
Fortify Extension for Visual Studio

Developer Workbook
SharkCage

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

2

Table of Contents
Executive Summary
Project Description
Issue Breakdown by Fortify Categories
Results Outline
Description of Key Terminology
About Fortify Solutions

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

3

Executive Summary
This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the SharkCage project audit. The information contained in
this workbook is targeted at project managers and developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: SharkCage

Project Version:

SCA: Results Present

WebInspect: Results Not Present

WebInspect Agent: Results Not Present

Other: Results Not Present

Issues by Priority

Impact

5
High

5
Critical

31
Low

2
Medium

Likelihood

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

4

Project Description
This section provides an overview of the Fortify scan engines used for this project, as well as the project
meta-information.

SCA

Date of Last Analysis: Jul 24, 2018, 11:27 AM Engine Version: 18.10.0187

Host Name: itsec-08 Certification: VALID

Number of Files: 271 Lines of Code: 26,377

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

5

Issue Breakdown by Fortify Categories
The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

Category Fortify Priority (audited/total) Total
IssuesCritical High Medium Low

ASP.NET Bad Practices: Leftover Debug Code 0 0 0 0 / 1 0 / 1
Command Injection 0 / 3 0 0 0 / 1 0 / 4
Dead Code 0 0 0 0 / 12 0 / 12
Dead Code: Unused Field 0 0 0 0 / 1 0 / 1
Null Dereference 0 0 / 2 0 0 0 / 2
Path Manipulation 0 / 2 0 0 / 2 0 / 5 0 / 9
Poor Error Handling: Empty Catch Block 0 0 0 0 / 1 0 / 1
Poor Error Handling: Overly Broad Catch 0 0 0 0 / 3 0 / 3
Poor Style: Variable Never Used 0 0 0 0 / 7 0 / 7
Privacy Violation: Heap Inspection 0 0 / 1 0 0 0 / 1
Type Mismatch: Signed to Unsigned 0 0 / 1 0 0 0 / 1
Unsafe Native Invoke 0 0 / 1 0 0 0 / 1

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

6

Results Outline

ASP.NET Bad Practices: Leftover Debug Code (1 issue)

Abstract
Debug code can create unintended entry points in a deployed web application.

Explanation
A common development practice is to add "back door" code specifically designed for debugging or testing
purposes that is not intended to be shipped or deployed with the application. When this sort of debug code
is accidentally left in the application, the application is open to unintended modes of interaction. These back
door entry points create security risks because they are not considered during design or testing and fall
outside of the expected operating conditions of the application. The most common example of forgotten
debug code is a Main() method appearing in a web application. Although this is an acceptable practice
during product development, classes that are part of a production ASP.NET application should not define a
Main().

Recommendation
Remove debug code before deploying a production version of an application. Regardless of whether a
direct security threat can be articulated, it is unlikely that there is a legitimate reason for such code to
remain in the application after the early stages of development.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
ASP.NET Bad Practices: Leftover Debug Code 1 0 0 1
Total 1 0 0 1

ASP.NET Bad Practices: Leftover Debug Code Low
Package: CageConfigurator
CageConfigurator/CageConfigurator.cs, line 12 (ASP.NET Bad Practices:
Leftover Debug Code) Low

Issue Details

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

7

ASP.NET Bad Practices: Leftover Debug Code Low
Package: CageConfigurator
CageConfigurator/CageConfigurator.cs, line 12 (ASP.NET Bad Practices:
Leftover Debug Code) Low

Kingdom: Encapsulation
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: Main
Enclosing Method: Main()
File: CageConfigurator/CageConfigurator.cs:12
Taint Flags:

9 /// The main entry point for the application.
10 /// </summary>
11 [STAThread]
12 static void Main(string[] parameter)
13 {
14 Application.EnableVisualStyles();
15 Application.SetCompatibleTextRenderingDefault(false);

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

8

Command Injection (4 issues)

Abstract
Executing commands from an untrusted source or in an untrusted environment can cause an application to
execute malicious commands on behalf of an attacker.

Explanation
Command injection vulnerabilities take two forms: - An attacker can change the command that the program
executes: the attacker explicitly controls what the command is. - An attacker can change the environment
in which the command executes: the attacker implicitly controls what the command means. In this case we
are primarily concerned with the first scenario, the possibility that an attacker may be able to control the
command that is executed. Command injection vulnerabilities of this type occur when: 1. Data enters the
application from an untrusted source. 2. The data is used as or as part of a string representing a command
that is executed by the application. 3. By executing the command, the application gives an attacker a
privilege or capability that the attacker would not otherwise have. Example 1: The following code from a
system utility uses the system property APPHOME to determine the directory in which it is installed and then
executes an initialization script based on a relative path from the specified directory.
...
string val = Environment.GetEnvironmentVariable("APPHOME");
string cmd = val + INITCMD;
ProcessStartInfo startInfo = new ProcessStartInfo(cmd);
Process.Start(startInfo);
...
The code in Example 1 allows an attacker to execute arbitrary commands with the elevated privilege of the
application by modifying the system property APPHOME to point to a different path containing a malicious
version of INITCMD. Because the program does not validate the value read from the environment, if an
attacker can control the value of the system property APPHOME, then they can fool the application into
running malicious code and take control of the system. Example 2: The following code is from an
administrative web application designed to allow users to kick off a backup of an Oracle database using a
batch-file wrapper around the rman utility and then run a cleanup.bat script to delete some temporary
files. The script rmanDB.bat accepts a single command line parameter, which specifies the type of
backup to perform. Because access to the database is restricted, the application runs the backup as a
privileged user.
...
string btype = BackupTypeField.Text;
string cmd = "cmd.exe /K \"c:\\util\\rmanDB.bat"
 + btype + "&&c:\\util\\cleanup.bat\""));
Process.Start(cmd);
...
The problem here is that the program does not do any validation on BackupTypeField. Typically the
Process.Start() function will not execute multiple commands, but in this case the program first runs the
cmd.exe shell in order to run multiple commands with a single call to Process.Start(). Once the shell
is invoked, it will allow for the execution of multiple commands separated by two ampersands. If an attacker
passes a string of the form "&& del c:\\dbms*.*", then the application will execute this command
along with the others specified by the program. Because of the nature of the application, it runs with the
privileges necessary to interact with the database, which means whatever command the attacker injects
will run with those privileges as well. Example 3: The following code is from a web application that gives
users access to an interface through which they can update their password on the system. Part of the
process for updating passwords in this network environment is to run an update.exe command, as
shown below.
...
Process.Start("update.exe");
...

