diff --git a/source/calculus/source/03-AD/02.ptx b/source/calculus/source/03-AD/02.ptx index d8a6c2d12..876b9a7e2 100644 --- a/source/calculus/source/03-AD/02.ptx +++ b/source/calculus/source/03-AD/02.ptx @@ -51,43 +51,16 @@ Notice that this is obtained by writing the tangent line to f(x) at (a

Sketch the tangent line L(x) on the same plane as the graph of \ln(x). What do you notice?

- - -\begin{minipage}{\textwidth} -\begin{center} - \begin{tikzpicture}[scale=0.9] -\begin{axis}[ - axis lines=middle, - grid=major, - xmin=0, xmax=5, - ymin=-2, ymax=2, - % xtick={0,10,...,80}, - % ytick={0,10,...,50}, - % yticklabels={0, 0.01, 0.02, 0.03, 0.04, 0.05}, - tick style={thick}, -% x label style={at={(axis description cs:1,0.7)}}, -% y label style={at={(axis description cs:0.4,1)}}, - ylabel=$y$, - xlabel=$x$, - ] - \addplot[domain=0.1:5, blue, ultra thick] {ln(x)} node [pos=0.8,above left , ultra thick] {$\boldsymbol{\ln(x)}$}; -% \addplot [only marks, blue] table { -% 40 20 -% }; -% \addplot[only marks, color=blue, nodes near coords={$(40,20)$}] coordinates {(30,20)}; -% \addplot[domain=20:70, black, thick] {(x-40)+20} node [pos=0.6, below right, ultra thick] {$\boldsymbol{L(x)}$}; -% \addplot [only marks, black] table { -% 20 0 -% }; -% \addplot[only marks, color=black, nodes near coords={$(20,0)$}] coordinates {(30,0)}; - \end{axis} -\end{tikzpicture} -\end{center} - \end{minipage} - - - The graph of \ln(x) -
+ + + x = var('x') + f = ln(x) + p = plot(f,(x,0.1,5), gridlines=True, axes_labels=('$x$','$y$'), thickness=2, aspect_ratio = 1.25) + p + + + The graph of \ln(x) +
diff --git a/source/calculus/source/03-AD/04.ptx b/source/calculus/source/03-AD/04.ptx index 34c52f1c3..74c1afd7b 100644 --- a/source/calculus/source/03-AD/04.ptx +++ b/source/calculus/source/03-AD/04.ptx @@ -26,30 +26,15 @@

- - -\begin{tikzpicture}[scale=1] -\begin{axis}[ - samples = 900, - axis lines=middle, - grid=major, - % xmin=0, xmax=4, - ymin=0, ymax=70, - % xtick={0,0.5,...,4}, - % ytick={-2,-1,...,10}, - % tick style={thick}, -% x label style={at={(axis description cs:1,0.7)}}, -% y label style={at={(axis description cs:0.4,1)}}, - ylabel=$s(t)$, - xlabel=$t$, - ] - \addplot[domain=0:3, blue, thick] {-16*x^2+32*x+48}; -\end{axis} -\end{tikzpicture} - - - - The graph of s(t) = -16t^2 + 32t + 48 + + + x = var('x') + f = -16*x^2+32*x+48 + p = plot(f,(x,0,3), gridlines=True, axes_labels=('$t$','$s(t)$'), thickness=2, aspect_ratio = .05) + p + + + The graph of s(t) = -16t^2 + 32t + 48
@@ -101,22 +86,62 @@

For each of the following figures, decide where the global extrema are located.

