From de959289afd8c8a3220b28c9d497ecde3c15d6ea Mon Sep 17 00:00:00 2001 From: Joe Booth Date: Wed, 15 Aug 2018 00:22:32 -0700 Subject: [PATCH] document experiments --- README.md | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) diff --git a/README.md b/README.md index 88e3374..0eceb88 100644 --- a/README.md +++ b/README.md @@ -1,10 +1,31 @@ # ActiveRagdollControllers Research into controllers for 2d and 3d Active Ragdolls (using MujocoUnity+ml_agents) +---- + +#### Contributors +* Joe Booth ([SohoJoe](https://github.com/Sohojoe)) + +---- +#### Download builds (Mac, Windows): [see Releases](https://github.com/Sohojoe/ActiveRagdollControllers/releases) +--- +### Controller004 +![Controller004](images/Controller004.13-10m.gif) +* **Type:** Discrete 2D +* **Build (MacOS)** TODO [v0.004](https://github.com/Sohojoe/ActiveRagdollControllers/releases/tag/v0.003) **Playable** +* **Actions:** No-op, Forward, Backwards, Jump, Jump+Forward, Jump+Backwards +* **Controls:** Left arrow, Right arrow, Spacebar +* **Mujoco Model:** DeepMindHopper +* **Hypostheis**: Use discreate + random trainer to create human controller. +* **Outcome:** + * **SUCCESS** - contriol feels responsive + * ... Has emerging functionality - i.e. tap left for small step, swap direction in air ### Controller003 +![Controller003](images/Controller003.gif) * **Type:** Continuous 2D +* **Build (MacOS)** [v0.003](https://github.com/Sohojoe/ActiveRagdollControllers/releases/tag/v0.003) * **Actions:** Forward / Backwards * **Mujoco Model:** DeepMindHopper * **Hypostheis**: Use an adversarial hierarchical trained agent as the controller which gets the inverse reward of the locomation agent on a slower time step. The idea is that it will push the locomoation agent to focus on its weakest areas. @@ -15,7 +36,9 @@ Research into controllers for 2d and 3d Active Ragdolls (using MujocoUnity+ml_ag ### Controller002 +![Controller002](images/Controller002.gif) * **Type:** Continuous 2D +* **Build (MacOS, Windows)** [v0.002](https://github.com/Sohojoe/ActiveRagdollControllers/releases/tag/v0.002) * **Actions:** Forward / Backwards * **Input:** Unity Axis input (left/right or a/d or joystick) * **Mujoco Model:** DeepMindHopper @@ -35,7 +58,9 @@ Research into controllers for 2d and 3d Active Ragdolls (using MujocoUnity+ml_ag * Controller002InputAgent.cs - ### Controller001 +![Controller001](images/Controller001.gif) * **Type:** Discrete 2D +* **Build (MacOS)** [v0.001](https://github.com/Sohojoe/ActiveRagdollControllers/releases/tag/v0.001) * **Actions:** Forward / Backwards * **Mujoco Model:** DeepMindHopper * **Hypostheis**: It should be simple to train a backwards / forwards by giving the agent a +1 / 1 velocity target which feeds the reward function.