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

9

The problem here is that the program does not specify an absolute path and fails to clean its environment
prior to executing the call to Process.start(). If an attacker can modify the $PATH variable to point to a
malicious binary called update.exe and cause the program to be executed in their environment, then the
malicious binary will be loaded instead of the one intended. Because of the nature of the application, it runs
with the privileges necessary to perform system operations, which means the attacker's update.exe will
now be run with these privileges, possibly giving the attacker complete control of the system.

Recommendation
Do not allow users to have direct control over the commands executed by the program. In cases where
user input must affect the command to be run, use the input only to make a selection from a predetermined
set of safe commands. If the input appears to be malicious, the value passed to the command execution
function should either default to some safe selection from this set or the program should decline to execute
any command at all. In cases where user input must be used as an argument to a command executed by
the program, this approach often becomes impractical because the set of legitimate argument values is too
large or too hard to keep track of. Developers often fall back on blacklisting in these situations. Blacklisting
selectively rejects or escapes potentially dangerous characters before using the input. Any list of unsafe
characters is likely to be incomplete and will be heavily dependent on the system where the commands are
executed. A better approach is to create a whitelist of characters that are allowed to appear in the input and
accept input composed exclusively of characters in the approved set. An attacker may indirectly control
commands executed by a program by modifying the environment in which they are executed. The
environment should not be trusted and precautions should be taken to prevent an attacker from using some
manipulation of the environment to perform an attack. Whenever possible, commands should be controlled
by the application and executed using an absolute path. In cases where the path is not known at compile
time, such as for cross-platform applications, an absolute path should be constructed from trusted values
during execution. Command values and paths read from configuration files or the environment should be
sanity-checked against a set of invariants that define valid values. Other checks can sometimes be
performed to detect if these sources may have been tampered with. For example, if a configuration file is
world-writable, the program might refuse to run. In cases where information about the binary to be
executed is known in advance, the program may perform checks to verify the identity of the binary. If a
binary should always be owned by a particular user or have a particular set of access permissions
assigned to it, these properties can be verified programmatically before the binary is executed. Although it
may be impossible to completely protect a program from an imaginative attacker bent on controlling the
commands the program executes, be sure to apply the principle of least privilege wherever the program
executes an external command: do not hold privileges that are not essential to the execution of the
command.

Issue Summary

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

10

Engine Breakdown

SCA WebInspect SecurityScope Total
Command Injection 4 0 0 4
Total 4 0 0 4

Command Injection Critical
Package: CageChooser
CageChooser/CageChooserForm.cs, line 177 (Command Injection) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Microsoft.Win32.Registry.GetValue()
From: CageChooser.CageChooserForm.openCageConfiguratorButton_Click
File: CageChooser/CageChooserForm.cs:168

165 private void openCageConfiguratorButton_Click(object sender, EventArgs e)
166 {
167 const string registry_key = @"HKEY_LOCAL_MACHINE\SOFTWARE\SharkCage";
168 var install_dir = Registry.GetValue(registry_key, "InstallDir", "") as
string;
169
170 if (install_dir.Length == 0)
171 {

Sink Details

Sink: System.Diagnostics.ProcessStartInfo.set_FileName()
Enclosing Method: openCageConfiguratorButton_Click()
File: CageChooser/CageChooserForm.cs:177
Taint Flags: REGISTRY

174 }
175
176 var p = new System.Diagnostics.Process();
177 p.StartInfo.FileName = $@"{install_dir}\CageConfigurator.exe";
178 p.StartInfo.Arguments = $@"""{configPath.Text}""";
179 p.Start();
180 }

CageChooser/CageChooserForm.cs, line 178 (Command Injection) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

11

Command Injection Critical
Package: CageChooser
CageChooser/CageChooserForm.cs, line 178 (Command Injection) Critical

Source: System.Windows.Forms.TextBox.get_Text()
From: CageChooser.CageChooserForm.openCageConfiguratorButton_Click
File: CageChooser/CageChooserForm.cs:178

175
176 var p = new System.Diagnostics.Process();
177 p.StartInfo.FileName = $@"{install_dir}\CageConfigurator.exe";
178 p.StartInfo.Arguments = $@"""{configPath.Text}""";
179 p.Start();
180 }
181

Sink Details

Sink: System.Diagnostics.ProcessStartInfo.set_Arguments()
Enclosing Method: openCageConfiguratorButton_Click()
File: CageChooser/CageChooserForm.cs:178
Taint Flags: GUI_FORM

175
176 var p = new System.Diagnostics.Process();
177 p.StartInfo.FileName = $@"{install_dir}\CageConfigurator.exe";
178 p.StartInfo.Arguments = $@"""{configPath.Text}""";
179 p.Start();
180 }
181

Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 370 (Command Injection) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Microsoft.Win32.Registry.GetValue()
From: CageConfigurator.CageConfiguratorForm.openCageChooserButton_Click
File: CageConfigurator/CageConfiguratorForm.cs:361

358 private void openCageChooserButton_Click(object sender, EventArgs e)
359 {
360 const string registry_key = @"HKEY_LOCAL_MACHINE\SOFTWARE\SharkCage";
361 var install_dir = Registry.GetValue(registry_key, "InstallDir", "") as
string;
362
363 if (install_dir.Length == 0)

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

12

Command Injection Critical
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 370 (Command Injection) Critical
364 {

Sink Details

Sink: System.Diagnostics.ProcessStartInfo.set_FileName()
Enclosing Method: openCageChooserButton_Click()
File: CageConfigurator/CageConfiguratorForm.cs:370
Taint Flags: REGISTRY

367 }
368
369 var p = new System.Diagnostics.Process();
370 p.StartInfo.FileName = $@"{install_dir}\CageChooser.exe";
371 p.Start();
372 }
373

Command Injection Low
Package: CageChooser
CageChooser/CageChooser.cs, line 25 (Command Injection) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Semantic)

Sink Details

Sink: set_Arguments(0)
Enclosing Method: Main()
File: CageChooser/CageChooser.cs:25
Taint Flags:

22 var rootDir =
System.IO.Directory.GetParent(System.IO.Directory.GetCurrentDirectory()).Parent;

23 var scriptDir = rootDir.FullName + "\\install_service.ps1";
24
25 p.StartInfo.Arguments = "-ExecutionPolicy Unrestricted -File \"" + scriptDir + "\" -
DontStartNewContext";

26 try
27 {
28 p.Start();

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

13

Dead Code (12 issues)

Abstract
This statement will never be executed.