-
- - +
+ + + x = var('x') + f = sin(x) + ticks = [[-pi/2, 0, pi/2, pi, 3*pi/2, 2*pi, 5*pi/2],[-1.5,-1,-0.5,0,0.5,1,1.5]] + p = plot(f,(x,0,2*pi), xmin = -pi/2, xmax = 5*pi/2, ymin = -1.5, ymax=1.5, ticks=ticks, tick_formatter=[pi,None], thickness=2, gridlines=True, aspect_ratio=1.5) + c1 = circle((0,0),0.05,fill=True) + c2 = circle((2*pi,0),0.05,fill=True) + p+c1+c2 + + +
- +
- + + + x=var('x') + f(x) = exp(-x) + 1 + p = plot(f,(x,0,3), ymin = -1, ymax = 3, gridlines=True, thickness=2, aspect_ratio=1) + q = plot(4,(x,-1,4), ymin=-1, ymax=3, gridlines=True, thickness=2, aspect_ratio=1) + c1 = circle((0,f(0)), 0.05, fill=True) + c2 = circle((3,f(3)),0.05, fill=True) + p+c1+c2+q + +
- + + + x=var('x') + f(x) = -x^3+2*x^2 + c1 = circle((-0.5,f(-0.5)),0.05,fill=True) + c2 = circle((2.2,f(2.2)),0.05,fill=True) + p = plot(f,(x,-0.5,2.2),ymin=-2,ymax=2,thickness=2,gridlines=True,aspect_ratio=1) + q = plot(3,(x,-1,3),ymin=-2,ymax=2,aspect_ratio=1) + c1+c2+p+q + +
- + + + x=var('x') + f(x) = abs(-(x-1)^(1/3)) + c1 = circle((0,f(0)),0.05,fill=True) + c2 = circle((3,f(3)),0.05,fill=True) + p = plot(f,(x,0,3),ymin=-1,ymax=2,thickness=2,gridlines=True,aspect_ratio=1) + q = plot(3,(x,-1,3.5),ymin=-1,ymax=2,aspect_ratio=1) + c1+c2+p+q + +
diff --git a/source/calculus/source/03-AD/06.ptx b/source/calculus/source/03-AD/06.ptx index a781dd5dd..3a519e1a5 100644 --- a/source/calculus/source/03-AD/06.ptx +++ b/source/calculus/source/03-AD/06.ptx @@ -28,7 +28,36 @@
Three increasing functions - + + + + x = var('x') + f = 2*exp(4*x-3) + ticks=[[],[]] + p = plot(f,(x,.2,1), xmin = -10, xmax = 1, ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.2) + p + + + + + x = var('x') + f = x+.75 + ticks=[[],[]] + p = plot(f,(x,.05,1), xmin = -10, xmax = 1, ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + + + + + x = var('x') + f = (x-1.5)^3+2.5 + ticks=[[],[]] + p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + + + +
@@ -91,7 +120,35 @@

From left to right, three functions that are all decreasing. - + + + + x = var('x') + f = -(x-1.5)^3+.5 + ticks=[[],[]] + p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + + + + + x = var('x') + f = -2*x + 3 + ticks = [[],[]] + p = plot(f, (x,.25, 1.25), ymin = -1, ymax = 3, gridlines=True, thickness=2, ticks=ticks, aspect_ratio = 0.25) + p + + + + + x = var('x') + f = -(x)^3+2.5 + ticks=[[],[]] + p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + + +
@@ -148,12 +205,54 @@

Look at in . Which curve is concave up? Which one is concave down? Why? Try to explain using the graph!

