Skip to content

Commit

Permalink
670
Browse files Browse the repository at this point in the history
  • Loading branch information
SichangHe committed Oct 23, 2024
1 parent 7753fe6 commit f171066
Showing 1 changed file with 35 additions and 10 deletions.
45 changes: 35 additions & 10 deletions src/notes/class_notes/csci670.md
Original file line number Diff line number Diff line change
Expand Up @@ -199,9 +199,9 @@ given $G=(V,E,d)$ w/ metric $d$, $k$, want $(S_1,\cdots,S_k)$ s.t.
- doing consistently better than $\log n$ of optimum is NP-hard
- greedy cost

$$
c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t}
$$
$$
c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t}
$$

- [harmonic
series](../mathematics/sequence_series.html#harmonic-series)
Expand Down Expand Up @@ -636,13 +636,6 @@ is both in convex hull of $\{x_i|a_i>0\}$ and $\{x_i|a_i<0\}$
- engineering method (polynomial): ellipsoid method,
interior point method

## randomization

- Andy Yao's theorem: random data + deterministic algorithm (algorithm min)
is the same as deterministic data + random algorithm (data min)
- min of max = max of min
- convert worst case analysis to average case analysis

## network flow

- designed to attack USSR supply chain
Expand All @@ -654,3 +647,35 @@ is both in convex hull of $\{x_i|a_i>0\}$ and $\{x_i|a_i<0\}$
- max flow ≤ min cut
- for each forward cut, ∃ flow that saturate it
- each backward cut is empty

## randomization

- Andy Yao's theorem: random data + deterministic algorithm (algorithm min)
is the same as deterministic data + random algorithm (data min)
- min of max = max of min
- convert worst case analysis to average case analysis

### Markov chain

- Markovian matrix $M$: [stochastic matrix](stats303.html#markov-chain)
- doubly-stochastic matrix: both row & column sum to one
- spectral radius: largest dilation by vector

#### PageRank

- network centrality

$O(|V|+|E|)$ approximation:

$$
P=\alpha\frac{\vec 1}{n}+(1-\alpha)M^TP\\
⇒ (I-\alpha M^T)P=\alpha\frac{\vec 1}{n}\\
⇒ P=(I-(1-\alpha) M^T)^{-1}\alpha\frac{\vec 1}{n}=
\left(∑_{t=0}^{\infty}\alpha((1-\alpha) M^T)^t\right)\frac{\vec 1}{n}\\
∑_{i=0}^{\infty}\alpha(1-\alpha)^t=1
$$

$⇒ (M^T)^t\frac{\vec 1}{n}$: start random and walk $t$ round

- significant PageRank problem: want all page w/ PageRank $≥\epsilon$
- approximately find page w/ PageRank $≥\frac{\epsilon}{2}$

0 comments on commit f171066

Please sign in to comment.