Explanation
The surrounding code makes it impossible for this statement to ever be executed. Example: The condition
for the second if statement is impossible to satisfy. It requires that the variable s be non-null, while on the
only path where s can be assigned a non-null value there is a return statement.
String s = null;

if (b) {
 s = "Yes";
 return;
}

if (s != null) {
 Dead();
}

Recommendation
In general, you should repair or remove unused code. It causes additional complexity and maintenance
burden without contributing to the functionality of the program.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Dead Code 12 0 0 12
Total 12 0 0 12

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8316 (Dead Code) Low
Issue Details

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

14

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8316 (Dead Code) Low

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8316
Taint Flags:

8313 {
8314 case value_t::object:
8315 {
8316 if (val.m_value.object->empty())
8317 {
8318 o->write_characters("{}", 2);
8319 return;

SharedFunctionality/json.hpp, line 8389 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8389
Taint Flags:

8386
8387 case value_t::array:
8388 {
8389 if (val.m_value.array->empty())
8390 {
8391 o->write_characters("[]", 2);
8392 return;

SharedFunctionality/json.hpp, line 8456 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8456
Taint Flags:

8453

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

15

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8456 (Dead Code) Low

8454 case value_t::boolean:

8455 {
8456 if (val.m_value.boolean)
8457 {
8458 o->write_characters("true", 4);
8459 }

SharedFunctionality/json.hpp, line 3968 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: iter_impl()
File: SharedFunctionality/json.hpp:3968
Taint Flags:

3965 {
3966 case value_t::object:
3967 {
3968 m_it.object_iterator = typename object_t::iterator();
3969 break;
3970 }
3971

SharedFunctionality/json.hpp, line 8448 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8448
Taint Flags:

8445
8446 case value_t::string:
8447 {
8448 o->write_character('\"');
8449 dump_escaped(*val.m_value.string, ensure_ascii);
8450 o->write_character('\"');
8451 return;

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

16

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8469 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8469
Taint Flags:

8466
8467 case value_t::number_integer:
8468 {
8469 dump_integer(val.m_value.number_integer);
8470 return;
8471 }
8472

SharedFunctionality/json.hpp, line 8475 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8475
Taint Flags:

8472
8473 case value_t::number_unsigned:
8474 {
8475 dump_integer(val.m_value.number_unsigned);
8476 return;
8477 }
8478

SharedFunctionality/json.hpp, line 8481 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8481
Taint Flags:

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

17

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8481 (Dead Code) Low

8478
8479 case value_t::number_float:
8480 {
8481 dump_float(val.m_value.number_float);
8482 return;
8483 }
8484

SharedFunctionality/json.hpp, line 8487 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8487
Taint Flags:

8484
8485 case value_t::discarded:
8486 {
8487 o->write_characters("<discarded>", 11);
8488 return;
8489 }
8490

SharedFunctionality/json.hpp, line 8493 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8493
Taint Flags:

8490
8491 case value_t::null:
8492 {
8493 o->write_characters("null", 4);
8494 return;
8495 }
8496 }

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

18

Dead Code Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8322 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8322
Taint Flags:

8319 return;
8320 }
8321
8322 if (pretty_print)
8323 {
8324 o->write_characters("{\n", 2);
8325

SharedFunctionality/json.hpp, line 8395 (Dead Code) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8395
Taint Flags:

8392 return;
8393 }
8394
8395 if (pretty_print)
8396 {
8397 o->write_characters("[\n", 2);
8398

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

19

Dead Code: Unused Field (1 issue)

Abstract
This field is never used directly or indirectly by a public method.

Explanation
This field is never accessed, except perhaps by dead code. Dead code is defined as code that is never
directly or indirectly executed by a public method. It is likely that the field is simply vestigial, but it is also
possible that the unused field points out a bug. Example 1: The field named glue is not used in the
following class. The author of the class has accidentally put quotes around the field name, transforming it
into a string constant.
public class Dead {

 string glue;

 public string GetGlue() {
 return "glue";
 }

}
Example 2: The field named glue is used in the following class, but only from a method that is never
called by a public method.
public class Dead {

 string glue;

 private string GetGlue() {
 return glue;
 }

}

Recommendation
In general, you should repair or remove dead code. To repair dead code, execute the dead code directly or
indirectly through a public method. Dead code causes additional complexity and maintenance burden
without contributing to the functionality of the program.

Issue Summary

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

20

Engine Breakdown

SCA WebInspect SecurityScope Total
Dead Code: Unused Field 1 0 0 1
Total 1 0 0 1

Dead Code: Unused Field Low
Package: CageServiceInstaller
CageServiceInstaller/ServiceInstaller.cs, line 10 (Dead Code: Unused Field) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Field: STANDARD_RIGHTS_REQUIRED
File: CageServiceInstaller/ServiceInstaller.cs:10
Taint Flags:

7
8 public static class ServiceInstaller
9 {
10 private const int STANDARD_RIGHTS_REQUIRED = 0xF0000;
11 private const int SERVICE_WIN32_OWN_PROCESS = 0x00000010;
12
13 [StructLayout(LayoutKind.Sequential)]

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

21

Null Dereference (2 issues)

Abstract
The program can potentially dereference a null pointer, thereby raising a NullException.

Explanation
Null pointer errors are usually the result of one or more programmer assumptions being violated. Most null
pointer issues result in general software reliability problems, but if an attacker can intentionally trigger a null
pointer dereference, the attacker may be able to use the resulting exception to bypass security logic or to
cause the application to reveal debugging information that will be valuable in planning subsequent attacks.
Example 1: In the following code, the programmer assumes that the system always has a property named "
cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the
program throws a null pointer exception when it attempts to call the Trim() method.
string cmd = null;
...
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();

Recommendation
Security problems caused by dereferencing null pointers are almost always related to the way in which the
program handles runtime exceptions. If the software has a solid and well-executed approach to dealing
with runtime exceptions, the potential for security damage is significantly diminished.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Null Dereference 2 0 0 2
Total 2 0 0 2

Null Dereference High
Package: CageChooser
CageChooser/CageChooserForm.cs, line 170 (Null Dereference) High
Issue Details

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

22

Null Dereference High
Package: CageChooser
CageChooser/CageChooserForm.cs, line 170 (Null Dereference) High

