aa20902586f614f7682fedfa463e773e26c58820b74158a72470259459"}, + {file = "torch-2.3.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:758ef938de87a2653bba74b91f703458c15569f1562bf4b6c63c62d9c5a0c1f5"}, + {file = "torch-2.3.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:493d54ee2f9df100b5ce1d18c96dbb8d14908721f76351e908c9d2622773a788"}, + {file = "torch-2.3.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:bce43af735c3da16cc14c7de2be7ad038e2fbf75654c2e274e575c6c05772ace"}, + {file = "torch-2.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:729804e97b7cf19ae9ab4181f91f5e612af07956f35c8b2c8e9d9f3596a8e877"}, + {file = "torch-2.3.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:d24e328226d8e2af7cf80fcb1d2f1d108e0de32777fab4aaa2b37b9765d8be73"}, + {file = "torch-2.3.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:b0de2bdc0486ea7b14fc47ff805172df44e421a7318b7c4d92ef589a75d27410"}, + {file = "torch-2.3.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a306c87a3eead1ed47457822c01dfbd459fe2920f2d38cbdf90de18f23f72542"}, + {file = "torch-2.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:f9b98bf1a3c8af2d4c41f0bf1433920900896c446d1ddc128290ff146d1eb4bd"}, + {file = "torch-2.3.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:dca986214267b34065a79000cee54232e62b41dff1ec2cab9abc3fc8b3dee0ad"}, + {file = "torch-2.3.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:20572f426965dd8a04e92a473d7e445fa579e09943cc0354f3e6fef6130ce061"}, + {file = "torch-2.3.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e65ba85ae292909cde0dde6369826d51165a3fc8823dc1854cd9432d7f79b932"}, + {file = "torch-2.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:5515503a193781fd1b3f5c474e89c9dfa2faaa782b2795cc4a7ab7e67de923f6"}, + {file = "torch-2.3.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:6ae9f64b09516baa4ef890af0672dc981c20b1f0d829ce115d4420a247e88fba"}, + {file = "torch-2.3.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:cd0dc498b961ab19cb3f8dbf0c6c50e244f2f37dbfa05754ab44ea057c944ef9"}, + {file = "torch-2.3.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e05f836559251e4096f3786ee99f4a8cbe67bc7fbedba8ad5e799681e47c5e80"}, + {file = "torch-2.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:4fb27b35dbb32303c2927da86e27b54a92209ddfb7234afb1949ea2b3effffea"}, + {file = "torch-2.3.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:760f8bedff506ce9e6e103498f9b1e9e15809e008368594c3a66bf74a8a51380"}, ] [package.dependencies] @@ -4071,28 +4081,33 @@ typing-extensions = ">=4.8.0" opt-einsum = ["opt-einsum (>=3.3)"] optree = ["optree (>=0.9.1)"] -[package.source] -type = "legacy" -url = "https://download.pytorch.org/whl/cu121" -reference = "torch_cuda121" - [[package]] name = "torchvision" -version = "0.18.0+cu121" +version = "0.18.0" description = "image and video datasets and models for torch deep learning" optional = false python-versions = ">=3.8" files = [ - {file = "torchvision-0.18.0+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:13e1b48dc5ce41ccb8100ab3dd26fdf31d8f1e904ecf2865ac524493013d0df5"}, - {file = "torchvision-0.18.0+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:4ab207a0f35c8c2a43da91f19ee9248520239633dc8e11a9e4a2e77b076bb9db"}, - {file = "torchvision-0.18.0+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:1e516779520fc92157d6cb245ac0fd3f79872fe81c84b8593a8f2e998106f5b1"}, - {file = "torchvision-0.18.0+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:3e5557512ec9a31a6ce33a1107827427ef50ad65e88cd35012161d7392ef144b"}, - {file = "torchvision-0.18.0+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:700f6019bebee9e0ee8b0bcbdb1588809c94a2eb947a1fde2e06adc34b60da2a"}, - {file = "torchvision-0.18.0+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:e09966baf7945085d7725ac7c944172c632516643d603bde5855f6b3cf68efcf"}, - {file = "torchvision-0.18.0+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:c2483b2cc62278fbaa6b67d2a9d808d245044f8b64a821596eae68ec6a0d5ed0"}, - {file = "torchvision-0.18.0+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:1d637b1428a076dfaff71ca0a5b8ef200b5b5ff7dfe2ed9359be0eff43734e5a"}, - {file = "torchvision-0.18.0+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:1bfe0c67fd5461a3a593f8f17e1544f07a6bd6686e155200dd244947074fcd51"}, - {file = "torchvision-0.18.0+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:611bb0b42c51de0c1bbcc8e90f88b4d48c8b99451bdb2e4761028b93cb086437"}, + {file = "torchvision-0.18.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dd61628a3d189c6852a12dc5ed4cd2eece66d2d67f35a866cb16f1dcb06c8c62"}, + {file = "torchvision-0.18.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:493c45f9937dad37aa1b64b14da17c7a589c72b91adc4837d431009cfe29bd53"}, + {file = "torchvision-0.18.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:5337f6acfa1fe959d5cb340d01a00614d6b31ce7a4824ccb95435a85c5273b95"}, + {file = "torchvision-0.18.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd8e6f3b5beb49965f15c461302488edfa3d8c2d01d3bb79b150d6fb62711e3a"}, + {file = "torchvision-0.18.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6896a52168befe1105fb3c9335287390ed227e71d1e4ec4d68b62e8a3099fc09"}, + {file = "torchvision-0.18.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:3d7955398d4ceaad77c487c2c44f6f7813112402c9bab8cd906d346005891048"}, + {file = "torchvision-0.18.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e5a24d620cea14a4bb89f24aa2b506230c0a16a3ada57fc53ad80cfd256a2128"}, + {file = "torchvision-0.18.0-cp311-cp311-win_amd64.whl", hash = "sha256:6ad70ddfa879bda5ed886b2518fe562640e0059787cbd65cb2bffa7674541410"}, + {file = "torchvision-0.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:eb9d83c0e1dbb54ecb0fb04c87f786333e3a6fb8b9c400aca7c31081f9aa5707"}, + {file = "torchvision-0.18.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:b657d052d146f24cb3b2a78219bfc82ae70a9706671c50f632528907d10cccec"}, + {file = "torchvision-0.18.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a964afbc7ddf50a46b941477f6c35729b416deedd139756befd488245e2e226d"}, + {file = "torchvision-0.18.0-cp312-cp312-win_amd64.whl", hash = "sha256:7c770f0f748e0b17f57c0297508d7254f686cdf03fc2e2949f422b20574f4c0f"}, + {file = "torchvision-0.18.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2115a1906c015f5da9ceedc40a983313b0fd6e2c8a17108a92991706f51f6987"}, + {file = "torchvision-0.18.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:6323f7e5423ff2594d5891863b919deb9d0de95f01c36bf26fbd879036b6ed08"}, + {file = "torchvision-0.18.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:925d0a82cccf6f986c18b29b4392a942db65cbdb73c13a129c8493822eb9e36f"}, + {file = "torchvision-0.18.0-cp38-cp38-win_amd64.whl", hash = "sha256:95b42d0dc599b47a01530c7439a5751e67e45b85e3a67113989cf7c7c70f2039"}, + {file = "torchvision-0.18.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75e22ecf44a13b8f95b8ad421c0261282d859c61816badaca1959e073ccdd691"}, + {file = "torchvision-0.18.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:4c334b3e719ba0a9ba6e15d4aff1178f5e6d029174f346163fed525f0ccfffd3"}, + {file = "torchvision-0.18.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:36efd87001c6bee2383e043e46a025affb03179747c8f4777b9918527ffce756"}, + {file = "torchvision-0.18.0-cp39-cp39-win_amd64.whl", hash = "sha256:ccc292e093771d5baacf5535ac4416306b6b5f15676341cd4d010d8542eace25"}, ] [package.dependencies] @@ -4103,11 +4118,6 @@ torch = "2.3.0" [package.extras] scipy = ["scipy"] -[package.source] -type = "legacy" -url = "https://download.pytorch.org/whl/cu121" -reference = "torch_cuda121" - [[package]] name = "tornado" version = "6.4" From 087babeedb5476c75dff1a669d3847e0590ca295 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 16 May 2024 22:40:51 +0200 Subject: [PATCH 13/15] build: use Safe-DS >0.24.0 --- poetry.lock | 241 +------------------------------------------------ pyproject.toml | 2 +- 2 files changed, 5 insertions(+), 238 deletions(-) diff --git a/poetry.lock b/poetry.lock index e572e07..1e2ed87 100644 --- a/poetry.lock +++ b/poetry.lock @@ -630,17 +630,6 @@ files = [ {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, ] -[[package]] -name = "et-xmlfile" -version = "1.1.0" -description = "An implementation of lxml.xmlfile for the standard library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, - {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, -] - [[package]] name = "executing" version = "2.0.1" @@ -1537,108 +1526,6 @@ files = [ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] -[[package]] -name = "levenshtein" -version = "0.25.1" -description = "Python extension for computing string edit distances and similarities." -optional = false -python-versions = ">=3.8" -files = [ - {file = "Levenshtein-0.25.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:eb4d1ec9f2dcbde1757c4b7fb65b8682bc2de45b9552e201988f287548b7abdf"}, - {file = "Levenshtein-0.25.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b4d9fa3affef48a7e727cdbd0d9502cd060da86f34d8b3627edd769d347570e2"}, - {file = "Levenshtein-0.25.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c1b6cd186e58196ff8b402565317e9346b408d0c04fa0ed12ce4868c0fcb6d03"}, - {file = "Levenshtein-0.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82637ef5428384dd1812849dd7328992819bf0c4a20bff0a3b3ee806821af7ed"}, - {file = "Levenshtein-0.25.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e73656da6cc3e32a6e4bcd48562fcb64599ef124997f2c91f5320d7f1532c069"}, - {file = "Levenshtein-0.25.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5abff796f92cdfba69b9cbf6527afae918d0e95cbfac000bd84017f74e0bd427"}, - {file = "Levenshtein-0.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38827d82f2ca9cb755da6f03e686866f2f411280db005f4304272378412b4cba"}, - {file = "Levenshtein-0.25.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b989df1e3231261a87d68dfa001a2070771e178b09650f9cf99a20e3d3abc28"}, - {file = "Levenshtein-0.25.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:2011d3b3897d438a2f88ef7aed7747f28739cae8538ec7c18c33dd989930c7a0"}, - {file = "Levenshtein-0.25.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6c375b33ec7acc1c6855e8ee8c7c8ac6262576ffed484ff5c556695527f49686"}, - {file = "Levenshtein-0.25.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ce0cb9dd012ef1bf4d5b9d40603e7709b6581aec5acd32fcea9b371b294ca7aa"}, - {file = "Levenshtein-0.25.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:9da9ecb81bae67d784defed7274f894011259b038ec31f2339c4958157970115"}, - {file = "Levenshtein-0.25.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3bd7be5dbe5f4a1b691f381e39512927b39d1e195bd0ad61f9bf217a25bf36c9"}, - {file = "Levenshtein-0.25.1-cp310-cp310-win32.whl", hash = "sha256:f6abb9ced98261de67eb495b95e1d2325fa42b0344ed5763f7c0f36ee2e2bdba"}, - {file = "Levenshtein-0.25.1-cp310-cp310-win_amd64.whl", hash = "sha256:97581af3e0a6d359af85c6cf06e51f77f4d635f7109ff7f8ed7fd634d8d8c923"}, - {file = "Levenshtein-0.25.1-cp310-cp310-win_arm64.whl", hash = "sha256:9ba008f490788c6d8d5a10735fcf83559965be97e4ef0812db388a84b1cc736a"}, - {file = "Levenshtein-0.25.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f57d9cf06dac55c2d2f01f0d06e32acc074ab9a902921dc8fddccfb385053ad5"}, - {file = "Levenshtein-0.25.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:22b60c6d791f4ca67a3686b557ddb2a48de203dae5214f220f9dddaab17f44bb"}, - {file = "Levenshtein-0.25.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d0444ee62eccf1e6cedc7c5bc01a9face6ff70cc8afa3f3ca9340e4e16f601a4"}, - {file = "Levenshtein-0.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e8758be8221a274c83924bae8dd8f42041792565a3c3bdd3c10e3f9b4a5f94e"}, - {file = "Levenshtein-0.25.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:147221cfb1d03ed81d22fdd2a4c7fc2112062941b689e027a30d2b75bbced4a3"}, - {file = "Levenshtein-0.25.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a454d5bc4f4a289f5471418788517cc122fcc00d5a8aba78c54d7984840655a2"}, - {file = "Levenshtein-0.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c25f3778bbac78286bef2df0ca80f50517b42b951af0a5ddaec514412f79fac"}, - {file = "Levenshtein-0.25.