From 24c8a63a642cc2245565f22b4ae1b1b94836b6cc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Steven=20H=C3=A9=20=28S=C4=ABch=C3=A0ng=29?= Date: Wed, 13 Nov 2024 15:46:59 -0800 Subject: [PATCH] 670 class --- src/notes/class_notes/csci670.md | 39 ++++++++++++++++++++++++++++---- 1 file changed, 35 insertions(+), 4 deletions(-) diff --git a/src/notes/class_notes/csci670.md b/src/notes/class_notes/csci670.md index 7d1f486..8ccbe63 100644 --- a/src/notes/class_notes/csci670.md +++ b/src/notes/class_notes/csci670.md @@ -193,9 +193,9 @@ given $G=(V,E,d)$ w/ metric $d$, $k$, want $(S_1,\cdots,S_k)$ s.t. - doing consistently better than $\log n$ of optimum is NP-hard - greedy cost - $$ - c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t} - $$ + $$ + c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t} + $$ - [harmonic series](../mathematics/sequence_series.html#harmonic-series) @@ -651,7 +651,8 @@ is both in convex hull of $\{x_i|a_i>0\}$ and $\{x_i|a_i<0\}$ ### Markov chain -- Markovian matrix $M$: [stochastic matrix](stats303.html#markov-chain) +- Markovian matrix $M=D^{-1}A$: + [stochastic matrix](stats303.html#markov-chain) - doubly-stochastic matrix: both row & column sum to one - spectral radius: largest dilation by vector @@ -673,3 +674,33 @@ $⇒ (M^T)^t\frac{\vec 1}{n}$: start random and walk $t$ round - significant PageRank problem: want all page w/ PageRank $≥\epsilon$ - approximately find page w/ PageRank $≥\frac{\epsilon}{2}$ + +## spectral graph theory + +- simplest: undirected graph +- spectral graph partitioning: heuristics + +### Laplacian matrix $L=D-A$ + +- $D$: degree matrix, diagonal, $D_{ii}$ is degree of node $i$ +- $A$: adjacency matrix +- $L\vec 1=\vec 0,\vec 1L=\vec 0$ +- additive decomposition: can add edge one at a time and sum the $L$, + $L=∑_{i,j\in E}L_{ij}$ +- $\vec x^TL\vec x=∑_{(i,j)\in E}(x_i-x_j)^2$ + - ⇒ $L$ is positive semi-definite + - eigenvalue $\lambda_1=0$ + - Fiedler: $\lambda_2=0 \Leftrightarrow$ graph connected + +### min cut + +- convention: $|S|≤|\bar S|$ +- conductance $\frac{|cut(S,\bar S)|}{|S|}$ + - want min conductance → NP-hard +- algorithm + 1. find Fiedler vector $\vec u_2$ (corresponding to $\lambda_2$) + 1. sort $\vec u_2$ entries ascending $z_{\pi(i)}$ + - $z_{\pi(1)}≤\cdots≤0≤z_{\pi(n)}$ + 1. $V:=\{\pi(i)\}$ + - only need to check cut between $\pi(i)$ and $\pi(i+1)$ + - dimensionality reduction $2^n → n-1$