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: install_dir.get_Length() : install_dir is not checked for null value before being dereferenced
Enclosing Method: openCageConfiguratorButton_Click()
File: CageChooser/CageChooserForm.cs:170
Taint Flags:

167 const string registry_key = @"HKEY_LOCAL_MACHINE\SOFTWARE\SharkCage";
168 var install_dir = Registry.GetValue(registry_key, "InstallDir", "") as string;
169
170 if (install_dir.Length == 0)
171 {
172 MessageBox.Show("Could not read installation directory from registry, opening
CageConfigurator not possible", "Shark Cage", MessageBoxButtons.OK,
MessageBoxIcon.Information);

173 return;

Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 363 (Null Dereference) High
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: install_dir.get_Length() : install_dir is not checked for null value before being dereferenced
Enclosing Method: openCageChooserButton_Click()
File: CageConfigurator/CageConfiguratorForm.cs:363
Taint Flags:

360 const string registry_key = @"HKEY_LOCAL_MACHINE\SOFTWARE\SharkCage";
361 var install_dir = Registry.GetValue(registry_key, "InstallDir", "") as string;
362
363 if (install_dir.Length == 0)
364 {
365 MessageBox.Show("Could not read installation directory from registry, opening CageChooser
not possible", "Shark Cage", MessageBoxButtons.OK, MessageBoxIcon.Information);

366 return;

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

23

Path Manipulation (9 issues)

Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or
modify otherwise protected system resources.

Explanation
Path manipulation errors occur when the following two conditions are met: 1. An attacker is able to specify
a path used in an operation on the file system. 2. By specifying the resource, the attacker gains a capability
that would not otherwise be permitted. For example, the program may give the attacker the ability to
overwrite the specified file or run with a configuration controlled by the attacker. Example 1: The following
code uses input from an HTTP request to create a file name. The programmer has not considered the
possibility that an attacker may provide a file name like "..\\..\\Windows\\System32\\krnl386.exe
", which will cause the application to delete an important Windows system file.
String rName = Request.Item("reportName");
...
File.delete("C:\\users\\reports\\" + rName);
Example 2: The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with adequate privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the extension
".txt".
sr = new StreamReader(resmngr.GetString("sub")+".txt");
while ((line = sr.ReadLine()) != null) {
Console.WriteLine(line);
}

Recommendation
The best way to prevent path manipulation is with a level of indirection: create a list of legitimate resource
names that a user is allowed to specify, and only allow the user to select from the list. With this approach
the input provided by the user is never used directly to specify the resource name. In some situations this
approach is impractical because the set of legitimate resource names is too large or too hard to keep track
of. Programmers often resort to blacklisting in these situations. Blacklisting selectively rejects or escapes
potentially dangerous characters before using the input. However, any such list of unsafe characters is
likely to be incomplete and will almost certainly become out of date. A better approach is to create a
whitelist of characters that are allowed to appear in the resource name and accept input composed
exclusively of characters in the approved set.

Issue Summary

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

24

Engine Breakdown

SCA WebInspect SecurityScope Total
Path Manipulation 9 0 0 9
Total 9 0 0 9

Path Manipulation Critical
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 476 (Path Manipulation) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Windows.Forms.TextBox.get_Text()
From: CageConfigurator.CageConfiguratorForm.saveButton_Click
File: CageConfigurator/CageConfiguratorForm.cs:419

416 writer.WritePropertyName("has_signature");
417 writer.WriteValue(IsFileSigned(applicationPath.Text));
418 writer.WritePropertyName("binary_hash");
419 writer.WriteValue(GetSha512Hash(applicationPath.Text));
420 writer.WritePropertyName(TOKEN_PROPERTY);
421 writer.WriteValue(GetBase64FromImage(tokenBox.Image));
422 writer.WritePropertyName(ADDITIONAL_APP_NAME_PROPERTY);

Sink Details

Sink: System.IO.File.OpenRead()
Enclosing Method: GetSha512Hash()
File: CageConfigurator/CageConfiguratorForm.cs:476
Taint Flags: GUI_FORM

473
474 private static string GetSha512Hash(string file_path)
475 {
476 using (var bs = new BufferedStream(File.OpenRead(file_path), 1048576))
477 {
478 var sha = new SHA512Managed();
479 byte[] hash = sha.ComputeHash(bs);

CageConfigurator/CageConfiguratorForm.cs, line 499 (Path Manipulation) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Windows.Forms.TextBox.get_Text()

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

25

Path Manipulation Critical
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 499 (Path Manipulation) Critical

From: CageConfigurator.CageConfiguratorForm.saveButton_Click
File: CageConfigurator/CageConfiguratorForm.cs:417

414 writer.WritePropertyName(APPLICATION_PATH_PROPERTY);
415 writer.WriteValue(applicationPath.Text);
416 writer.WritePropertyName("has_signature");
417 writer.WriteValue(IsFileSigned(applicationPath.Text));
418 writer.WritePropertyName("binary_hash");
419 writer.WriteValue(GetSha512Hash(applicationPath.Text));
420 writer.WritePropertyName(TOKEN_PROPERTY);

Sink Details

Sink: System.Security.Cryptography.X509Certificates.X509Certificate.CreateFromSignedFile()
Enclosing Method: IsFileSigned()
File: CageConfigurator/CageConfiguratorForm.cs:499
Taint Flags: GUI_FORM

496 {
497 try
498 {
499 X509Certificate.CreateFromSignedFile(file_path);
500 return true;
501 }
502 catch

Path Manipulation Medium
Package: CageChooser
CageChooser/CageChooserForm.cs, line 91 (Path Manipulation) Medium
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Windows.Forms.TextBox.get_Text()
From: CageChooser.CageChooserForm.configPath_Leave
File: CageChooser/CageChooserForm.cs:81

78
79 private void configPath_Leave(object sender, EventArgs e)
80 {
81 CheckConfigPath(configPath.Text, addToLRUconfigs);
82 }
83

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

26

Path Manipulation Medium
Package: CageChooser
CageChooser/CageChooserForm.cs, line 91 (Path Manipulation) Medium
84 private void CheckConfigPath(string config_path, Action<string> onSuccess)

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CheckConfigPath()
File: CageChooser/CageChooserForm.cs:91
Taint Flags: GUI_FORM

88 return;
89 }
90
91 if (config_path.EndsWith(".sconfig") && File.Exists(config_path))
92 {
93 onSuccess(config_path);
94 }

Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 90 (Path Manipulation) Medium
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Windows.Forms.TextBox.get_Text()
From: CageConfigurator.CageConfiguratorForm.applicationPath_Leave
File: CageConfigurator/CageConfiguratorForm.cs:146

143
144 private void applicationPath_Leave(object sender, EventArgs e)
145 {
146 CheckPath(applicationPath.Text, ".exe", (string path) =>
147 {
148 SetUnsavedData(true);
149 });

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CheckPath()
File: CageConfigurator/CageConfiguratorForm.cs:90
Taint Flags: GUI_FORM

87 return path.EndsWith(type);
88 });
89

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

27

Path Manipulation Medium
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 90 (Path Manipulation) Medium
90 if (matching_type && File.Exists(path))

91 {
92 onSuccess?.Invoke(path);
93 }

Path Manipulation Low
Package: CageChooser
CageChooser/CageChooserForm.cs, line 29 (Path Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: CageChooser.Properties.Settings.get_PersistentConfigPath()
From: CageChooser.CageChooserForm.CageChooser_Load
File: CageChooser/CageChooserForm.cs:29

26
27 private void CageChooser_Load(object sender, EventArgs e)
28 {
29 if (!File.Exists(Settings.Default.PersistentConfigPath))
30 {
31 configPath.Text = String.Empty;
32 }

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CageChooser_Load()
File: CageChooser/CageChooserForm.cs:29
Taint Flags: PROPERTY

26
27 private void CageChooser_Load(object sender, EventArgs e)
28 {
29 if (!File.Exists(Settings.Default.PersistentConfigPath))
30 {
31 configPath.Text = String.Empty;
32 }

CageChooser/CageChooserForm.cs, line 37 (Path Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

28

Path Manipulation Low
Package: CageChooser
CageChooser/CageChooserForm.cs, line 37 (Path Manipulation) Low

Source Details

Source: CageChooser.Properties.Settings.get_PersistentLRUConfigs()
From: CageChooser.CageChooserForm.CageChooser_Load
File: CageChooser/CageChooserForm.cs:35

32 }
33 if (Settings.Default.PersistentLRUConfigs != null)
34 {
35 foreach (string lruConfig in Settings.Default.PersistentLRUConfigs)
36 {
37 if (File.Exists(lruConfig))
38 {

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CageChooser_Load()
File: CageChooser/CageChooserForm.cs:37
Taint Flags: PROPERTY

34 {
35 foreach (string lruConfig in Settings.Default.PersistentLRUConfigs)
36 {
37 if (File.Exists(lruConfig))
38 {
39 lruConfigs.Items.Add(lruConfig);
40 }

CageChooser/CageChooserForm.cs, line 37 (Path Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Configuration.ApplicationSettingsBase.get_Item()
From: CageChooser.Properties.Settings.get_PersistentLRUConfigs
File: CageChooser/Properties/Settings.Designer.cs:42

39 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
40 public global::System.Collections.Specialized.StringCollection
PersistentLRUConfigs {
41 get {
42 return ((global::System.Collections.Specialized.StringCollection)
(this["PersistentLRUConfigs"]));
43 }

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

29

Path Manipulation Low
Package: CageChooser
CageChooser/CageChooserForm.cs, line 37 (Path Manipulation) Low

44 set {
45 this["PersistentLRUConfigs"] = value;

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CageChooser_Load()
File: CageChooser/CageChooserForm.cs:37
Taint Flags: PROPERTY

34 {
35 foreach (string lruConfig in Settings.Default.PersistentLRUConfigs)
36 {
37 if (File.Exists(lruConfig))
38 {
39 lruConfigs.Items.Add(lruConfig);
40 }

CageChooser/CageChooserForm.cs, line 29 (Path Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Configuration.ApplicationSettingsBase.get_Item()
From: CageChooser.Properties.Settings.get_PersistentConfigPath
File: CageChooser/Properties/Settings.Designer.cs:31

28 [global::System.Configuration.DefaultSettingValueAttribute("")]
29 public string PersistentConfigPath {
30 get {
31 return ((string)(this["PersistentConfigPath"]));
32 }
33 set {
34 this["PersistentConfigPath"] = value;

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CageChooser_Load()
File: CageChooser/CageChooserForm.cs:29
Taint Flags: PROPERTY

26
27 private void CageChooser_Load(object sender, EventArgs e)
28 {
29 if (!File.Exists(Settings.Default.PersistentConfigPath))

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

30

Path Manipulation Low
Package: CageChooser
CageChooser/CageChooserForm.cs, line 29 (Path Manipulation) Low

30 {
31 configPath.Text = String.Empty;
32 }

Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 90 (Path Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: Main(0)
From: CageConfigurator.Program.Main
File: CageConfigurator/CageConfigurator.cs:12

9 /// The main entry point for the application.
10 /// </summary>
11 [STAThread]
12 static void Main(string[] parameter)
13 {
14 Application.EnableVisualStyles();
15 Application.SetCompatibleTextRenderingDefault(false);

Sink Details

Sink: System.IO.File.Exists()
Enclosing Method: CheckPath()
File: CageConfigurator/CageConfiguratorForm.cs:90
Taint Flags: ARGS

87 return path.EndsWith(type);
88 });
89
90 if (matching_type && File.Exists(path))
91 {
92 onSuccess?.Invoke(path);
93 }

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

31

Poor Error Handling: Empty Catch Block (1 issue)

Abstract
Ignoring an exception can cause the program to overlook unexpected states and conditions.

Explanation
Just about every serious attack on a software system begins with the violation of a programmer's
assumptions. After the attack, the programmer's assumptions seem flimsy and poorly founded, but before
an attack many programmers would defend their assumptions well past the end of their lunch break. Two
dubious assumptions that are easy to spot in code are "this method call can never fail" and "it doesn't
matter if this call fails". When programmers ignore exceptions, they implicitly state that they are operating
under one of these assumptions. Example 1: The following code excerpt ignores a rarely-thrown exception
from DoExchange().
try {
 DoExchange();
}
catch (RareException e) {
 // this can never happen
}
If a RareException were to ever be thrown, the program would continue to execute as though nothing
unusual had occurred. The program records no evidence indicating the special situation, potentially
frustrating any later attempt to explain the program's behavior.