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:181486cf465aff934694cc9a19f3898a1d28025a9a5f80fc1608217e7cd1c799"}, - {file = "Levenshtein-0.25.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b8db9f672a5d150706648b37b044dba61f36ab7216c6a121cebbb2899d7dfaa3"}, - {file = "Levenshtein-0.25.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f2a69fe5ddea586d439f9a50d0c51952982f6c0db0e3573b167aa17e6d1dfc48"}, - {file = "Levenshtein-0.25.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:3b684675a3bd35efa6997856e73f36c8a41ef62519e0267dcbeefd15e26cae71"}, - {file = "Levenshtein-0.25.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:cc707ef7edb71f6bf8339198b929ead87c022c78040e41668a4db68360129cef"}, - {file = "Levenshtein-0.25.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:41512c436b8c691326e2d07786d906cba0e92b5e3f455bf338befb302a0ca76d"}, - {file = "Levenshtein-0.25.1-cp311-cp311-win32.whl", hash = "sha256:2a3830175c01ade832ba0736091283f14a6506a06ffe8c846f66d9fbca91562f"}, - {file = "Levenshtein-0.25.1-cp311-cp311-win_amd64.whl", hash = "sha256:9e0af4e6e023e0c8f79af1d1ca5f289094eb91201f08ad90f426d71e4ae84052"}, - {file = "Levenshtein-0.25.1-cp311-cp311-win_arm64.whl", hash = "sha256:38e5d9a1d737d7b49fa17d6a4c03a0359288154bf46dc93b29403a9dd0cd1a7d"}, - {file = "Levenshtein-0.25.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4a40fa16ecd0bf9e557db67131aabeea957f82fe3e8df342aa413994c710c34e"}, - {file = "Levenshtein-0.25.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4f7d2045d5927cffa65a0ac671c263edbfb17d880fdce2d358cd0bda9bcf2b6d"}, - {file = "Levenshtein-0.25.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40f96590539f9815be70e330b4d2efcce0219db31db5a22fffe99565192f5662"}, - {file = "Levenshtein-0.25.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d78512dd25b572046ff86d8903bec283c373063349f8243430866b6a9946425"}, - {file = "Levenshtein-0.25.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c161f24a1b216e8555c874c7dd70c1a0d98f783f252a16c9face920a8b8a6f3e"}, - {file = "Levenshtein-0.25.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:06ebbfd010a00490795f478d18d7fa2ffc79c9c03fc03b678081f31764d16bab"}, - {file = "Levenshtein-0.25.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaa9ec0a4489ebfb25a9ec2cba064ed68d0d2485b8bc8b7203f84a7874755e0f"}, - {file = "Levenshtein-0.25.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:26408938a6db7b252824a701545d50dc9cdd7a3e4c7ee70834cca17953b76ad8"}, - {file = "Levenshtein-0.25.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:330ec2faff957281f4e6a1a8c88286d1453e1d73ee273ea0f937e0c9281c2156"}, - {file = "Levenshtein-0.25.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9115d1b08626dfdea6f3955cb49ba5a578f7223205f80ead0038d6fc0442ce13"}, - {file = "Levenshtein-0.25.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:bbd602edab758e93a5c67bf0d8322f374a47765f1cdb6babaf593a64dc9633ad"}, - {file = "Levenshtein-0.25.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b930b4df32cd3aabbed0e9f0c4fdd1ea4090a5c022ba9f1ae4ab70ccf1cf897a"}, - {file = "Levenshtein-0.25.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:dd66fb51f88a3f73a802e1ff19a14978ddc9fbcb7ce3a667ca34f95ef54e0e44"}, - {file = "Levenshtein-0.25.1-cp312-cp312-win32.whl", hash = "sha256:386de94bd1937a16ae3c8f8b7dd2eff1b733994ecf56ce4d05dfdd0e776d0261"}, - {file = "Levenshtein-0.25.1-cp312-cp312-win_amd64.whl", hash = "sha256:9ee1902153d47886c9787598a4a5c324ce7fde44d44daa34fcf3652ac0de21bc"}, - {file = "Levenshtein-0.25.1-cp312-cp312-win_arm64.whl", hash = "sha256:b56a7e7676093c3aee50402226f4079b15bd21b5b8f1820f9d6d63fe99dc4927"}, - {file = "Levenshtein-0.25.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6b5dfdf6a0e2f35fd155d4c26b03398499c24aba7bc5db40245789c46ad35c04"}, - {file = "Levenshtein-0.25.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:355ff797f704459ddd8b95354d699d0d0642348636c92d5e67b49be4b0e6112b"}, - {file = "Levenshtein-0.25.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:933b827a3b721210fff522f3dca9572f9f374a0e88fa3a6c7ee3164406ae7794"}, - {file = "Levenshtein-0.25.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be1da669a240f272d904ab452ad0a1603452e190f4e03e886e6b3a9904152b89"}, - {file = "Levenshtein-0.25.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:265cbd78962503a26f2bea096258a3b70b279bb1a74a525c671d3ee43a190f9c"}, - {file = "Levenshtein-0.25.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:63cc4d53a35e673b12b721a58b197b4a65734688fb72aa1987ce63ed612dca96"}, - {file = "Levenshtein-0.25.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75fee0c471b8799c70dad9d0d5b70f1f820249257f9617601c71b6c1b37bee92"}, - {file = "Levenshtein-0.25.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:045d6b0db124fbd37379b2b91f6d0786c2d9220e7a848e2dd31b99509a321240"}, - {file = "Levenshtein-0.25.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:db7a2e9c51ac9cc2fd5679484f1eac6e0ab2085cb181240445f7fbf10df73230"}, - {file = "Levenshtein-0.25.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:c379c588aa0d93d4607db7eb225fd683263d49669b1bbe49e28c978aa6a4305d"}, - {file = "Levenshtein-0.25.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:966dd00424df7f69b78da02a29b530fbb6c1728e9002a2925ed7edf26b231924"}, - {file = "Levenshtein-0.25.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:09daa6b068709cc1e68b670a706d928ed8f0b179a26161dd04b3911d9f757525"}, - {file = "Levenshtein-0.25.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d6bed0792635081accf70a7e11cfece986f744fddf46ce26808cd8bfc067e430"}, - {file = "Levenshtein-0.25.1-cp38-cp38-win32.whl", hash = "sha256:28e7b7faf5a745a690d1b1706ab82a76bbe9fa6b729d826f0cfdd24fd7c19740"}, - {file = "Levenshtein-0.25.1-cp38-cp38-win_amd64.whl", hash = "sha256:8ca0cc9b9e07316b5904f158d5cfa340d55b4a3566ac98eaac9f087c6efb9a1a"}, - {file = "Levenshtein-0.25.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:45682cdb3ac4a5465c01b2dce483bdaa1d5dcd1a1359fab37d26165b027d3de2"}, - {file = "Levenshtein-0.25.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f8dc3e63c4cd746ec162a4cd744c6dde857e84aaf8c397daa46359c3d54e6219"}, - {file = "Levenshtein-0.25.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:01ad1eb09933a499a49923e74e05b1428ca4ef37fed32965fef23f1334a11563"}, - {file = "Levenshtein-0.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cbb4e8c4b8b7bbe0e1aa64710b806b6c3f31d93cb14969ae2c0eff0f3a592db8"}, - {file = "Levenshtein-0.25.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48d1fe224b365975002e3e2ea947cbb91d2936a16297859b71c4abe8a39932c"}, - {file = "Levenshtein-0.25.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a164df16d876aab0a400f72aeac870ea97947ea44777c89330e9a16c7dc5cc0e"}, - {file = "Levenshtein-0.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:995d3bcedcf64be6ceca423f6cfe29184a36d7c4cbac199fdc9a0a5ec7196cf5"}, - {file = "Levenshtein-0.25.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bdaf62d637bef6711d6f3457e2684faab53b2db2ed53c05bc0dc856464c74742"}, - {file = "Levenshtein-0.25.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:af9de3b5f8f5f3530cfd97daab9ab480d1b121ef34d8c0aa5bab0c645eae219e"}, - {file = "Levenshtein-0.25.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:78fba73c352383b356a30c4674e39f086ffef7122fa625e7550b98be2392d387"}, - {file = "Levenshtein-0.25.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:9e0df0dcea3943321398f72e330c089b5d5447318310db6f17f5421642f3ade6"}, - {file = "Levenshtein-0.25.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:387f768bb201b9bc45f0f49557e2fb9a3774d9d087457bab972162dcd4fd352b"}, - {file = "Levenshtein-0.25.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5dcf931b64311039b43495715e9b795fbd97ab44ba3dd6bf24360b15e4e87649"}, - {file = "Levenshtein-0.25.1-cp39-cp39-win32.whl", hash = "sha256:2449f8668c0bd62a2b305a5e797348984c06ac20903b38b3bab74e55671ddd51"}, - {file = "Levenshtein-0.25.1-cp39-cp39-win_amd64.whl", hash = "sha256:28803fd6ec7b58065621f5ec0d24e44e2a7dc4842b64dcab690cb0a7ea545210"}, - {file = "Levenshtein-0.25.1-cp39-cp39-win_arm64.whl", hash = "sha256:0b074d452dff8ee86b5bdb6031aa32bb2ed3c8469a56718af5e010b9bb5124dc"}, - {file = "Levenshtein-0.25.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e9e060ef3925a68aeb12276f0e524fb1264592803d562ec0306c7c3f5c68eae0"}, - {file = "Levenshtein-0.25.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f84b84049318d44722db307c448f9dcb8d27c73525a378e901189a94889ba61"}, - {file = "Levenshtein-0.25.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07e23fdf330cb185a0c7913ca5bd73a189dfd1742eae3a82e31ed8688b191800"}, - {file = "Levenshtein-0.25.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d06958e4a81ea0f0b2b7768a2ad05bcd50a9ad04c4d521dd37d5730ff12decdc"}, - {file = "Levenshtein-0.25.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:2ea7c34ec22b2fce21299b0caa6dde6bdebafcc2970e265853c9cfea8d1186da"}, - {file = "Levenshtein-0.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fddc0ccbdd94f57aa32e2eb3ac8310d08df2e175943dc20b3e1fc7a115850af4"}, - {file = "Levenshtein-0.25.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d52249cb3448bfe661d3d7db3a6673e835c7f37b30b0aeac499a1601bae873d"}, - {file = "Levenshtein-0.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8dd4c201b15f8c1e612f9074335392c8208ac147acbce09aff04e3974bf9b16"}, - {file = "Levenshtein-0.25.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23a4d95ce9d44161c7aa87ab76ad6056bc1093c461c60c097054a46dc957991f"}, - {file = "Levenshtein-0.25.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:65eea8a9c33037b23069dca4b3bc310e3c28ca53f60ec0c958d15c0952ba39fa"}, - {file = "Levenshtein-0.25.1.tar.gz", hash = "sha256:2df14471c778c75ffbd59cb64bbecfd4b0ef320ef9f80e4804764be7d5678980"}, -] - -[package.dependencies] -rapidfuzz = ">=3.8.0,<4.0.0" - [[package]] name = "markdown" version = "3.6" @@ -2459,20 +2346,6 @@ files = [ {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, ] -[[package]] -name = "openpyxl" -version = "3.1.2" -description = "A Python library to read/write Excel 2010 xlsx/xlsm files" -optional = false -python-versions = ">=3.6" -files = [ - {file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"}, - {file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"}, -] - -[package.dependencies] -et-xmlfile = "*" - [[package]] name = "overrides" version = "7.7.0" @@ -3131,7 +3004,6 @@ files = [ {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, @@ -3322,108 +3194,6 @@ packaging = "*" [package.extras] test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] -[[package]] -name = "rapidfuzz" -version = "3.8.1" -description = "rapid fuzzy string matching" -optional = false -python-versions = ">=3.8" -files = [ - {file = "rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1b176f01490b48337183da5b4223005bc0c2354a4faee5118917d2fba0bedc1c"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0798e32304b8009d215026bf7e1c448f1831da0a03987b7de30059a41bee92f3"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ad4dbd06c1f579eb043b2dcfc635bc6c9fb858240a70f0abd3bed84d8ac79994"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6ec696a268e8d730b42711537e500f7397afc06125c0e8fa9c8211386d315a5"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a8a007fdc5cf646e48e361a39eabe725b93af7673c5ab90294e551cae72ff58"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68b185a0397aebe78bcc5d0e1efd96509d4e2f3c4a05996e5c843732f547e9ef"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:267ff42370e031195e3020fff075420c136b69dc918ecb5542ec75c1e36af81f"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:987cd277d27d14301019fdf61c17524f6127f5d364be5482228726049d8e0d10"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:bc5a1ec3bd05b55d3070d557c0cdd4412272d51b4966c79aa3e9da207bd33d65"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa223c73c59cc45c12eaa9c439318084003beced0447ff92b578a890288e19eb"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:d4276c7ee061db0bac54846933b40339f60085523675f917f37de24a4b3ce0ee"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:2ba0e43e9a94d256a704a674c7010e6f8ef9225edf7287cf3e7f66c9894b06cd"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c22b32a57ab47afb207e8fe4bd7bb58c90f9291a63723cafd4e704742166e368"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-win32.whl", hash = "sha256:50db3867864422bf6a6435ea65b9ac9de71ef52ed1e05d62f498cd430189eece"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:bca5acf77508d1822023a85118c2dd8d3c16abdd56d2762359a46deb14daa5e0"}, - {file = "rapidfuzz-3.8.1-cp310-cp310-win_arm64.whl", hash = "sha256:c763d99cf087e7b2c5be0cf34ae9a0e1b031f5057d2341a0a0ed782458645b7e"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:30c282612b7ebf2d7646ebebfd98dd308c582246a94d576734e4b0162f57baf4"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c6a43446f0cd8ff347b1fbb918dc0d657bebf484ddfa960ee069e422a477428"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4969fe0eb179aedacee53ca8f8f1be3c655964a6d62db30f247fee444b9c52b4"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:799f5f221d639d1c2ed8a2348d1edf5e22aa489b58b2cc99f5bf0c1917e2d0f2"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e62bde7d5df3312acc528786ee801c472cae5078b1f1e42761c853ba7fe1072a"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ea3d2e41d8fac71cb63ee72f75bee0ed1e9c50709d4c58587f15437761c1858"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f34a541895627c2bc9ef7757f16f02428a08d960d33208adfb96b33338d0945"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0643a25937fafe8d117f2907606e9940cd1cc905c66f16ece9ab93128299994"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:63044a7b6791a2e945dce9d812a6886e93159deb0464984eb403617ded257f08"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:bbc15985c5658691f637a6b97651771147744edfad2a4be56b8a06755e3932fa"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:48b6e5a337a814aec7c6dda5d6460f947c9330860615301f35b519e16dde3c77"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:8c40da44ca20235cda05751d6e828b6b348e7a7c5de2922fa0f9c63f564fd675"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c21d5c7cfa6078c79897e5e482a7e84ff927143d2f3fb020dd6edd27f5469574"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-win32.whl", hash = "sha256:209bb712c448cdec4def6260b9f059bd4681ec61a01568f5e70e37bfe9efe830"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f7641992de44ec2ca54102422be44a8e3fb75b9690ccd74fff72b9ac7fc00ee"}, - {file = "rapidfuzz-3.8.1-cp311-cp311-win_arm64.whl", hash = "sha256:c458085e067c766112f089f78ce39eab2b69ba027d7bbb11d067a0b085774367"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1905d9319a97bed29f21584ca641190dbc9218a556202b77876f1e37618d2e03"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f176867f438ff2a43e6a837930153ca78fddb3ca94e378603a1e7b860d7869bf"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25498650e30122f4a5ad6b27c7614b4af8628c1d32b19d406410d33f77a86c80"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16153a97efacadbd693ccc612a3285df2f072fd07c121f30c2c135a709537075"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c0264d03dcee1bb975975b77c2fe041820fb4d4a25a99e3cb74ddd083d671ca"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17d79398849c1244f646425cf31d856eab9ebd67b7d6571273e53df724ca817e"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8e08b01dc9369941a24d7e512b0d81bf514e7d6add1b93d8aeec3c8fa08a824e"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97c13f156f14f10667e1cfc4257069b775440ce005e896c09ce3aff21c9ae665"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8b76abfec195bf1ee6f9ec56c33ba5e9615ff2d0a9530a54001ed87e5a6ced3b"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:b0ba20be465566264fa5580d874ccf5eabba6975dba45857e2c76e2df3359c6d"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:4d5cd86aca3f12e73bfc70015db7e8fc44122da03aa3761138b95112e83f66e4"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:9a16ef3702cecf16056c5fd66398b7ea8622ff4e3afeb00a8db3e74427e850af"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:392582aa784737d95255ca122ebe7dca3c774da900d100c07b53d32cd221a60e"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-win32.whl", hash = "sha256:ceb10039e7346927cec47eaa490b34abb602b537e738ee9914bb41b8de029fbc"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:cc4af7090a626c902c48db9b5d786c1faa0d8e141571e8a63a5350419ea575bd"}, - {file = "rapidfuzz-3.8.1-cp312-cp312-win_arm64.whl", hash = "sha256:3aff3b829b0b04bdf78bd780ec9faf5f26eac3591df98c35a0ae216c925ae436"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:78a0d2a11bb3936463609777c6d6d4984a27ebb2360b58339c699899d85db036"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f8af980695b866255447703bf634551e67e1a4e1c2d2d26501858d9233d886d7"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d1a15fef1938b43468002f2d81012dbc9e7b50eb8533af202b0559c2dc7865d9"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4dbb1ebc9a811f38da33f32ed2bb5f58b149289b89eb11e384519e9ba7ca881"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:41219536634bd6f85419f38450ef080cfb519638125d805cf8626443e677dc61"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e3f882110f2f4894942e314451773c47e8b1b4920b5ea2b6dd2e2d4079dd3135"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c754ce1fab41b731259f100d5d46529a38aa2c9b683c92aeb7e96ef5b2898cd8"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:718ea99f84b16c4bdbf6a93e53552cdccefa18e12ff9a02c5041e621460e2e61"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9441aca94b21f7349cdb231cd0ce9ca251b2355836e8a02bf6ccbea5b442d7a9"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:90167a48de3ed7f062058826608a80242b8561d0fb0cce2c610d741624811a61"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:8e02425bfc7ebed617323a674974b70eaecd8f07b64a7d16e0bf3e766b93e3c9"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:d48657a404fab82b2754faa813a10c5ad6aa594cb1829dca168a49438b61b4ec"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f8b62fdccc429e6643cefffd5df9c7bca65588d06e8925b78014ad9ad983bf5"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-win32.whl", hash = "sha256:63db612bb6da1bb9f6aa7412739f0e714b1910ec07bc675943044fe683ef192c"}, - {file = "rapidfuzz-3.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:bb571dbd4cc93342be0ba632f0b8d7de4cbd9d959d76371d33716d2216090d41"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b27cea618601ca5032ea98ee116ca6e0fe67be7b286bcb0b9f956d64db697472"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d5592b08e3cadc9e06ef3af6a9d66b6ef1bf871ed5acd7f9b1e162d78806a65"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:58999b21d01dd353f49511a61937eac20c7a5b22eab87612063947081855d85f"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ee3909f611cc5860cc8d9f92d039fd84241ce7360b49ea88e657181d2b45f6"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00b5ee47b387fa3805f4038362a085ec58149135dc5bc640ca315a9893a16f9e"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4c647795c5b901091a68e210c76b769af70a33a8624ac496ac3e34d33366c0d"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:77ea62879932b32aba77ab23a9296390a67d024bf2f048dee99143be80a4ce26"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fee62ae76e3b8b9fff8aa2ca4061575ee358927ffbdb2919a8c84a98da59f78"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:231dc1cb63b1c8dd78c0597aa3ad3749a86a2b7e76af295dd81609522699a558"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:827ddf2d5d157ac3d1001b52e84c9e20366237a742946599ffc435af7fdd26d0"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:c04ef83c9ca3162d200df36e933b3ea0327a2626cee2e01bbe55acbc004ce261"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:747265f39978bbaad356f5c6b6c808f0e8f5e8994875af0119b82b4700c55387"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:14791324f0c753f5a0918df1249b91515f5ddc16281fbaa5ec48bff8fa659229"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-win32.whl", hash = "sha256:b7b9cbc60e3eb08da6d18636c62c6eb6206cd9d0c7ad73996f7a1df3fc415b27"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:2084193fd8fd346db496a2220363437eb9370a06d1d5a7a9dba00a64390c6a28"}, - {file = "rapidfuzz-3.8.1-cp39-cp39-win_arm64.whl", hash = "sha256:c9597a05d08e8103ad59ebdf29e3fbffb0d0dbf3b641f102cfbeadc3a77bde51"}, - {file = "rapidfuzz-3.8.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5f4174079dfe8ed1f13ece9bde7660f19f98ab17e0c0d002d90cc845c3a7e238"}, - {file = "rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07d7d4a3c49a15146d65f06e44d7545628ca0437c929684e32ef122852f44d95"}, - {file = "rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ef119fc127c982053fb9ec638dcc3277f83b034b5972eb05941984b9ec4a290"}, - {file = "rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e57f9c2367706a320b78e91f8bf9a3b03bf9069464eb7b54455fa340d03e4c"}, - {file = "rapidfuzz-3.8.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:6d4f1956fe1fc618e34ac79a6ed84fff5a6f23e41a8a476dd3e8570f0b12f02b"}, - {file = "rapidfuzz-3.8.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:313bdcd16e9cd5e5568b4a31d18a631f0b04cc10a3fd916e4ef75b713e6f177e"}, - {file = "rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a02def2eb526cc934d2125533cf2f15aa71c72ed4397afca38427ab047901e88"}, - {file = "rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9d5d924970b07128c61c08eebee718686f4bd9838ef712a50468169520c953f"}, - {file = "rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1edafc0a2737df277d3ddf401f3a73f76e246b7502762c94a3916453ae67e9b1"}, - {file = "rapidfuzz-3.8.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:81fd28389bedab28251f0535b3c034b0e63a618efc3ff1d338c81a3da723adb3"}, - {file = "rapidfuzz-3.8.1.tar.gz", hash = "sha256:a357aae6791118011ad3ab4f2a4aa7bd7a487e5f9981b390e9f3c2c5137ecadf"}, -] - -[package.extras] -full = ["numpy"] - [[package]] name = "referencing" version = "0.35.0" @@ -3697,21 +3467,18 @@ files = [ [[package]] name = "safe-ds" -version = "0.24.0" +version = "0.25.0" description = "A user-friendly library for Data Science in Python." optional = false python-versions = "<3.13,>=3.11" files = [ - {file = "safe_ds-0.24.0-py3-none-any.whl", hash = "sha256:1c350900d1b480a0b2aaacfdd3915059a22bc5a635a14cf92efe56223a7931f6"}, - {file = "safe_ds-0.24.0.tar.gz", hash = "sha256:e8156293f33b7f8dcc4e494327561c9235a54cd8ad3c90876db204fcc0520a2d"}, + {file = "safe_ds-0.25.0-py3-none-any.whl", hash = "sha256:238e4906518ed56e9855bc8d7f0a98a827d4cc3db55fefc6ed30fe668dc6d12b"}, + {file = "safe_ds-0.25.0.tar.gz", hash = "sha256:7dca8aed77ccffeada2fe995796387e9ccc4538f4015ee413c4fa1a0f6c64119"}, ] [package.dependencies] apipkg = ">=3.0.2,<4.0.0" -levenshtein = ">=0.21.1,<0.26.0" matplotlib = ">=3.6.3,<4.0.0" -openpyxl = ">=3.1.2,<4.0.0" -pandas = ">=2.0.0,<3.0.0" pillow = ">=9.5,<11.0" polars = {version = ">=0.20.25,<0.21.0", extras = ["numpy", "pyarrow"]} scikit-learn = ">=1.2.0,<2.0.0" @@ -4465,4 +4232,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.11,<3.13" -content-hash = "f30dadb994c7fc8f7ce65009427c65c56b6f6483344ec825e3dfec452129bad6" +content-hash = "86e130a4facb05292e83a161f655b05dd71963c4a561dade871660bbe3a30359" diff --git a/pyproject.toml b/pyproject.toml index 306c19b..3617b1d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,7 +14,7 @@ packages = [ [tool.poetry.dependencies] python = "^3.11,<3.13" -safe-ds = "^0.24.0" +safe-ds = ">0.24.0" [tool.poetry.group.dev.dependencies] pytest = ">=7.2.1,<9.0.0" From 7726fa0f2859cc1853620207f12c0972963fcbf9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Thu, 13 Jun 2024 17:31:44 +0200 Subject: [PATCH 14/15] fix: tensor of mnist datasets now uses correct dtype uint8 build: mnist supports api changes made in Safe-DS 0.25 --- poetry.lock | 368 +++++++++++++++++- pyproject.toml | 2 +- src/safeds_datasets/image/_mnist/_mnist.py | 2 +- .../image/_mnist/test_mnist.py | 28 +- 4 files changed, 388 insertions(+), 12 deletions(-) diff --git a/poetry.lock b/poetry.lock index 1e2ed87..430acf3 100644 --- a/poetry.lock +++ b/poetry.lock @@ -872,6 +872,40 @@ cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +[[package]] +name = "huggingface-hub" +version = "0.23.3" +description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "huggingface_hub-0.23.3-py3-none-any.whl", hash = "sha256:22222c41223f1b7c209ae5511d2d82907325a0e3cdbce5f66949d43c598ff3bc"}, + {file = "huggingface_hub-0.23.3.tar.gz", hash = "sha256:1a1118a0b3dea3bab6c325d71be16f5ffe441d32f3ac7c348d6875911b694b5b"}, +] + +[package.dependencies] +filelock = "*" +fsspec = ">=2023.5.0" +packaging = ">=20.9" +pyyaml = ">=5.1" +requests = "*" +tqdm = ">=4.42.1" +typing-extensions = ">=3.7.4.3" + +[package.extras] +all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +cli = ["InquirerPy (==0.3.4)"] +dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] +hf-transfer = ["hf-transfer (>=0.1.4)"] +inference = ["aiohttp", "minijinja (>=1.0)"] +quality = ["mypy (==1.5.1)", "ruff (>=0.3.0)"] +tensorflow = ["graphviz", "pydot", "tensorflow"] +tensorflow-testing = ["keras (<3.0)", "tensorflow"] +testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] +torch = ["safetensors", "torch"] +typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] + [[package]] name = "idna" version = "3.7" @@ -3467,13 +3501,13 @@ files = [ [[package]] name = "safe-ds" -version = "0.25.0" +version = "0.26.0" description = "A user-friendly library for Data Science in Python." optional = false python-versions = "<3.13,>=3.11" files = [ - {file = "safe_ds-0.25.0-py3-none-any.whl", hash = "sha256:238e4906518ed56e9855bc8d7f0a98a827d4cc3db55fefc6ed30fe668dc6d12b"}, - {file = "safe_ds-0.25.0.tar.gz", hash = "sha256:7dca8aed77ccffeada2fe995796387e9ccc4538f4015ee413c4fa1a0f6c64119"}, + {file = "safe_ds-0.26.0-py3-none-any.whl", hash = "sha256:d931612711e29f759537b7305e7037e0bd0900a1f0547cc6093d41a6083d11d7"}, + {file = "safe_ds-0.26.0.tar.gz", hash = "sha256:2a954a838a36d8fb75036d8f07452f780009aeac19187a8db9d24259fb3d67f9"}, ] [package.dependencies] @@ -3486,8 +3520,131 @@ seaborn = ">=0.13.0,<0.14.0" statsmodels = ">=0.14.1,<0.15.0" torch = ">=2.3.0,<3.0.0" torchvision = ">=0.18.0,<0.19.0" +transformers = ">=4.40.2,<5.0.0" xxhash = ">=3.4.1,<4.0.0" +[[package]] +name = "safetensors" +version = "0.4.3" +description = "" +optional = false +python-versions = ">=3.7" +files = [ + {file = "safetensors-0.4.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:dcf5705cab159ce0130cd56057f5f3425023c407e170bca60b4868048bae64fd"}, + {file = "safetensors-0.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bb4f8c5d0358a31e9a08daeebb68f5e161cdd4018855426d3f0c23bb51087055"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70a5319ef409e7f88686a46607cbc3c428271069d8b770076feaf913664a07ac"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fb9c65bd82f9ef3ce4970dc19ee86be5f6f93d032159acf35e663c6bea02b237"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:edb5698a7bc282089f64c96c477846950358a46ede85a1c040e0230344fdde10"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efcc860be094b8d19ac61b452ec635c7acb9afa77beb218b1d7784c6d41fe8ad"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d88b33980222085dd6001ae2cad87c6068e0991d4f5ccf44975d216db3b57376"}, + {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5fc6775529fb9f0ce2266edd3e5d3f10aab068e49f765e11f6f2a63b5367021d"}, + {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9c6ad011c1b4e3acff058d6b090f1da8e55a332fbf84695cf3100c649cc452d1"}, + {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8c496c5401c1b9c46d41a7688e8ff5b0310a3b9bae31ce0f0ae870e1ea2b8caf"}, + {file = "safetensors-0.4.3-cp310-none-win32.whl", hash = "sha256:38e2a8666178224a51cca61d3cb4c88704f696eac8f72a49a598a93bbd8a4af9"}, + {file = "safetensors-0.4.3-cp310-none-win_amd64.whl", hash = "sha256:393e6e391467d1b2b829c77e47d726f3b9b93630e6a045b1d1fca67dc78bf632"}, + {file = "safetensors-0.4.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:22f3b5d65e440cec0de8edaa672efa888030802e11c09b3d6203bff60ebff05a"}, + {file = "safetensors-0.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c4fa560ebd4522adddb71dcd25d09bf211b5634003f015a4b815b7647d62ebe"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9afd5358719f1b2cf425fad638fc3c887997d6782da317096877e5b15b2ce93"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d8c5093206ef4b198600ae484230402af6713dab1bd5b8e231905d754022bec7"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e0b2104df1579d6ba9052c0ae0e3137c9698b2d85b0645507e6fd1813b70931a"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8cf18888606dad030455d18f6c381720e57fc6a4170ee1966adb7ebc98d4d6a3"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0bf4f9d6323d9f86eef5567eabd88f070691cf031d4c0df27a40d3b4aaee755b"}, + {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:585c9ae13a205807b63bef8a37994f30c917ff800ab8a1ca9c9b5d73024f97ee"}, + {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faefeb3b81bdfb4e5a55b9bbdf3d8d8753f65506e1d67d03f5c851a6c87150e9"}, + {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:befdf0167ad626f22f6aac6163477fcefa342224a22f11fdd05abb3995c1783c"}, + {file = "safetensors-0.4.3-cp311-none-win32.whl", hash = "sha256:a7cef55929dcbef24af3eb40bedec35d82c3c2fa46338bb13ecf3c5720af8a61"}, + {file = "safetensors-0.4.3-cp311-none-win_amd64.whl", hash = "sha256:840b7ac0eff5633e1d053cc9db12fdf56b566e9403b4950b2dc85393d9b88d67"}, + {file = "safetensors-0.4.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:22d21760dc6ebae42e9c058d75aa9907d9f35e38f896e3c69ba0e7b213033856"}, + {file = "safetensors-0.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d22c1a10dff3f64d0d68abb8298a3fd88ccff79f408a3e15b3e7f637ef5c980"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1648568667f820b8c48317c7006221dc40aced1869908c187f493838a1362bc"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:446e9fe52c051aeab12aac63d1017e0f68a02a92a027b901c4f8e931b24e5397"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fef5d70683643618244a4f5221053567ca3e77c2531e42ad48ae05fae909f542"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a1f4430cc0c9d6afa01214a4b3919d0a029637df8e09675ceef1ca3f0dfa0df"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d603846a8585b9432a0fd415db1d4c57c0f860eb4aea21f92559ff9902bae4d"}, + {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a844cdb5d7cbc22f5f16c7e2a0271170750763c4db08381b7f696dbd2c78a361"}, + {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:88887f69f7a00cf02b954cdc3034ffb383b2303bc0ab481d4716e2da51ddc10e"}, + {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ee463219d9ec6c2be1d331ab13a8e0cd50d2f32240a81d498266d77d07b7e71e"}, + {file = "safetensors-0.4.3-cp312-none-win32.whl", hash = "sha256:d0dd4a1db09db2dba0f94d15addc7e7cd3a7b0d393aa4c7518c39ae7374623c3"}, + {file = "safetensors-0.4.3-cp312-none-win_amd64.whl", hash = "sha256:d14d30c25897b2bf19b6fb5ff7e26cc40006ad53fd4a88244fdf26517d852dd7"}, + {file = "safetensors-0.4.3-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:d1456f814655b224d4bf6e7915c51ce74e389b413be791203092b7ff78c936dd"}, + {file = "safetensors-0.4.3-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:455d538aa1aae4a8b279344a08136d3f16334247907b18a5c3c7fa88ef0d3c46"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf476bca34e1340ee3294ef13e2c625833f83d096cfdf69a5342475602004f95"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02ef3a24face643456020536591fbd3c717c5abaa2737ec428ccbbc86dffa7a4"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7de32d0d34b6623bb56ca278f90db081f85fb9c5d327e3c18fd23ac64f465768"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a0deb16a1d3ea90c244ceb42d2c6c276059616be21a19ac7101aa97da448faf"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c59d51f182c729f47e841510b70b967b0752039f79f1de23bcdd86462a9b09ee"}, + {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1f598b713cc1a4eb31d3b3203557ac308acf21c8f41104cdd74bf640c6e538e3"}, + {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5757e4688f20df083e233b47de43845d1adb7e17b6cf7da5f8444416fc53828d"}, + {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fe746d03ed8d193674a26105e4f0fe6c726f5bb602ffc695b409eaf02f04763d"}, + {file = "safetensors-0.4.3-cp37-none-win32.whl", hash = "sha256:0d5ffc6a80f715c30af253e0e288ad1cd97a3d0086c9c87995e5093ebc075e50"}, + {file = "safetensors-0.4.3-cp37-none-win_amd64.whl", hash = "sha256:a11c374eb63a9c16c5ed146457241182f310902bd2a9c18255781bb832b6748b"}, + {file = "safetensors-0.4.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:b1e31be7945f66be23f4ec1682bb47faa3df34cb89fc68527de6554d3c4258a4"}, + {file = "safetensors-0.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03a4447c784917c9bf01d8f2ac5080bc15c41692202cd5f406afba16629e84d6"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d244bcafeb1bc06d47cfee71727e775bca88a8efda77a13e7306aae3813fa7e4"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53c4879b9c6bd7cd25d114ee0ef95420e2812e676314300624594940a8d6a91f"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74707624b81f1b7f2b93f5619d4a9f00934d5948005a03f2c1845ffbfff42212"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d52c958dc210265157573f81d34adf54e255bc2b59ded6218500c9b15a750eb"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9568f380f513a60139971169c4a358b8731509cc19112369902eddb33faa4d"}, + {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d9cd8e1560dfc514b6d7859247dc6a86ad2f83151a62c577428d5102d872721"}, + {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:89f9f17b0dacb913ed87d57afbc8aad85ea42c1085bd5de2f20d83d13e9fc4b2"}, + {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1139eb436fd201c133d03c81209d39ac57e129f5e74e34bb9ab60f8d9b726270"}, + {file = "safetensors-0.4.3-cp38-none-win32.whl", hash = "sha256:d9c289f140a9ae4853fc2236a2ffc9a9f2d5eae0cb673167e0f1b8c18c0961ac"}, + {file = "safetensors-0.4.3-cp38-none-win_amd64.whl", hash = "sha256:622afd28968ef3e9786562d352659a37de4481a4070f4ebac883f98c5836563e"}, + {file = "safetensors-0.4.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:8651c7299cbd8b4161a36cd6a322fa07d39cd23535b144d02f1c1972d0c62f3c"}, + {file = "safetensors-0.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e375d975159ac534c7161269de24ddcd490df2157b55c1a6eeace6cbb56903f0"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084fc436e317f83f7071fc6a62ca1c513b2103db325cd09952914b50f51cf78f"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:41a727a7f5e6ad9f1db6951adee21bbdadc632363d79dc434876369a17de6ad6"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7dbbde64b6c534548696808a0e01276d28ea5773bc9a2dfb97a88cd3dffe3df"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bbae3b4b9d997971431c346edbfe6e41e98424a097860ee872721e176040a893"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01e4b22e3284cd866edeabe4f4d896229495da457229408d2e1e4810c5187121"}, + {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dd37306546b58d3043eb044c8103a02792cc024b51d1dd16bd3dd1f334cb3ed"}, + {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d8815b5e1dac85fc534a97fd339e12404db557878c090f90442247e87c8aeaea"}, + {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e011cc162503c19f4b1fd63dfcddf73739c7a243a17dac09b78e57a00983ab35"}, + {file = "safetensors-0.4.3-cp39-none-win32.whl", hash = "sha256:01feb3089e5932d7e662eda77c3ecc389f97c0883c4a12b5cfdc32b589a811c3"}, + {file = "safetensors-0.4.3-cp39-none-win_amd64.whl", hash = "sha256:3f9cdca09052f585e62328c1c2923c70f46814715c795be65f0b93f57ec98a02"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1b89381517891a7bb7d1405d828b2bf5d75528299f8231e9346b8eba092227f9"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:cd6fff9e56df398abc5866b19a32124815b656613c1c5ec0f9350906fd798aac"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:840caf38d86aa7014fe37ade5d0d84e23dcfbc798b8078015831996ecbc206a3"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9650713b2cfa9537a2baf7dd9fee458b24a0aaaa6cafcea8bdd5fb2b8efdc34"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e4119532cd10dba04b423e0f86aecb96cfa5a602238c0aa012f70c3a40c44b50"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e066e8861eef6387b7c772344d1fe1f9a72800e04ee9a54239d460c400c72aab"}, + {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:90964917f5b0fa0fa07e9a051fbef100250c04d150b7026ccbf87a34a54012e0"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c41e1893d1206aa7054029681778d9a58b3529d4c807002c156d58426c225173"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae7613a119a71a497d012ccc83775c308b9c1dab454806291427f84397d852fd"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9bac020faba7f5dc481e881b14b6425265feabb5bfc552551d21189c0eddc3"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:420a98f593ff9930f5822560d14c395ccbc57342ddff3b463bc0b3d6b1951550"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f5e6883af9a68c0028f70a4c19d5a6ab6238a379be36ad300a22318316c00cb0"}, + {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:cdd0a3b5da66e7f377474599814dbf5cbf135ff059cc73694de129b58a5e8a2c"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9bfb92f82574d9e58401d79c70c716985dc049b635fef6eecbb024c79b2c46ad"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:3615a96dd2dcc30eb66d82bc76cda2565f4f7bfa89fcb0e31ba3cea8a1a9ecbb"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:868ad1b6fc41209ab6bd12f63923e8baeb1a086814cb2e81a65ed3d497e0cf8f"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffba80aa49bd09195145a7fd233a7781173b422eeb995096f2b30591639517"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c0acbe31340ab150423347e5b9cc595867d814244ac14218932a5cf1dd38eb39"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:19bbdf95de2cf64f25cd614c5236c8b06eb2cfa47cbf64311f4b5d80224623a3"}, + {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b852e47eb08475c2c1bd8131207b405793bfc20d6f45aff893d3baaad449ed14"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d07cbca5b99babb692d76d8151bec46f461f8ad8daafbfd96b2fca40cadae65"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1ab6527a20586d94291c96e00a668fa03f86189b8a9defa2cdd34a1a01acc7d5"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02318f01e332cc23ffb4f6716e05a492c5f18b1d13e343c49265149396284a44"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec4b52ce9a396260eb9731eb6aea41a7320de22ed73a1042c2230af0212758ce"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:018b691383026a2436a22b648873ed11444a364324e7088b99cd2503dd828400"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:309b10dbcab63269ecbf0e2ca10ce59223bb756ca5d431ce9c9eeabd446569da"}, + {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b277482120df46e27a58082df06a15aebda4481e30a1c21eefd0921ae7e03f65"}, + {file = "safetensors-0.4.3.tar.gz", hash = "sha256:2f85fc50c4e07a21e95c24e07460fe6f7e2859d0ce88092838352b798ce711c2"}, +] + +[package.extras] +all = ["safetensors[jax]", "safetensors[numpy]", "safetensors[paddlepaddle]", "safetensors[pinned-tf]", "safetensors[quality]", "safetensors[testing]", "safetensors[torch]"] +dev = ["safetensors[all]"] +jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "safetensors[numpy]"] +mlx = ["mlx (>=0.0.9)"] +numpy = ["numpy (>=1.21.6)"] +paddlepaddle = ["paddlepaddle (>=2.4.1)", "safetensors[numpy]"] +pinned-tf = ["safetensors[numpy]", "tensorflow (==2.11.0)"] +quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"] +tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"] +testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"] +torch = ["safetensors[numpy]", "torch (>=1.10)"] + [[package]] name = "scikit-learn" version = "1.4.2" @@ -3783,6 +3940,123 @@ webencodings = ">=0.4" doc = ["sphinx", "sphinx_rtd_theme"] test = ["pytest", "ruff"] +[[package]] +name = "tokenizers" +version = "0.19.1" +description = "" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, + {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, + {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, + {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, + {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, + {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, + {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, + {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, + {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, + {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, + {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, + {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, + {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, + {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, + {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, + {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, + {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, + {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, + {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, + {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, + {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, + {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, + {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, + {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, + {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, + {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, + {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, + {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, + {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, + {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, + {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, + {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, + {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, + {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, + {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, + {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, + {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, + {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, + {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, + {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, + {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, + {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, + {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, + {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, + {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, + {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, + {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, +] + +[package.dependencies] +huggingface-hub = ">=0.16.4,<1.0" + +[package.extras] +dev = ["tokenizers[testing]"] +docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] +testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"] + [[package]] name = "toml" version = "0.10.2" @@ -3905,6 +4179,26 @@ files = [ {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, ] +[[package]] +name = "tqdm" +version = "4.66.4" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, + {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "traitlets" version = "5.14.3" @@ -3920,6 +4214,72 @@ files = [ docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] +[[package]] +name = "transformers" +version = "4.41.2" +description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "transformers-4.41.2-py3-none-any.whl", hash = "sha256:05555d20e43f808de1ef211ab64803cdb513170cef70d29a888b589caebefc67"}, + {file = "transformers-4.41.2.tar.gz", hash = "sha256:80a4db216533d573e9cc7388646c31ed9480918feb7c55eb211249cb23567f87"}, +] + +[package.dependencies] +filelock = "*" +huggingface-hub = ">=0.23.0,<1.0" +numpy = ">=1.17" +packaging = ">=20.0" +pyyaml = ">=5.1" +regex = "!=2019.12.17" +requests = "*" +safetensors = ">=0.4.1" +tokenizers = ">=0.19,<0.20" +tqdm = ">=4.27" + +[package.extras] +accelerate = ["accelerate (>=0.21.0)"] +agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] +audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +codecarbon = ["codecarbon (==1.2.0)"] +deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] +flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +ftfy = ["ftfy"] +integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] +ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] +modelcreation = ["cookiecutter (==1.7.3)"] +natten = ["natten (>=0.14.6,<0.15.0)"] +onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] +onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] +optuna = ["optuna"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"] +ray = ["ray[tune] (>=2.7.0)"] +retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] +sagemaker = ["sagemaker (>=2.31.0)"] +sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] +serving = ["fastapi", "pydantic", "starlette", "uvicorn"] +sigopt = ["sigopt"] +sklearn = ["scikit-learn"] +speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +timm = ["timm"] +tokenizers = ["tokenizers (>=0.19,<0.20)"] +torch = ["accelerate (>=0.21.0)", "torch"] +torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] +torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] +torchhub = ["filelock", "huggingface-hub (>=0.23.0,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] +video = ["av (==9.2.0)", "decord (==0.6.0)"] +vision = ["Pillow (>=10.0.1,<=15.0)"] + [[package]] name = "triton" version = "2.3.0" @@ -4232,4 +4592,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.11,<3.13" -content-hash = "86e130a4facb05292e83a161f655b05dd71963c4a561dade871660bbe3a30359" +content-hash = "8b40612f64c49dd6b28ac1171dd4135aa792a993b4d254ae6bfd48ea5fd918a1" diff --git a/pyproject.toml b/pyproject.toml index 3617b1d..a1c5fa5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,7 +14,7 @@ packages = [ [tool.poetry.dependencies] python = "^3.11,<3.13" -safe-ds = ">0.24.0" +safe-ds = ">=0.25,<0.27" [tool.poetry.group.dev.dependencies] pytest = ">=7.2.1,<9.0.0" diff --git a/src/safeds_datasets/image/_mnist/_mnist.py b/src/safeds_datasets/image/_mnist/_mnist.py index 0c4c1d5..15419bd 100644 --- a/src/safeds_datasets/image/_mnist/_mnist.py +++ b/src/safeds_datasets/image/_mnist/_mnist.py @@ -214,7 +214,7 @@ def _load_mnist_like( if magic != 2051: raise ValueError(f"Magic number mismatch. Actual {magic} != Expected 2051.") # pragma: no cover image_data = array("B", image_file.read()) - image_tensor = torch.empty(size, 1, rows, cols) + image_tensor = torch.empty(size, 1, rows, cols, dtype=torch.uint8) for i in range(size): image_tensor[i, 0] = torch.frombuffer( image_data[i * rows * cols : (i + 1) * rows * cols], diff --git a/tests/safeds_datasets/image/_mnist/test_mnist.py b/tests/safeds_datasets/image/_mnist/test_mnist.py index b526bd8..5ada3db 100644 --- a/tests/safeds_datasets/image/_mnist/test_mnist.py +++ b/tests/safeds_datasets/image/_mnist/test_mnist.py @@ -3,6 +3,7 @@ from pathlib import Path import pytest +import torch from safeds.data.labeled.containers import ImageDataset from safeds_datasets.image import _mnist, load_fashion_mnist, load_kmnist, load_mnist @@ -19,11 +20,16 @@ def test_should_download_and_return_mnist(self) -> None: assert isinstance(test, ImageDataset) assert len(train) == 60_000 assert len(test) == 10_000 + assert ( + train.get_input()._as_single_size_image_list()._tensor.dtype + == test.get_input()._as_single_size_image_list()._tensor.dtype + == torch.uint8 + ) train_output = train.get_output() test_output = test.get_output() assert ( - set(train_output.get_unique_values()) - == set(test_output.get_unique_values()) + set(train_output.get_distinct_values()) + == set(test_output.get_distinct_values()) == set(_mnist._mnist._mnist_labels.values()) ) @@ -44,11 +50,16 @@ def test_should_download_and_return_mnist(self) -> None: assert isinstance(test, ImageDataset) assert len(train) == 60_000 assert len(test) == 10_000 + assert ( + train.get_input()._as_single_size_image_list()._tensor.dtype + == test.get_input()._as_single_size_image_list()._tensor.dtype + == torch.uint8 + ) train_output = train.get_output() test_output = test.get_output() assert ( - set(train_output.get_unique_values()) - == set(test_output.get_unique_values()) + set(train_output.get_distinct_values()) + == set(test_output.get_distinct_values()) == set(_mnist._mnist._fashion_mnist_labels.values()) ) @@ -69,11 +80,16 @@ def test_should_download_and_return_mnist(self) -> None: assert isinstance(test, ImageDataset) assert len(train) == 60_000 assert len(test) == 10_000 + assert ( + train.get_input()._as_single_size_image_list()._tensor.dtype + == test.get_input()._as_single_size_image_list()._tensor.dtype + == torch.uint8 + ) train_output = train.get_output() test_output = test.get_output() assert ( - set(train_output.get_unique_values()) - == set(test_output.get_unique_values()) + set(train_output.get_distinct_values()) + == set(test_output.get_distinct_values()) == set(_mnist._mnist._kuzushiji_mnist_labels.values()) ) From d410992ec844555cdbfa23e1be3f2d9dc1e5a460 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Alexander=20Gr=C3=A9us?