-
- Two concavity, which is which? - -
+
+ Two concavities, which is which? + + + + x = var('x') + f(x) = (x-1)^2 + 1 + line1 = -3*(x+0.5)+f(-0.5) + line2 = -1*(x-0.5)+f(0.5) + line3 = (x-1.5)+f(1.5) + line4 = 3*(x-2.5)+f(2.5) + p1 = plot(f,(x,-1,3), ymin = 0, ymax = 6, gridlines=True,thickness=2, aspect_ratio=1) + p2 = plot(line1,(x,-.75,-.25), color="green", thickness=2.5) + p3 = plot(line2,(x,.25,.75), color="green", thickness=2.5) + p4 = plot(line3,(x,1.25,1.75), color="green", thickness=2.5) + p5 = plot(line4,(x,2.25,2.75), color="green", thickness=2.5) + c1 = circle((-.5,f(-.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c2 = circle((.5,f(.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c3 = circle((1.5,f(1.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c4 = circle((2.5,f(2.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + p1+p2+p3+p4+p5+c1+c2+c3+c4 + + + + + x = var('x') + f(x) = -(x-1)^2 +2 + line1 = 3*(x+0.5)+f(-0.5) + line2 = 1*(x-0.5)+f(0.5) + line3 = -(x-1.5)+f(1.5) + line4 = -3*(x-2.5)+f(2.5) + p1 = plot(f,(x,-1,3), ymin = -3, ymax = 3, gridlines=True,thickness=2, aspect_ratio=1) + p2 = plot(line1,(x,-.75,-.25), color="green", thickness=2.5) + p3 = plot(line2,(x,.25,.75), color="green", thickness=2.5) + p4 = plot(line3,(x,1.25,1.75), color="green", thickness=2.5) + p5 = plot(line4,(x,2.25,2.75), color="green", thickness=2.5) + c1 = circle((-.5,f(-.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c2 = circle((.5,f(.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c3 = circle((1.5,f(1.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + c4 = circle((2.5,f(2.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic") + p1+p2+p3+p4+p5+c1+c2+c3+c4 + + + + +
-
+ diff --git a/source/calculus/source/03-AD/07.ptx b/source/calculus/source/03-AD/07.ptx index e5d171a69..4ce56073e 100644 --- a/source/calculus/source/03-AD/07.ptx +++ b/source/calculus/source/03-AD/07.ptx @@ -21,10 +21,18 @@ Which of the following features best describe the curve graphed below?

-
+
- -
+ + + x = var('x') + f = -(x)^3+2.5 + ticks=[[],[]] + p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + + +
@@ -47,7 +55,15 @@
- + + + x = var('x') + f = (x-1.5)^3+2.5 + ticks=[[],[]] + p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25) + p + +
diff --git a/source/calculus/source/03-AD/08.ptx b/source/calculus/source/03-AD/08.ptx index 5b2d04573..1f6ebe0c5 100644 --- a/source/calculus/source/03-AD/08.ptx +++ b/source/calculus/source/03-AD/08.ptx @@ -29,18 +29,252 @@

Which of the following diagrams best illustrates how the box is created?