Recommendation
At a minimum, log the fact that the exception was thrown so that it will be possible to come back later and
make sense of the resulting program behavior. Better yet, abort the current operation. Example 2: The
code in Example 1 could be rewritten in the following way:
try {
 DoExchange();
}
catch (RareException e) {
 Log.Error("This can never happen: " + e);
}

Issue Summary

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

32

Engine Breakdown

SCA WebInspect SecurityScope Total
Poor Error Handling: Empty Catch Block 1 0 0 1
Total 1 0 0 1

Poor Error Handling: Empty Catch Block Low
Package: CageChooser
CageChooser/CageChooser.cs, line 31 (Poor Error Handling: Empty Catch Block) Low
Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: CatchBlock
Enclosing Method: Main()
File: CageChooser/CageChooser.cs:31
Taint Flags:

28 p.Start();
29 p.WaitForExit();
30 }
31 catch { /* not accepting the admin prompt causes an exception*/ }
32 #endif
33
34 // check if service is running

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

33

Poor Error Handling: Overly Broad Catch (3 issues)

Abstract
The catch block handles a broad swath of exceptions, potentially trapping dissimilar issues or problems
that should not be dealt with at this point in the program.

Explanation
Multiple catch blocks can get ugly and repetitive, but "condensing" catch blocks by catching a high-level
class like Exception can obscure exceptions that deserve special treatment or that should not be caught
at this point in the program. Catching an overly broad exception essentially defeats the purpose of .NET's
typed exceptions, and can become particularly dangerous if the program grows and begins to throw new
types of exceptions. The new exception types will not receive any attention. Example: The following code
excerpt handles three types of exceptions in an identical fashion.
 try {
 DoExchange();
 }
 catch (IOException e) {
 logger.Error("DoExchange failed", e);
 }
 catch (FormatException e) {
 logger.Error("DoExchange failed", e);
 }
 catch (TimeoutException e) {
 logger.Error("DoExchange failed", e);
 }
At first blush, it may seem preferable to deal with these exceptions in a single catch block, as follows:
 try {
 DoExchange();
 }
 catch (Exception e) {
 logger.Error("DoExchange failed", e);
 }
However, if DoExchange() is modified to throw a new type of exception that should be handled in some
different kind of way, the broad catch block will prevent the compiler from pointing out the situation. Further,
the new catch block will now also handle exceptions of types ApplicationException and
NullReferenceException, which is not the programmer's intent.

Recommendation
Do not catch broad exception classes like Exception, , or except at the very top level of the program or
thread.

Issue Summary

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

34

Engine Breakdown

SCA WebInspect SecurityScope Total
Poor Error Handling: Overly Broad Catch 3 0 0 3
Total 3 0 0 3

Poor Error Handling: Overly Broad Catch Low
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 249 (Poor Error Handling:
Overly Broad Catch) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: CatchBlock
Enclosing Method: GetImageFromBase64()
File: CageConfigurator/CageConfiguratorForm.cs:249
Taint Flags:

246
247 return Image.FromStream(ms, true);
248 }
249 catch (Exception)
250 {
251 return null;
252 }

CageConfigurator/CageConfiguratorForm.cs, line 502 (Poor Error Handling:
Overly Broad Catch) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: CatchBlock
Enclosing Method: IsFileSigned()

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

35

Poor Error Handling: Overly Broad Catch Low
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 502 (Poor Error Handling:
Overly Broad Catch) Low

File: CageConfigurator/CageConfiguratorForm.cs:502
Taint Flags:

499 X509Certificate.CreateFromSignedFile(file_path);
500 return true;
501 }
502 catch
503 {
504 return false;
505 }

CageConfigurator/CageConfiguratorForm.cs, line 219 (Poor Error Handling:
Overly Broad Catch) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: CatchBlock
Enclosing Method: LoadConfig()
File: CageConfigurator/CageConfiguratorForm.cs:219
Taint Flags:

216 current_config_name = config_path;
217 Text = $"Cage Configurator - {current_config_name}";
218 }
219 catch (Exception e)
220 {
221 MessageBox.Show($"Could not load config: {e.ToString()}");
222 }

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

36

Poor Style: Variable Never Used (7 issues)

Abstract
This variable is never used.

Explanation
This variable is never used. It is likely that the variable is simply vestigial, but it is also possible that the
unused variable points out a bug. Example: In the following code, a copy-and-paste error has led to the
same loop iterator (i) being used twice. The variable j is never used.
 int i,j;

 for (i=0; i < outer; i++) {
 for (i=0; i < inner; i++) {
 ...

Recommendation
In general, you should eliminate unused variables in order to make the code easier to understand and
maintain.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Poor Style: Variable Never Used 7 0 0 7
Total 7 0 0 7

Poor Style: Variable Never Used Low
Package: <none>
CageManager/SecuritySetup.cpp, line 67 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

37

Poor Style: Variable Never Used Low
Package: <none>
CageManager/SecuritySetup.cpp, line 67 (Poor Style: Variable Never Used) Low

Sink: Variable: group_name_buf
Enclosing Method: CreateSID()
File: CageManager/SecuritySetup.cpp:67
Taint Flags:

64 DWORD buffer_size = 0;
65
66 // create a group
67 std::vector<wchar_t> group_name_buf(group_name.begin(), group_name.end());
68 group_name_buf.push_back(0);
69 localgroup_info.lgrpi0_name = group_name_buf.data();
70 ::NetLocalGroupAdd(NULL, 0, reinterpret_cast<LPBYTE>(&localgroup_info), NULL);

Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8335 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: cnt
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8335
Taint Flags:

8332
8333 // first n-1 elements
8334 auto i = val.m_value.object->cbegin();
8335 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
8336 {
8337 o->write_characters(indent_string.c_str(), new_indent);
8338 o->write_character('\"');

SharedFunctionality/json.hpp, line 8364 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: cnt
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8364
Taint Flags:

8361
8362 // first n-1 elements

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

38

Poor Style: Variable Never Used Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8364 (Poor Style: Variable Never Used) Low

8363 auto i = val.m_value.object->cbegin();
8364 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
8365 {
8366 o->write_character('\"');
8367 dump_escaped(i->first, ensure_ascii);

SharedFunctionality/json.hpp, line 8334 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: i
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8334
Taint Flags:

8331 }
8332
8333 // first n-1 elements
8334 auto i = val.m_value.object->cbegin();
8335 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
8336 {
8337 o->write_characters(indent_string.c_str(), new_indent);

SharedFunctionality/json.hpp, line 8363 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: i
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8363
Taint Flags:

8360 o->write_character('{');
8361
8362 // first n-1 elements
8363 auto i = val.m_value.object->cbegin();
8364 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
8365 {
8366 o->write_character('\"');

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

39

Poor Style: Variable Never Used Low
Package: SharedFunctionality
SharedFunctionality/json.hpp, line 8407 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: i
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8407
Taint Flags:

8404 }
8405
8406 // first n-1 elements
8407 for (auto i = val.m_value.array->cbegin();
8408 i != val.m_value.array->cend() - 1; ++i)
8409 {
8410 o->write_characters(indent_string.c_str(), new_indent);

SharedFunctionality/json.hpp, line 8429 (Poor Style: Variable Never Used) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: Variable: i
Enclosing Method: dump()
File: SharedFunctionality/json.hpp:8429
Taint Flags:

8426 o->write_character('[');
8427
8428 // first n-1 elements
8429 for (auto i = val.m_value.array->cbegin();
8430 i != val.m_value.array->cend() - 1; ++i)
8431 {
8432 dump(*i, false, ensure_ascii, indent_step, current_indent);

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

40

Privacy Violation: Heap Inspection (1 issue)

Abstract
Storing sensitive data in an insecure manner makes it possible to extract the data via inspecting the heap.

Explanation
Sensitive data (such as passwords, social security numbers, credit card numbers, encryption keys etc.)
stored in an unmanaged memory buffer can be leaked if it is not explicitly zeroed out, even if it is freed. The
unmanaged buffers are often not encrypted by default, so anyone that can read the process' memory will
be able to see the contents. Furthermore, if the process' memory gets swapped out to disk, the
unencrypted contents of the string will be written to a swap file. In the event of an application crash, a
memory dump of the application might reveal sensitive data. Example 1: The following example creates a
symmetric key before using it.
public static void CreateAndUseEncryptor()
{
 SymmetricAlgorithm aesAlgorithm = SymmetricAlgorithm.Create("AES");
 aesAlgorithm.GenerateKey();
 aesAlgorithm.GenerateIV();
 Encrypt(aesAlgorithm);
}
Since neither CreateAndUseEncryptor() nor Encrypt() run Clear() or Dispose(true) on the
SymmetricAlgorithm object, the key and initialization vector (IV) will not be zeroed out in memory.

Recommendation
After creating an initialization vector (IV) or encryption key, it is absolutely necessary to make sure they are
cleared from memory by either running Clear() or Dispose(true) on the object. Example 1: The
following method generates a key and an IV, then uses a finally block to make sure the key and IV are
zeroed out in memory.
public static void CreateAndUseEncryptor()
{
 SymmetricAlgorithm aesAlgorithm = null;
 try
 {
 aesAlgorithm = SymmetricAlgorithm.Create("AES");
 aesAlgorithm.GenerateKey();
 aesAlgorithm.GenerateIV();
 Encrypt(aesAlgorithm);
 }
 finally
 {
 if (aesAlgorithm != null)
 {
 aesAlgorithm.Clear();
 }
 }
}
Example 2: The following example uses a using-block that automatically calls Dispose(), which zeroes
out the key and IV in memory.
public static void CreateAndUseEncryptor()
{
 using (SymmetricAlgorithm aesAlgorithm = SymmetricAlgorithm.Create("AES"))
 {
 aesAlgorithm.GenerateKey();

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

41

 aesAlgorithm.GenerateIV();
 Encrypt(aesAlgorithm);
 }
}
In the various symmetric, asymmetric and hash algorithm implementations, Dispose() is overridden by
calling Clear() then Dispose(true)

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Privacy Violation: Heap Inspection 1 0 0 1
Total 1 0 0 1

Privacy Violation: Heap Inspection High
Package: CageConfigurator
CageConfigurator/CageConfiguratorForm.cs, line 478 (Privacy Violation: Heap
Inspection) High

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Control Flow)

Sink Details

Sink: sha = new SHA512Managed() : Key algorithm initialized
Enclosing Method: GetSha512Hash()
File: CageConfigurator/CageConfiguratorForm.cs:478
Taint Flags:

475 {
476 using (var bs = new BufferedStream(File.OpenRead(file_path), 1048576))
477 {
478 var sha = new SHA512Managed();
479 byte[] hash = sha.ComputeHash(bs);
480 return BitConverter.ToString(hash).Replace("-", String.Empty);
481 }

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

42

Type Mismatch: Signed to Unsigned (1 issue)

Abstract
The function is declared to return an unsigned number but returns a signed value.

Explanation
It is dangerous to rely on implicit casts between signed and unsigned numbers because the result can take
on an unexpected value and violate weak assumptions made elsewhere in the program. Example: In this
example, depending on the return value of accecssmainframe(), the variable amount can hold a
negative value when it is returned. Because the function is declared to return an unsigned value, amount
will be implicitly cast to an unsigned number.
unsigned int readdata () {
 int amount = 0;
...
amount = accessmainframe();
...
 return amount;
}
If the return value of accessmainframe() is -1, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers. Conversion between signed and unsigned values can
lead to a variety of errors, but from a security standpoint is most commonly associated with integer overflow
and buffer overflow vulnerabilities.

Recommendation
Although unexpected conversion between signed and unsigned quantities typically creates general quality
problems, depending on the assumptions that a conversion violates, it can lead to serious security risks.
Pay attention to compiler warnings related to signed/unsigned conversions. Some programmers may
believe that these warnings are innocuous, but in some cases they point out potential integer overflow
problems.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Type Mismatch: Signed to Unsigned 1 0 0 1
Total 1 0 0 1

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

43

Type Mismatch: Signed to Unsigned High
Package: <none>
CageManager/base64.cpp, line 29 (Type Mismatch: Signed to Unsigned) High
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Structural)

Sink Details

Sink: AssignmentStatement
Enclosing Method: base64_encode()
File: CageManager/base64.cpp:29
Taint Flags:

26
27 while (in_len--)
28 {
29 char_array_3[i++] = *(to_encode++);
30 if (i == 3)
31 {
32 char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

44

Unsafe Native Invoke (1 issue)

Abstract
Improper use of the Platform Invocation Services can render managed applications vulnerable to security
flaws in other languages.