= Date: Fri, 12 Jul 2024 00:34:53 +0200 Subject: [PATCH 15/15] build: bump safe-ds to >=0.24 --- poetry.lock | 340 ++++++++++++++++++++++++++-------------------------- 1 file changed, 171 insertions(+), 169 deletions(-) diff --git a/poetry.lock b/poetry.lock index 430acf3..711a876 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "anyio" @@ -221,13 +221,13 @@ css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.7.4" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, ] [[package]] @@ -804,13 +804,13 @@ dev = ["flake8", "markdown", "twine", "wheel"] [[package]] name = "griffe" -version = "0.44.0" +version = "0.47.0" description = "Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API." optional = false python-versions = ">=3.8" files = [ - {file = "griffe-0.44.0-py3-none-any.whl", hash = "sha256:8a4471c469ba980b87c843f1168850ce39d0c1d0c7be140dca2480f76c8e5446"}, - {file = "griffe-0.44.0.tar.gz", hash = "sha256:34aee1571042f9bf00529bc715de4516fb6f482b164e90d030300601009e0223"}, + {file = "griffe-0.47.0-py3-none-any.whl", hash = "sha256:07a2fd6a8c3d21d0bbb0decf701d62042ccc8a576645c7f8799fe1f10de2b2de"}, + {file = "griffe-0.47.0.tar.gz", hash = "sha256:95119a440a3c932b13293538bdbc405bee4c36428547553dc6b327e7e7d35e5a"}, ] [package.dependencies] @@ -1873,13 +1873,13 @@ pyyaml = ">=5.1" [[package]] name = "mkdocs-glightbox" -version = "0.3.7" +version = "0.4.0" description = "MkDocs plugin supports image lightbox with GLightbox." optional = false python-versions = "*" files = [ - {file = "mkdocs-glightbox-0.3.7.tar.gz", hash = "sha256:4e890140a97dd4ad128cb92174384bd0ac33adec3304bbd2b7c48d0847685c4f"}, - {file = "mkdocs_glightbox-0.3.7-py3-none-any.whl", hash = "sha256:9659631a9829d93d8fb0ce3a20a10261c258605ba4dc87a3b7b5d847b93a276d"}, + {file = "mkdocs-glightbox-0.4.0.tar.gz", hash = "sha256:392b34207bf95991071a16d5f8916d1d2f2cd5d5bb59ae2997485ccd778c70d9"}, + {file = "mkdocs_glightbox-0.4.0-py3-none-any.whl", hash = "sha256:e0107beee75d3eb7380ac06ea2d6eac94c999eaa49f8c3cbab0e7be2ac006ccf"}, ] [[package]] @@ -1916,13 +1916,13 @@ mkdocs = ">=1.0.3" [[package]] name = "mkdocs-material" -version = "9.5.20" +version = "9.5.27" description = "Documentation that simply works" optional = false python-versions = ">=3.8" files = [ - {file = "mkdocs_material-9.5.20-py3-none-any.whl", hash = "sha256:ad0094a7597bcb5d0cc3e8e543a10927c2581f7f647b9bb4861600f583180f9b"}, - {file = "mkdocs_material-9.5.20.tar.gz", hash = "sha256:986eef0250d22f70fb06ce0f4eac64cc92bd797a589ec3892ce31fad976fe3da"}, + {file = "mkdocs_material-9.5.27-py3-none-any.whl", hash = "sha256:af8cc263fafa98bb79e9e15a8c966204abf15164987569bd1175fd66a7705182"}, + {file = "mkdocs_material-9.5.27.tar.gz", hash = "sha256:a7d4a35f6d4a62b0c43a0cfe7e987da0980c13587b5bc3c26e690ad494427ec0"}, ] [package.dependencies] @@ -1970,13 +1970,13 @@ mkdocs = ">=1.2" [[package]] name = "mkdocstrings" -version = "0.25.0" +version = "0.25.1" description = "Automatic documentation from sources, for MkDocs." optional = false python-versions = ">=3.8" files = [ - {file = "mkdocstrings-0.25.0-py3-none-any.whl", hash = "sha256:df1b63f26675fcde8c1b77e7ea996cd2f93220b148e06455428f676f5dc838f1"}, - {file = "mkdocstrings-0.25.0.tar.gz", hash = "sha256:066986b3fb5b9ef2d37c4417255a808f7e63b40ff8f67f6cab8054d903fbc91d"}, + {file = "mkdocstrings-0.25.1-py3-none-any.whl", hash = "sha256:da01fcc2670ad61888e8fe5b60afe9fee5781017d67431996832d63e887c2e51"}, + {file = "mkdocstrings-0.25.1.tar.gz", hash = "sha256:c3a2515f31577f311a9ee58d089e4c51fc6046dbd9e9b4c3de4c3194667fe9bf"}, ] [package.dependencies] @@ -1996,18 +1996,18 @@ python-legacy = ["mkdocstrings-python-legacy (>=0.2.1)"] [[package]] name = "mkdocstrings-python" -version = "1.10.0" +version = "1.10.5" description = "A Python handler for mkdocstrings." optional = false python-versions = ">=3.8" files = [ - {file = "mkdocstrings_python-1.10.0-py3-none-any.whl", hash = "sha256:ba833fbd9d178a4b9d5cb2553a4df06e51dc1f51e41559a4d2398c16a6f69ecc"}, - {file = "mkdocstrings_python-1.10.0.tar.gz", hash = "sha256:71678fac657d4d2bb301eed4e4d2d91499c095fd1f8a90fa76422a87a5693828"}, + {file = "mkdocstrings_python-1.10.5-py3-none-any.whl", hash = "sha256:92e3c588ef1b41151f55281d075de7558dd8092e422cb07a65b18ee2b0863ebb"}, + {file = "mkdocstrings_python-1.10.5.tar.gz", hash = "sha256:acdc2a98cd9d46c7ece508193a16ca03ccabcb67520352b7449f84b57c162bdf"}, ] [package.dependencies] -griffe = ">=0.44" -mkdocstrings = ">=0.24.2" +griffe = ">=0.47" +mkdocstrings = ">=0.25" [[package]] name = "mkl" @@ -2672,17 +2672,17 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "polars" -version = "0.20.25" +version = "0.20.31" description = "Blazingly fast DataFrame library" optional = false python-versions = ">=3.8" files = [ - {file = "polars-0.20.25-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:126e3b7d9394e4b23b4cc48919b7188203feeeb35d861ad808f281eaa06d76e2"}, - {file = "polars-0.20.25-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:3bda62b681726538714a1159638ab7c9eeca6b8633fd778d84810c3e13b9c7e3"}, - {file = "polars-0.20.25-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62c8826e81c759f07bf5c0ae00f57a537644ae05fe68737185666b8ad8430664"}, - {file = "polars-0.20.25-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:0fb5e7a4a9831fba742f1c706e01656607089b6362a5e6f8d579b134a99795ce"}, - {file = "polars-0.20.25-cp38-abi3-win_amd64.whl", hash = "sha256:9eaeb9080c853e11b207d191025e0ba8fd59ea06a36c22d410a48f2f124e18cd"}, - {file = "polars-0.20.25.tar.gz", hash = "sha256:4308d63f956874bac9ae040bdd6d62b2992d0b1e1349301bc7a3b59458189108"}, + {file = "polars-0.20.31-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:86454ade5ed302bbf87f145cfcb1b14f7a5765a9440e448659e1f3dba6ac4e79"}, + {file = "polars-0.20.31-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:67f2fe842262b7e1b9371edad21b760f6734d28b74c78dda88dff1bf031b9499"}, + {file = "polars-0.20.31-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24b82441f93409e0e8abd6f427b029db102f02b8de328cee9a680f84b84e3736"}, + {file = "polars-0.20.31-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:87f43bce4d41abf8c8c5658d881e4b8378e5c61010a696bfea8b4106b908e916"}, + {file = "polars-0.20.31-cp38-abi3-win_amd64.whl", hash = "sha256:2d7567c9fd9d3b9aa93387ca9880d9e8f7acea3c0a0555c03d8c0c2f0715d43c"}, + {file = "polars-0.20.31.tar.gz", hash = "sha256:00f62dec6bf43a4e2a5db58b99bf0e79699fe761c80ae665868eaea5168f3bbb"}, ] [package.dependencies] @@ -2691,7 +2691,7 @@ pyarrow = {version = ">=7.0.0", optional = true, markers = "extra == \"pyarrow\" [package.extras] adbc = ["adbc-driver-manager", "adbc-driver-sqlite"] -all = ["polars[adbc,async,cloudpickle,connectorx,deltalake,fastexcel,fsspec,gevent,numpy,pandas,plot,pyarrow,pydantic,pyiceberg,sqlalchemy,timezone,torch,xlsx2csv,xlsxwriter]"] +all = ["polars[adbc,async,cloudpickle,connectorx,deltalake,fastexcel,fsspec,gevent,iceberg,numpy,pandas,plot,pyarrow,pydantic,sqlalchemy,timezone,xlsx2csv,xlsxwriter]"] async = ["nest-asyncio"] cloudpickle = ["cloudpickle"] connectorx = ["connectorx (>=0.3.2)"] @@ -2699,6 +2699,7 @@ deltalake = ["deltalake (>=0.15.0)"] fastexcel = ["fastexcel (>=0.9)"] fsspec = ["fsspec"] gevent = ["gevent"] +iceberg = ["pyiceberg (>=0.5.0)"] matplotlib = ["matplotlib"] numpy = ["numpy (>=1.16.0)"] openpyxl = ["openpyxl (>=3.0.0)"] @@ -2706,11 +2707,9 @@ pandas = ["pandas", "pyarrow (>=7.0.0)"] plot = ["hvplot (>=0.9.1)"] pyarrow = ["pyarrow (>=7.0.0)"] pydantic = ["pydantic"] -pyiceberg = ["pyiceberg (>=0.5.0)"] pyxlsb = ["pyxlsb (>=1.0)"] sqlalchemy = ["pandas", "sqlalchemy"] timezone = ["backports-zoneinfo", "tzdata"] -torch = ["torch"] xlsx2csv = ["xlsx2csv (>=0.8.0)"] xlsxwriter = ["xlsxwriter"] @@ -2797,47 +2796,47 @@ tests = ["pytest"] [[package]] name = "pyarrow" -version = "16.0.0" +version = "16.1.0" description = "Python library for Apache Arrow" optional = false python-versions = ">=3.8" files = [ - {file = "pyarrow-16.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:22a1fdb1254e5095d629e29cd1ea98ed04b4bbfd8e42cc670a6b639ccc208b60"}, - {file = "pyarrow-16.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:574a00260a4ed9d118a14770edbd440b848fcae5a3024128be9d0274dbcaf858"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0815d0ddb733b8c1b53a05827a91f1b8bde6240f3b20bf9ba5d650eb9b89cdf"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df0080339387b5d30de31e0a149c0c11a827a10c82f0c67d9afae3981d1aabb7"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:edf38cce0bf0dcf726e074159c60516447e4474904c0033f018c1f33d7dac6c5"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:91d28f9a40f1264eab2af7905a4d95320ac2f287891e9c8b0035f264fe3c3a4b"}, - {file = "pyarrow-16.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:99af421ee451a78884d7faea23816c429e263bd3618b22d38e7992c9ce2a7ad9"}, - {file = "pyarrow-16.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d22d0941e6c7bafddf5f4c0662e46f2075850f1c044bf1a03150dd9e189427ce"}, - {file = "pyarrow-16.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:266ddb7e823f03733c15adc8b5078db2df6980f9aa93d6bb57ece615df4e0ba7"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cc23090224b6594f5a92d26ad47465af47c1d9c079dd4a0061ae39551889efe"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56850a0afe9ef37249d5387355449c0f94d12ff7994af88f16803a26d38f2016"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:705db70d3e2293c2f6f8e84874b5b775f690465798f66e94bb2c07bab0a6bb55"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:5448564754c154997bc09e95a44b81b9e31ae918a86c0fcb35c4aa4922756f55"}, - {file = "pyarrow-16.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:729f7b262aa620c9df8b9967db96c1575e4cfc8c25d078a06968e527b8d6ec05"}, - {file = "pyarrow-16.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:fb8065dbc0d051bf2ae2453af0484d99a43135cadabacf0af588a3be81fbbb9b"}, - {file = "pyarrow-16.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:20ce707d9aa390593ea93218b19d0eadab56390311cb87aad32c9a869b0e958c"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5823275c8addbbb50cd4e6a6839952682a33255b447277e37a6f518d6972f4e1"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab8b9050752b16a8b53fcd9853bf07d8daf19093533e990085168f40c64d978"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:42e56557bc7c5c10d3e42c3b32f6cff649a29d637e8f4e8b311d334cc4326730"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a7abdee4a4a7cfa239e2e8d721224c4b34ffe69a0ca7981354fe03c1328789b"}, - {file = "pyarrow-16.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:ef2f309b68396bcc5a354106741d333494d6a0d3e1951271849787109f0229a6"}, - {file = "pyarrow-16.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:ed66e5217b4526fa3585b5e39b0b82f501b88a10d36bd0d2a4d8aa7b5a48e2df"}, - {file = "pyarrow-16.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc8814310486f2a73c661ba8354540f17eef51e1b6dd090b93e3419d3a097b3a"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c2f5e239db7ed43e0ad2baf46a6465f89c824cc703f38ef0fde927d8e0955f7"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f293e92d1db251447cb028ae12f7bc47526e4649c3a9924c8376cab4ad6b98bd"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:dd9334a07b6dc21afe0857aa31842365a62eca664e415a3f9536e3a8bb832c07"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d91073d1e2fef2c121154680e2ba7e35ecf8d4969cc0af1fa6f14a8675858159"}, - {file = "pyarrow-16.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:71d52561cd7aefd22cf52538f262850b0cc9e4ec50af2aaa601da3a16ef48877"}, - {file = "pyarrow-16.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b93c9a50b965ee0bf4fef65e53b758a7e8dcc0c2d86cebcc037aaaf1b306ecc0"}, - {file = "pyarrow-16.