diff --git a/example/sphere_pytorch.py b/example/sphere_pytorch.py new file mode 100644 index 00000000..9f34221b --- /dev/null +++ b/example/sphere_pytorch.py @@ -0,0 +1,51 @@ +""" +Minimal example of calling a kernel for a specific set of q values. + + npts = values.pop(parameter.name+'_pd_n', 0) + width = values.pop(parameter.name+'_pd', 0.0) + nsigma = values.pop(parameter.name+'_pd_nsigma', 3.0) + distribution = values.pop(parameter.name+'_pd_type', 'gaussian') + +""" +import time + +import torch + +from numpy import logspace, sqrt +from matplotlib import pyplot as plt +from sasmodels.core import load_model +from sasmodels.direct_model import call_kernel, get_mesh +from sasmodels.details import make_kernel_args, dispersion_mesh + +import sasmodels.kerneltorch as kt + +def make_kernel(model, q_vectors): + """Instantiate the python kernel with input *q_vectors*""" + q_input = kt.PyInput(q_vectors, dtype=torch.float64) + return kt.PyKernel(model.info, q_input) + + +model = load_model('_spherepy') +print(model.info) + +q = torch.logspace(-3, -1, 200) + +#qq = logspace(-3, -1, 200) + +kernel = make_kernel(model, [q]) + + + +pars = {'radius': 200, 'radius_pd': 0.2, 'radius_pd_n':10000, 'scale': 2} + +#mesh = get_mesh(kernel.info, pars, dim=kernel.dim) +#print(mesh) + +#call_details, values, is_magnetic = make_kernel_args(kernel, mesh) +#print(call_details) +#print(values) + +t0 = time.time() +Iq = call_kernel(kernel, pars) +elapsed = time.time() - t0 +print('Computation time:', elapsed) diff --git a/sasmodels/kerneltorch.py b/sasmodels/kerneltorch.py new file mode 100644 index 00000000..a9f0f539 --- /dev/null +++ b/sasmodels/kerneltorch.py @@ -0,0 +1,340 @@ +""" +Python driver for python kernels + +Calls the kernel with a vector of $q$ values for a single parameter set. +Polydispersity is supported by looping over different parameter sets and +summing the results. The interface to :class:`PyModel` matches those for +:class:`.kernelcl.GpuModel` and :class:`.kerneldll.DllModel`. +""" +from __future__ import division, print_function + +import logging +import torch + +import numpy as np # type: ignore +from numpy import pi +try: + from numpy import cbrt +except ImportError: + def cbrt(x): + """Return cubed root of x.""" + return x ** (1.0/3.0) + +from .generate import F64 +from .kernel import KernelModel, Kernel + +# pylint: disable=unused-import +try: + from typing import Union, Callable, List + from .details import CallDetails + from .modelinfo import ModelInfo +except ImportError: + pass +# pylint: enable=unused-import + +logger = logging.getLogger(__name__) + + +class PyModel(KernelModel): + """ + Wrapper for pure python models. + """ + def __init__(self, model_info): + # Make sure Iq is available and vectorized. + _create_default_functions(model_info) + self.info = model_info + self.dtype = np.dtype('d') + logger.info("make python model %s", self.info.name) + + def make_kernel(self, q_vectors): + """Instantiate the python kernel with input *q_vectors*""" + q_input = PyInput(q_vectors, dtype=F64) + return PyKernel(self.info, q_input) + + def release(self): + """ + Free resources associated with the model. + """ + pass + + +class PyInput(object): + """ + Make q data available to the gpu. + + *q_vectors* is a list of q vectors, which will be *[q]* for 1-D data, + and *[qx, qy]* for 2-D data. Internally, the vectors will be reallocated + to get the best performance on OpenCL, which may involve shifting and + stretching the array to better match the memory architecture. Additional + points will be evaluated with *q=1e-3*. + + *dtype* is the data type for the q vectors. The data type should be + set to match that of the kernel, which is an attribute of + :class:`PyModel`. Note that not all kernels support double + precision, so even if the program was created for double precision, + the *GpuProgram.dtype* may be single precision. + + Call :meth:`release` when complete. Even if not called directly, the + buffer will be released when the data object is freed. + """ + def __init__(self, q_vectors, dtype): + self.nq = q_vectors[0].shape[0] + self.dtype = dtype + self.is_2d = (len(q_vectors) == 2) + if self.is_2d: + self.q = np.empty((self.nq, 2), dtype=dtype) + self.q[:, 0] = q_vectors[0] + self.q[:, 1] = q_vectors[1] + else: + # Create empty tensor + self.q = torch.tensor(np.empty(self.nq, dtype=np.float64)) + self.q[:self.nq] = q_vectors[0] + + def release(self): + """ + Free resources associated with the model inputs. + """ + self.q = None + + +class PyKernel(Kernel): + """ + Callable SAS kernel. + + *kernel* is the kernel object to call. + + *model_info* is the module information + + *q_input* is the DllInput q vectors at which the kernel should be + evaluated. + + The resulting call method takes the *pars*, a list of values for + the fixed parameters to the kernel, and *pd_pars*, a list of (value,weight) + vectors for the polydisperse parameters. *cutoff* determines the + integration limits: any points with combined weight less than *cutoff* + will not be calculated. + + Call :meth:`release` when done with the kernel instance. + """ + def __init__(self, model_info, q_input): + # type: (ModelInfo, List[np.ndarray]) -> None + self.dtype = np.dtype('d') + self.info = model_info + self.q_input = q_input + self.res = np.empty(q_input.nq, np.float64) + self.dim = '2d' if q_input.is_2d else '1d' + + partable = model_info.parameters + #kernel_parameters = (partable.iqxy_parameters if q_input.is_2d + # else partable.iq_parameters) + kernel_parameters = partable.iq_parameters + volume_parameters = partable.form_volume_parameters + + # Create an array to hold the parameter values. There will be a + # single array whose values are updated as the calculator goes + # through the loop. Arguments to the kernel and volume functions + # will use views into this vector, relying on the fact that a + # an array of no dimensions acts like a scalar. + parameter_vector = np.empty(len(partable.call_parameters)-2, np.float64) + + # Create views into the array to hold the arguments. + offset = 0 + kernel_args, volume_args = [], [] + for p in partable.kernel_parameters: + if p.length == 1: + # Scalar values are length 1 vectors with no dimensions. + v = parameter_vector[offset:offset+1].reshape(()) + else: + # Vector values are simple views. + v = parameter_vector[offset:offset+p.length] + offset += p.length + if p in kernel_parameters: + kernel_args.append(v) + if p in volume_parameters: + volume_args.append(v) + + # Hold on to the parameter vector so we can use it to call kernel later. + # This may also be required to preserve the views into the vector. + self._parameter_vector = parameter_vector + + # Generate a closure which calls the kernel with the views into the + # parameter array. + if q_input.is_2d: + form = model_info.Iqxy + qx, qy = q_input.q[:, 0], q_input.q[:, 1] + self._form = lambda: form(qx, qy, *kernel_args) + else: + form = model_info.Iq + q = q_input.q + self._form = lambda: form(q, *kernel_args) + + # Generate a closure which calls the form_volume if it exists. + self._volume_args = volume_args + volume = model_info.form_volume + shell = model_info.shell_volume + radius = model_info.radius_effective + self._volume = ((lambda: (shell(*volume_args), volume(*volume_args))) if shell and volume + else (lambda: [volume(*volume_args)]*2) if volume + else (lambda: (1.0, 1.0))) + self._radius = ((lambda mode: radius(mode, *volume_args)) if radius + else (lambda mode: cbrt(0.75/pi*volume(*volume_args))) if volume + else (lambda mode: 1.0)) + + def _call_kernel(self, call_details, values, cutoff, magnetic, radius_effective_mode): + # type: (CallDetails, np.ndarray, np.ndarray, float, bool) -> None + if magnetic: + raise NotImplementedError("Magnetism not implemented for pure python models") + #print("Calling python kernel") + #call_details.show(values) + radius = ((lambda: 0.0) if radius_effective_mode == 0 + else (lambda: self._radius(radius_effective_mode))) + self.result = _loops( + self._parameter_vector, self._form, self._volume, radius, + self.q_input.nq, call_details, values, cutoff) + + def release(self): + # type: () -> None + """ + Free resources associated with the kernel. + """ + self.q_input.release() + self.q_input = None + + +def _loops(parameters, form, form_volume, form_radius, nq, call_details, + values, cutoff): + # type: (np.ndarray, Callable[[], np.ndarray], Callable[[], float], Callable[[], float], int, CallDetails, np.ndarray, float) -> None + ################################################################ + # # + # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # + # !! !! # + # !! KEEP THIS CODE CONSISTENT WITH KERNEL_TEMPLATE.C !! # + # !! !! # + # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # + # # + ################################################################ + + # WARNING: Trickery ahead + # The parameters[] vector is embedded in the closures for form(), + # form_volume() and form_radius(). We set the initial vector from + # the values for the model parameters. As we loop through the polydispesity + # mesh, we update the components with the polydispersity values before + # calling the respective functions. + n_pars = len(parameters) + parameters[:] = values[2:n_pars+2] + + if call_details.num_active == 0: + total = form() + weight_norm = 1.0 + weighted_shell, weighted_form = form_volume() + weighted_radius = form_radius() + + else: + pd_value = values[2+n_pars:2+n_pars + call_details.num_weights] + pd_weight = values[2+n_pars + call_details.num_weights:] + + weight_norm = 0.0 + weighted_form = 0.0 + weighted_shell = 0.0 + weighted_radius = 0.0 + partial_weight = np.NaN + weight = np.NaN + + p0_par = call_details.pd_par[0] + p0_length = call_details.pd_length[0] + p0_index = p0_length + p0_offset = call_details.pd_offset[0] + + pd_par = call_details.pd_par[:call_details.num_active] + pd_offset = call_details.pd_offset[:call_details.num_active] + pd_stride = call_details.pd_stride[:call_details.num_active] + pd_length = call_details.pd_length[:call_details.num_active] + + total = np.zeros(nq, np.float64) + for loop_index in range(call_details.num_eval): + # Update polydispersity parameter values. + if p0_index == p0_length: + pd_index = (loop_index//pd_stride)%pd_length + parameters[pd_par] = pd_value[pd_offset+pd_index] + partial_weight = np.prod(pd_weight[pd_offset+pd_index][1:]) + p0_index = loop_index%p0_length + + weight = partial_weight * pd_weight[p0_offset + p0_index] + parameters[p0_par] = pd_value[p0_offset + p0_index] + p0_index += 1 + if weight > cutoff: + # Call the scattering function. + # Assume that NaNs are only generated if the parameters are bad; + # exclude all q for that NaN. Even better would be to have an + # INVALID expression like the C models, but that is expensive. + Iq = np.asarray(form(), 'd') + if np.isnan(Iq).any(): + continue + + # Update value and norm. + total += weight * Iq + weight_norm += weight + unweighted_shell, unweighted_form = form_volume() + weighted_shell += weight * unweighted_shell + weighted_form += weight * unweighted_form + weighted_radius += weight * form_radius() + + result = np.hstack((total, weight_norm, weighted_form, weighted_shell, weighted_radius)) + return result + + +def _create_default_functions(model_info): + """ + Autogenerate missing functions, such as Iqxy from Iq. + + This only works for Iqxy when Iq is written in python. :func:`make_source` + performs a similar role for Iq written in C. This also vectorizes + any functions that are not already marked as vectorized. + """ + # Note: Must call create_vector_Iq before create_vector_Iqxy. + _create_vector_Iq(model_info) + _create_vector_Iqxy(model_info) + + +def _create_vector_Iq(model_info): + """ + Define Iq as a vector function if it exists. + """ + Iq = model_info.Iq + if callable(Iq) and not getattr(Iq, 'vectorized', False): + #print("vectorizing Iq") + def vector_Iq(q, *args): + """ + Vectorized 1D kernel. + """ + return np.array([Iq(qi, *args) for qi in q]) + vector_Iq.vectorized = True + model_info.Iq = vector_Iq + + +def _create_vector_Iqxy(model_info): + """ + Define Iqxy as a vector function if it exists, or default it from Iq(). + """ + Iqxy = getattr(model_info, 'Iqxy', None) + if callable(Iqxy): + if not getattr(Iqxy, 'vectorized', False): + #print("vectorizing Iqxy") + def vector_Iqxy(qx, qy, *args): + """ + Vectorized 2D kernel. + """ + return np.array([Iqxy(qxi, qyi, *args) for qxi, qyi in zip(qx, qy)]) + vector_Iqxy.vectorized = True + model_info.Iqxy = vector_Iqxy + else: + #print("defaulting Iqxy") + # Iq is vectorized because create_vector_Iq was already called. + Iq = model_info.Iq + def default_Iqxy(qx, qy, *args): + """ + Default 2D kernel. + """ + return Iq(np.sqrt(qx**2 + qy**2), *args) + default_Iqxy.vectorized = True + model_info.Iqxy = default_Iqxy