Explanation
Unsafe Native Invoke errors occur when a managed application uses P/Invoke to call native (unmanaged)
code written in another programming language. Example: The following C# code defines a class named
Echo. The class declares one native method (defined below), which uses C to echo commands entered on
the console back to the user.
class Echo
{
 [DllImport("mylib.dll")]
 internal static extern void RunEcho();

 static void main(String[] args)
 {
 RunEcho();
 }
}
The following C code defines the native method implemented in the Echo class:
#include <stdio.h>

void __stdcall RunEcho()
{
 char* buf = (char*) malloc(64 * sizeof(char));
 gets(buf);
 printf(buf);
}
Because the Echo is implemented in managed code, it may appear that it is immune to memory issues like
buffer overflow vulnerabilities. Although the managed environment does do a good job of making memory
operations safe, this protection does not extend to vulnerabilities occurring in native code accessed using P/
Invoke. Despite the memory protections offered in the managed runtime environment, the native code in
this example is vulnerable to a buffer overflow because it makes use of gets(), which does not perform
any bounds checking on its input. As well, buf is allocated but not freed and therefore is a memory leak.
The vulnerability in the example above could easily be detected through a source code audit of the native
method implementation. This may not be practical or possible depending on the availability of source code
and the way the project is built, but in many cases it may suffice. However, the ability to share objects
between the managed and native environments expands the potential risk to much more insidious cases
where improper data handling in managed code may lead to unexpected vulnerabilities in native code or to
unsafe operations in native code corrupting data structures in managed code. Vulnerabilities in native code
accessed through a managed application are typically exploited in the same manner as they are in
applications written in the native language. The only challenge to such an attack is for the attacker to
identify that the managed application uses native code to perform certain operations. This can be
accomplished in a variety of ways, including identifying specific behaviors that are often implemented with
native code or by exploiting a system information leak in the managed application that exposes its use of P/
Invoke.

Recommendation
Audit all source code comprising a given application, including native methods implemented in native code.
During audits, ensure that differences in bounds checking and other behavior between managed and native
code are accounted for and handled correctly. In particular, verify that shared objects are handled correctly

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

45

at all stages: before they are passed to native code, while they are manipulated by native code, and after
they are returned to the managed application.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Unsafe Native Invoke 1 0 0 1
Total 1 0 0 1

Unsafe Native Invoke High
Package: CageChooser
CageChooser/CageChooserForm.cs, line 149 (Unsafe Native Invoke) High
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: System.Windows.Forms.TextBox.get_Text()
From: CageChooser.CageChooserForm.openButton_Click
File: CageChooser/CageChooserForm.cs:149

146 {
147 if (configPath.Text != String.Empty)
148 {
149 NativeMethods.SendConfigAndExternalProgram(configPath.Text);
150
151 // bring the form back in focus
152 Activate();

Sink Details

Sink: CageChooser.CageChooserForm.NativeMethods.SendConfigAndExternalProgram()
Enclosing Method: openButton_Click()
File: CageChooser/CageChooserForm.cs:149
Taint Flags: GUI_FORM

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

46

Unsafe Native Invoke High
Package: CageChooser
CageChooser/CageChooserForm.cs, line 149 (Unsafe Native Invoke) High
146 {
147 if (configPath.Text != String.Empty)
148 {
149 NativeMethods.SendConfigAndExternalProgram(configPath.Text);
150
151 // bring the form back in focus
152 Activate();

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

47

Description of Key Terminology

Likelihood and Impact
Likelihood
Likelihood is the probability that a vulnerability will be accurately identified and successfully exploited.

Impact
Impact is the potential damage an attacker could do to assets by successfully exploiting a vulnerability. This
damage can be in the form of, but not limited to, financial loss, compliance violation, loss of brand reputation,
and negative publicity.

Fortify Priority Order
Critical
Critical-priority issues have high impact and high likelihood. Critical-priority issues are easy to detect and
exploit and result in large asset damage. These issues represent the highest security risk to the application.
As such, they should be remediated immediately.

SQL Injection is an example of a critical issue.

High
High-priority issues have high impact and low likelihood. High-priority issues are often difficult to detect and
exploit, but can result in large asset damage. These issues represent a high security risk to the application.
High-priority issues should be remediated in the next scheduled patch release.

Password Management: Hardcoded Password is an example of a high issue.

Medium
Medium-priority issues have low impact and high likelihood. Medium-priority issues are easy to detect and
exploit, but typically result in small asset damage. These issues represent a moderate security risk to the
application. Medium-priority issues should be remediated in the next scheduled product update.

Path Manipulation is an example of a medium issue.

Low
Low-priority issues have low impact and low likelihood. Low-priority issues can be difficult to detect and
exploit and typically result in small asset damage. These issues represent a minor security risk to the
application. Low-priority issues should be remediated as time allows.

Dead Code is an example of a low issue.

Jul 24, 2018, 11:39 AM
© Copyright [2008-2018] Micro Focus or one of its affiliates.

48

About Fortify Solutions
Fortify is the leader in end-to-end application security solutions with the flexibility of testing on-premise and
on-demand to cover the entire software development lifecycle. Learn more at software.microfocus.com/en-us/
solutions/application-security.

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	ASP.NET Bad Practices: Leftover Debug Code
	ASP.NET Bad Practices: Leftover Debug Code (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	ASP.NET Bad Practices: Leftover Debug Code - Low

	Command Injection
	Command Injection (4 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Command Injection - Critical
	Command Injection - Low

	Dead Code
	Dead Code (12 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Dead Code - Low

	Dead Code: Unused Field
	Dead Code: Unused Field (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Dead Code: Unused Field - Low

	Null Dereference
	Null Dereference (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Null Dereference - High

	Path Manipulation
	Path Manipulation (9 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Path Manipulation - Critical
	Path Manipulation - Medium
	Path Manipulation - Low

	Poor Error Handling: Empty Catch Block
	Poor Error Handling: Empty Catch Block (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Error Handling: Empty Catch Block - Low

	Poor Error Handling: Overly Broad Catch
	Poor Error Handling: Overly Broad Catch (3 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Error Handling: Overly Broad Catch - Low

	Poor Style: Variable Never Used
	Poor Style: Variable Never Used (7 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Style: Variable Never Used - Low

	Privacy Violation: Heap Inspection
	Privacy Violation: Heap Inspection (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Privacy Violation: Heap Inspection - High

	Type Mismatch: Signed to Unsigned
	Type Mismatch: Signed to Unsigned (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Type Mismatch: Signed to Unsigned - High

	Unsafe Native Invoke
	Unsafe Native Invoke (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Unsafe Native Invoke - High

	Description of Key Terminology
	About Fortify Solutions