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d831690844706e374c455fba2fb8cfcb7b797bfe53ceda4b54334316e1ac4fa4"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35692ce8ad0b8c666aa60f83950957096d92f2a9d8d7deda93fb835e6053307e"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dd3151d098e56f16a8389c1247137f9e4c22720b01c6f3aa6dec29a99b74d80"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:bd40467bdb3cbaf2044ed7a6f7f251c8f941c8b31275aaaf88e746c4f3ca4a7a"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:00a1dcb22ad4ceb8af87f7bd30cc3354788776c417f493089e0a0af981bc8d80"}, - {file = "pyarrow-16.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:fda9a7cebd1b1d46c97b511f60f73a5b766a6de4c5236f144f41a5d5afec1f35"}, - {file = "pyarrow-16.0.0.tar.gz", hash = "sha256:59bb1f1edbbf4114c72415f039f1359f1a57d166a331c3229788ccbfbb31689a"}, + {file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"}, + {file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"}, + {file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"}, + {file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"}, + {file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"}, + {file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"}, + {file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"}, + {file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"}, + {file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"}, + {file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"}, + {file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"}, + {file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"}, + {file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"}, + {file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"}, + {file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"}, + {file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"}, ] [package.dependencies] @@ -2903,13 +2902,13 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytest" -version = "8.2.0" +version = "8.2.2" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.2.0-py3-none-any.whl", hash = "sha256:1733f0620f6cda4095bbf0d9ff8022486e91892245bb9e7d5542c018f612f233"}, - {file = "pytest-8.2.0.tar.gz", hash = "sha256:d507d4482197eac0ba2bae2e9babf0672eb333017bcedaa5fb1a3d42c1174b3f"}, + {file = "pytest-8.2.2-py3-none-any.whl", hash = "sha256:c434598117762e2bd304e526244f67bf66bbd7b5d6cf22138be51ff661980343"}, + {file = "pytest-8.2.2.tar.gz", hash = "sha256:de4bb8104e201939ccdc688b27a89a7be2079b22e2bd2b07f806b6ba71117977"}, ] [package.dependencies] @@ -3347,13 +3346,13 @@ files = [ [[package]] name = "requests" -version = "2.31.0" +version = "2.32.0" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.0-py3-none-any.whl", hash = "sha256:f2c3881dddb70d056c5bd7600a4fae312b2a300e39be6a118d30b90bd27262b5"}, + {file = "requests-2.32.0.tar.gz", hash = "sha256:fa5490319474c82ef1d2c9bc459d3652e3ae4ef4c4ebdd18a21145a47ca4b6b8"}, ] [package.dependencies] @@ -3647,45 +3646,48 @@ torch = ["safetensors[numpy]", "torch (>=1.10)"] [[package]] name = "scikit-learn" -version = "1.4.2" +version = "1.5.0" description = "A set of python modules for machine learning and data mining" optional = false python-versions = ">=3.9" files = [ - {file = "scikit-learn-1.4.2.tar.gz", hash = "sha256:daa1c471d95bad080c6e44b4946c9390a4842adc3082572c20e4f8884e39e959"}, - {file = "scikit_learn-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8539a41b3d6d1af82eb629f9c57f37428ff1481c1e34dddb3b9d7af8ede67ac5"}, - {file = "scikit_learn-1.4.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:68b8404841f944a4a1459b07198fa2edd41a82f189b44f3e1d55c104dbc2e40c"}, - {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81bf5d8bbe87643103334032dd82f7419bc8c8d02a763643a6b9a5c7288c5054"}, - {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f0ea5d0f693cb247a073d21a4123bdf4172e470e6d163c12b74cbb1536cf38"}, - {file = "scikit_learn-1.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:87440e2e188c87db80ea4023440923dccbd56fbc2d557b18ced00fef79da0727"}, - {file = "scikit_learn-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45dee87ac5309bb82e3ea633955030df9bbcb8d2cdb30383c6cd483691c546cc"}, - {file = "scikit_learn-1.4.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1d0b25d9c651fd050555aadd57431b53d4cf664e749069da77f3d52c5ad14b3b"}, - {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0203c368058ab92efc6168a1507d388d41469c873e96ec220ca8e74079bf62e"}, - {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44c62f2b124848a28fd695db5bc4da019287abf390bfce602ddc8aa1ec186aae"}, - {file = "scikit_learn-1.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:5cd7b524115499b18b63f0c96f4224eb885564937a0b3477531b2b63ce331904"}, - {file = "scikit_learn-1.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:90378e1747949f90c8f385898fff35d73193dfcaec3dd75d6b542f90c4e89755"}, - {file = "scikit_learn-1.4.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ff4effe5a1d4e8fed260a83a163f7dbf4f6087b54528d8880bab1d1377bd78be"}, - {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:671e2f0c3f2c15409dae4f282a3a619601fa824d2c820e5b608d9d775f91780c"}, - {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d36d0bc983336bbc1be22f9b686b50c964f593c8a9a913a792442af9bf4f5e68"}, - {file = "scikit_learn-1.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:d762070980c17ba3e9a4a1e043ba0518ce4c55152032f1af0ca6f39b376b5928"}, - {file = "scikit_learn-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d9993d5e78a8148b1d0fdf5b15ed92452af5581734129998c26f481c46586d68"}, - {file = "scikit_learn-1.4.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:426d258fddac674fdf33f3cb2d54d26f49406e2599dbf9a32b4d1696091d4256"}, - {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5460a1a5b043ae5ae4596b3126a4ec33ccba1b51e7ca2c5d36dac2169f62ab1d"}, - {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d64ef6cb8c093d883e5a36c4766548d974898d378e395ba41a806d0e824db8"}, - {file = "scikit_learn-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:c97a50b05c194be9146d61fe87dbf8eac62b203d9e87a3ccc6ae9aed2dfaf361"}, + {file = "scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:12e40ac48555e6b551f0a0a5743cc94cc5a765c9513fe708e01f0aa001da2801"}, + {file = "scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f405c4dae288f5f6553b10c4ac9ea7754d5180ec11e296464adb5d6ac68b6ef5"}, + {file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df8ccabbf583315f13160a4bb06037bde99ea7d8211a69787a6b7c5d4ebb6fc3"}, + {file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c75ea812cd83b1385bbfa94ae971f0d80adb338a9523f6bbcb5e0b0381151d4"}, + {file = "scikit_learn-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:a90c5da84829a0b9b4bf00daf62754b2be741e66b5946911f5bdfaa869fcedd6"}, + {file = "scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a65af2d8a6cce4e163a7951a4cfbfa7fceb2d5c013a4b593686c7f16445cf9d"}, + {file = "scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:4c0c56c3005f2ec1db3787aeaabefa96256580678cec783986836fc64f8ff622"}, + {file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f77547165c00625551e5c250cefa3f03f2fc92c5e18668abd90bfc4be2e0bff"}, + {file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:118a8d229a41158c9f90093e46b3737120a165181a1b58c03461447aa4657415"}, + {file = "scikit_learn-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:a03b09f9f7f09ffe8c5efffe2e9de1196c696d811be6798ad5eddf323c6f4d40"}, + {file = "scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:460806030c666addee1f074788b3978329a5bfdc9b7d63e7aad3f6d45c67a210"}, + {file = "scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:1b94d6440603752b27842eda97f6395f570941857456c606eb1d638efdb38184"}, + {file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82c2e573f0f2f2f0be897e7a31fcf4e73869247738ab8c3ce7245549af58ab8"}, + {file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3a10e1d9e834e84d05e468ec501a356226338778769317ee0b84043c0d8fb06"}, + {file = "scikit_learn-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:855fc5fa8ed9e4f08291203af3d3e5fbdc4737bd617a371559aaa2088166046e"}, + {file = "scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:40fb7d4a9a2db07e6e0cae4dc7bdbb8fada17043bac24104d8165e10e4cff1a2"}, + {file = "scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:47132440050b1c5beb95f8ba0b2402bbd9057ce96ec0ba86f2f445dd4f34df67"}, + {file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:174beb56e3e881c90424e21f576fa69c4ffcf5174632a79ab4461c4c960315ac"}, + {file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261fe334ca48f09ed64b8fae13f9b46cc43ac5f580c4a605cbb0a517456c8f71"}, + {file = "scikit_learn-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:057b991ac64b3e75c9c04b5f9395eaf19a6179244c089afdebaad98264bff37c"}, + {file = "scikit_learn-1.5.0.tar.gz", hash = "sha256:789e3db01c750ed6d496fa2db7d50637857b451e57bcae863bff707c1247bef7"}, ] [package.dependencies] joblib = ">=1.2.0" numpy = ">=1.19.5" scipy = ">=1.6.0" -threadpoolctl = ">=2.0.0" +threadpoolctl = ">=3.1.0" [package.extras] -benchmark = ["matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "pandas (>=1.1.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.15.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.19.12)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.17.2)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] [[package]] name = "scipy" @@ -4070,31 +4072,31 @@ files = [ [[package]] name = "torch" -version = "2.3.0" +version = "2.3.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.3.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:d8ea5a465dbfd8501f33c937d1f693176c9aef9d1c1b0ca1d44ed7b0a18c52ac"}, - {file = "torch-2.3.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:09c81c5859a5b819956c6925a405ef1cdda393c9d8a01ce3851453f699d3358c"}, - {file = "torch-2.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:1bf023aa20902586f614f7682fedfa463e773e26c58820b74158a72470259459"}, - {file = "torch-2.3.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:758ef938de87a2653bba74b91f703458c15569f1562bf4b6c63c62d9c5a0c1f5"}, - {file = "torch-2.3.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:493d54ee2f9df100b5ce1d18c96dbb8d14908721f76351e908c9d2622773a788"}, - {file = "torch-2.3.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:bce43af735c3da16cc14c7de2be7ad038e2fbf75654c2e274e575c6c05772ace"}, - {file = "torch-2.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:729804e97b7cf19ae9ab4181f91f5e612af07956f35c8b2c8e9d9f3596a8e877"}, - {file = "torch-2.3.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:d24e328226d8e2af7cf80fcb1d2f1d108e0de32777fab4aaa2b37b9765d8be73"}, - {file = "torch-2.3.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:b0de2bdc0486ea7b14fc47ff805172df44e421a7318b7c4d92ef589a75d27410"}, - {file = "torch-2.3.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a306c87a3eead1ed47457822c01dfbd459fe2920f2d38cbdf90de18f23f72542"}, - {file = "torch-2.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:f9b98bf1a3c8af2d4c41f0bf1433920900896c446d1ddc128290ff146d1eb4bd"}, - {file = "torch-2.3.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:dca986214267b34065a79000cee54232e62b41dff1ec2cab9abc3fc8b3dee0ad"}, - {file = "torch-2.3.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:20572f426965dd8a04e92a473d7e445fa579e09943cc0354f3e6fef6130ce061"}, - {file = "torch-2.3.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e65ba85ae292909cde0dde6369826d51165a3fc8823dc1854cd9432d7f79b932"}, - {file = "torch-2.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:5515503a193781fd1b3f5c474e89c9dfa2faaa782b2795cc4a7ab7e67de923f6"}, - {file = "torch-2.3.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:6ae9f64b09516baa4ef890af0672dc981c20b1f0d829ce115d4420a247e88fba"}, - {file = "torch-2.3.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:cd0dc498b961ab19cb3f8dbf0c6c50e244f2f37dbfa05754ab44ea057c944ef9"}, - {file = "torch-2.3.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e05f836559251e4096f3786ee99f4a8cbe67bc7fbedba8ad5e799681e47c5e80"}, - {file = "torch-2.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:4fb27b35dbb32303c2927da86e27b54a92209ddfb7234afb1949ea2b3effffea"}, - {file = "torch-2.3.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:760f8bedff506ce9e6e103498f9b1e9e15809e008368594c3a66bf74a8a51380"}, + {file = "torch-2.3.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:605a25b23944be5ab7c3467e843580e1d888b8066e5aaf17ff7bf9cc30001cc3"}, + {file = "torch-2.3.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f2357eb0965583a0954d6f9ad005bba0091f956aef879822274b1bcdb11bd308"}, + {file = "torch-2.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:32b05fe0d1ada7f69c9f86c14ff69b0ef1957a5a54199bacba63d22d8fab720b"}, + {file = "torch-2.3.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:7c09a94362778428484bcf995f6004b04952106aee0ef45ff0b4bab484f5498d"}, + {file = "torch-2.3.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:b2ec81b61bb094ea4a9dee1cd3f7b76a44555375719ad29f05c0ca8ef596ad39"}, + {file = "torch-2.3.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:490cc3d917d1fe0bd027057dfe9941dc1d6d8e3cae76140f5dd9a7e5bc7130ab"}, + {file = "torch-2.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:5802530783bd465fe66c2df99123c9a54be06da118fbd785a25ab0a88123758a"}, + {file = "torch-2.3.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:a7dd4ed388ad1f3d502bf09453d5fe596c7b121de7e0cfaca1e2017782e9bbac"}, + {file = "torch-2.3.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:a486c0b1976a118805fc7c9641d02df7afbb0c21e6b555d3bb985c9f9601b61a"}, + {file = "torch-2.3.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:224259821fe3e4c6f7edf1528e4fe4ac779c77addaa74215eb0b63a5c474d66c"}, + {file = "torch-2.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:e5fdccbf6f1334b2203a61a0e03821d5845f1421defe311dabeae2fc8fbeac2d"}, + {file = "torch-2.3.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:3c333dc2ebc189561514eda06e81df22bf8fb64e2384746b2cb9f04f96d1d4c8"}, + {file = "torch-2.3.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:07e9ba746832b8d069cacb45f312cadd8ad02b81ea527ec9766c0e7404bb3feb"}, + {file = "torch-2.3.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:462d1c07dbf6bb5d9d2f3316fee73a24f3d12cd8dacf681ad46ef6418f7f6626"}, + {file = "torch-2.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:ff60bf7ce3de1d43ad3f6969983f321a31f0a45df3690921720bcad6a8596cc4"}, + {file = "torch-2.3.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:bee0bd33dc58aa8fc8a7527876e9b9a0e812ad08122054a5bff2ce5abf005b10"}, + {file = "torch-2.3.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:aaa872abde9a3d4f91580f6396d54888620f4a0b92e3976a6034759df4b961ad"}, + {file = "torch-2.3.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:3d7a7f7ef21a7520510553dc3938b0c57c116a7daee20736a9e25cbc0e832bdc"}, + {file = "torch-2.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:4777f6cefa0c2b5fa87223c213e7b6f417cf254a45e5829be4ccd1b2a4ee1011"}, + {file = "torch-2.3.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:2bb5af780c55be68fe100feb0528d2edebace1d55cb2e351de735809ba7391eb"}, ] [package.dependencies] @@ -4115,7 +4117,7 @@ nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \" nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} sympy = "*" -triton = {version = "2.3.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} +triton = {version = "2.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} typing-extensions = ">=4.8.0" [package.extras] @@ -4124,59 +4126,59 @@ optree = ["optree (>=0.9.1)"] [[package]] name = "torchvision" -version = "0.18.0" +version = "0.18.1" description = "image and video datasets and models for torch deep learning" optional = false python-versions = ">=3.8" files = [ - {file = "torchvision-0.18.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dd61628a3d189c6852a12dc5ed4cd2eece66d2d67f35a866cb16f1dcb06c8c62"}, - {file = "torchvision-0.18.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:493c45f9937dad37aa1b64b14da17c7a589c72b91adc4837d431009cfe29bd53"}, - {file = "torchvision-0.18.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:5337f6acfa1fe959d5cb340d01a00614d6b31ce7a4824ccb95435a85c5273b95"}, - {file = "torchvision-0.18.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd8e6f3b5beb49965f15c461302488edfa3d8c2d01d3bb79b150d6fb62711e3a"}, - {file = "torchvision-0.18.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6896a52168befe1105fb3c9335287390ed227e71d1e4ec4d68b62e8a3099fc09"}, - {file = "torchvision-0.18.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:3d7955398d4ceaad77c487c2c44f6f7813112402c9bab8cd906d346005891048"}, - {file = "torchvision-0.18.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:e5a24d620cea14a4bb89f24aa2b506230c0a16a3ada57fc53ad80cfd256a2128"}, - {file = "torchvision-0.18.0-cp311-cp311-win_amd64.whl", hash = "sha256:6ad70ddfa879bda5ed886b2518fe562640e0059787cbd65cb2bffa7674541410"}, - {file = "torchvision-0.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:eb9d83c0e1dbb54ecb0fb04c87f786333e3a6fb8b9c400aca7c31081f9aa5707"}, - {file = "torchvision-0.18.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:b657d052d146f24cb3b2a78219bfc82ae70a9706671c50f632528907d10cccec"}, - {file = "torchvision-0.18.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:a964afbc7ddf50a46b941477f6c35729b416deedd139756befd488245e2e226d"}, - {file = "torchvision-0.18.0-cp312-cp312-win_amd64.whl", hash = "sha256:7c770f0f748e0b17f57c0297508d7254f686cdf03fc2e2949f422b20574f4c0f"}, - {file = "torchvision-0.18.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2115a1906c015f5da9ceedc40a983313b0fd6e2c8a17108a92991706f51f6987"}, - {file = "torchvision-0.18.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:6323f7e5423ff2594d5891863b919deb9d0de95f01c36bf26fbd879036b6ed08"}, - {file = "torchvision-0.18.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:925d0a82cccf6f986c18b29b4392a942db65cbdb73c13a129c8493822eb9e36f"}, - {file = "torchvision-0.18.0-cp38-cp38-win_amd64.whl", hash = "sha256:95b42d0dc599b47a01530c7439a5751e67e45b85e3a67113989cf7c7c70f2039"}, - {file = "torchvision-0.18.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75e22ecf44a13b8f95b8ad421c0261282d859c61816badaca1959e073ccdd691"}, - {file = "torchvision-0.18.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:4c334b3e719ba0a9ba6e15d4aff1178f5e6d029174f346163fed525f0ccfffd3"}, - {file = "torchvision-0.18.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:36efd87001c6bee2383e043e46a025affb03179747c8f4777b9918527ffce756"}, - {file = "torchvision-0.18.0-cp39-cp39-win_amd64.whl", hash = "sha256:ccc292e093771d5baacf5535ac4416306b6b5f15676341cd4d010d8542eace25"}, + {file = "torchvision-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e694e54b0548dad99c12af6bf0c8e4f3350137d391dcd19af22a1c5f89322b3"}, + {file = "torchvision-0.18.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:0b3bda0aa5b416eeb547143b8eeaf17720bdba9cf516dc991aacb81811aa96a5"}, + {file = "torchvision-0.18.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:573ff523c739405edb085f65cb592f482d28a30e29b0be4c4ba08040b3ae785f"}, + {file = "torchvision-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:ef7bbbc60b38e831a75e547c66ca1784f2ac27100f9e4ddbe9614cef6cbcd942"}, + {file = "torchvision-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:80b5d794dd0fdba787adc22f1a367a5ead452327686473cb260dd94364bc56a6"}, + {file = "torchvision-0.18.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:9077cf590cdb3a5e8fdf5cdb71797f8c67713f974cf0228ecb17fcd670ab42f9"}, + {file = "torchvision-0.18.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ceb993a882f1ae7ae373ed39c28d7e3e802205b0e59a7ed84ef4028f0bba8d7f"}, + {file = "torchvision-0.18.1-cp311-cp311-win_amd64.whl", hash = "sha256:52f7436140045dc2239cdc502aa76b2bd8bd676d64244ff154d304aa69852046"}, + {file = "torchvision-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2be6f0bf7c455c89a51a1dbb6f668d36c6edc479f49ac912d745d10df5715657"}, + {file = "torchvision-0.18.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:f118d887bfde3a948a41d56587525401e5cac1b7db2eaca203324d6ed2b1caca"}, + {file = "torchvision-0.18.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:13d24d904f65e62d66a1e0c41faec630bc193867b8a4a01166769e8a8e8df8e9"}, + {file = "torchvision-0.18.1-cp312-cp312-win_amd64.whl", hash = "sha256:ed6340b69a63a625e512a66127210d412551d9c5f2ad2978130c6a45bf56cd4a"}, + {file = "torchvision-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b1c3864fa9378c88bce8ad0ef3599f4f25397897ce612e1c245c74b97092f35e"}, + {file = "torchvision-0.18.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:02085a2ffc7461f5c0edb07d6f3455ee1806561f37736b903da820067eea58c7"}, + {file = "torchvision-0.18.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:9726c316a2501df8503e5a5dc46a631afd4c515a958972e5b7f7b9c87d2125c0"}, + {file = "torchvision-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:64a2662dbf30db9055d8b201d6e56f312a504e5ccd9d144c57c41622d3c524cb"}, + {file = "torchvision-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:975b8594c0f5288875408acbb74946eea786c5b008d129c0d045d0ead23742bc"}, + {file = "torchvision-0.18.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:da83c8bbd34d8bee48bfa1d1b40e0844bc3cba10ed825a5a8cbe3ce7b62264cd"}, + {file = "torchvision-0.18.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:54bfcd352abb396d5c9c237d200167c178bd136051b138e1e8ef46ce367c2773"}, + {file = "torchvision-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:5c8366a1aeee49e9ea9e64b30d199debdf06b1bd7610a76165eb5d7869c3bde5"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -torch = "2.3.0" +torch = "2.3.1" [package.extras] scipy = ["scipy"] [[package]] name = "tornado" -version = "6.4" +version = "6.4.1" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, - {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, - {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, - {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, - {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, ] [[package]] @@ -4282,17 +4284,17 @@ vision = ["Pillow (>=10.0.1,<=15.0)"] [[package]] name = "triton" -version = "2.3.0" +version = "2.3.1" description = "A language and compiler for custom Deep Learning operations" optional = false python-versions = "*" files = [ - {file = "triton-2.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ce4b8ff70c48e47274c66f269cce8861cf1dc347ceeb7a67414ca151b1822d8"}, - {file = "triton-2.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c3d9607f85103afdb279938fc1dd2a66e4f5999a58eb48a346bd42738f986dd"}, - {file = "triton-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:218d742e67480d9581bafb73ed598416cc8a56f6316152e5562ee65e33de01c0"}, - {file = "triton-2.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:381ec6b3dac06922d3e4099cfc943ef032893b25415de295e82b1a82b0359d2c"}, - {file = "triton-2.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:038e06a09c06a164fef9c48de3af1e13a63dc1ba3c792871e61a8e79720ea440"}, - {file = "triton-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d8f636e0341ac348899a47a057c3daea99ea7db31528a225a3ba4ded28ccc65"}, + {file = "triton-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c84595cbe5e546b1b290d2a58b1494df5a2ef066dd890655e5b8a8a92205c33"}, + {file = "triton-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d64ae33bcb3a7a18081e3a746e8cf87ca8623ca13d2c362413ce7a486f893e"}, + {file = "triton-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaf80e8761a9e3498aa92e7bf83a085b31959c61f5e8ac14eedd018df6fccd10"}, + {file = "triton-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b13bf35a2b659af7159bf78e92798dc62d877aa991de723937329e2d382f1991"}, + {file = "triton-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63381e35ded3304704ea867ffde3b7cfc42c16a55b3062d41e017ef510433d66"}, + {file = "triton-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d968264523c7a07911c8fb51b4e0d1b920204dae71491b1fe7b01b62a31e124"}, ] [package.dependencies] @@ -4352,13 +4354,13 @@ dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.2" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, ] [package.extras] @@ -4592,4 +4594,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.11,<3.13" -content-hash = "8b40612f64c49dd6b28ac1171dd4135aa792a993b4d254ae6bfd48ea5fd918a1" +content-hash = "3d25591445f9ba7fd0ba42364e8486704f822448e5688e7991138700c1ab34ca"