  1. - - Square of side length 8 with square corners of side length x removed + + + # Import necessary library + from sage.plot.graphics import Graphics + + # Define variables + x = 2 + side_large_square = 8 + side_small_square = 2 + side_inner_square = side_large_square - 2 * side_small_square + + # Create the large square + large_square = polygon2d([(0, 0), (side_large_square, 0), + (side_large_square, side_large_square),(0, side_large_square)], fill=True, color='lightgray', edgecolor="black") + + # Create the inner square + inner_square = polygon2d([(x, x), (side_large_square - x, x), (side_large_square - x, side_large_square - x), (x, side_large_square - x)], fill=True, color='lightgray') + inner_square2 = polygon2d([(x,x), (side_large_square - x,x), (side_large_square - x, side_large_square -x), (x, side_large_square - x)], thickness=2, color='darkgray') + + # Create the small squares (one corner example, replicate for all corners) + small_square_1 = polygon2d([(0, 0), (x, 0), (x, x), (0, x)], fill=True, color='gray', edgecolor="black") + small_square_2 = polygon2d([(side_large_square - x, 0), (side_large_square, 0), (side_large_square, x), (side_large_square - x, x)], fill=True, color='gray', edgecolor="black", ) + small_square_3 = polygon2d([(0, side_large_square - x), (x, side_large_square - x), (x, side_large_square), (0, side_large_square)], fill=True, color='gray', edgecolor="black") + small_square_4 = polygon2d([(side_large_square - x, side_large_square - x), (side_large_square, side_large_square - x), (side_large_square, side_large_square), (side_large_square - x, side_large_square)], fill=True, color='gray', edgecolor="black") + + line_above_small_square = line2d([(6, 8.5), (8, 8.5)], color='black') + side_label_line = line2d([(8.5,6), (8.5,2)], color="black") + lass1 = line2d([(6,8.25), (6,8.75)]) + lass2 = line2d([(8,8.25), (8,8.75)]) + sll1 = line2d([(8.25,6),(8.75,6)]) + sll2 = line2d([(8.25,2),(8.75,2)]) + label_side = text("8-2x", (9.1,4), fontsize=15,color='black') + label_x = text("x", (7,8.75), fontsize=15, color='black') + + # Combine all parts into one graphic + geometry = Graphics() + geometry += large_square + geometry += inner_square + geometry += inner_square2 + geometry += small_square_1 + geometry += small_square_2 + geometry += small_square_3 + geometry += small_square_4 + geometry += line_above_small_square + geometry += lass1 + geometry += lass2 + geometry += label_x + geometry += side_label_line + geometry += sll1 + geometry += sll2 + geometry += label_side + + # Set axes and title + geometry.set_axes_range(-1, side_large_square + 1, -1, side_large_square + 1) + geometry.axes(False) + + # Show the plot + geometry +
  2. - + + + # Import necessary library + from sage.plot.graphics import Graphics + + # Define variables + x = 2 + side_large_square = 8 + side_small_square = 2 + side_inner_square = side_large_square - 2 * side_small_square + + # Create the large square + large_square = polygon2d([(0, 0), (side_large_square, 0), + (side_large_square, side_large_square),(0, side_large_square)], fill=True, color='lightgray', edgecolor="black") + + # Create the inner square + inner_square = polygon2d([(x, x), (side_large_square - x, x), (side_large_square - x, side_large_square - x), (x, side_large_square - x)], fill=True, color='lightgray') + inner_square2 = polygon2d([(x,x), (side_large_square - x,x), (side_large_square - x, side_large_square -x), (x, side_large_square - x)], thickness=2, color='darkgray') + + # Create the small squares (one corner example, replicate for all corners) + small_square_1 = polygon2d([(0, 0), (x, 0), (x, x), (0, x)], fill=True, color='gray', edgecolor="black") + small_square_2 = polygon2d([(side_large_square - x, 0), (side_large_square, 0), (side_large_square, x), (side_large_square - x, x)], fill=True, color='gray', edgecolor="black", ) + small_square_3 = polygon2d([(0, side_large_square - x), (x, side_large_square - x), (x, side_large_square), (0, side_large_square)], fill=True, color='gray', edgecolor="black") + small_square_4 = polygon2d([(side_large_square - x, side_large_square - x), (side_large_square, side_large_square - x), (side_large_square, side_large_square), (side_large_square - x, side_large_square)], fill=True, color='gray', edgecolor="black") + + line_above_small_square = line2d([(6, 8.5), (8, 8.5)], color='black') + side_label_line = line2d([(8.5,6), (8.5,2)], color="black") + lass1 = line2d([(6,8.25), (6,8.75)]) + lass2 = line2d([(8,8.25), (8,8.75)]) + sll1 = line2d([(8.25,6),(8.75,6)]) + sll2 = line2d([(8.25,2),(8.75,2)]) + label_side = text("8-x", (9,4), fontsize=15,color='black') + label_x = text("x", (7,8.75), fontsize=15, color='black') + + # Combine all parts into one graphic + geometry = Graphics() + geometry += large_square + geometry += inner_square + geometry += inner_square2 + geometry += small_square_1 + geometry += small_square_2 + geometry += small_square_3 + geometry += small_square_4 + geometry += line_above_small_square + geometry += lass1 + geometry += lass2 + geometry += label_x + geometry += side_label_line + geometry += sll1 + geometry += sll2 + geometry += label_side + + # Set axes and title + geometry.set_axes_range(-1, side_large_square + 1, -1, side_large_square + 1) + geometry.axes(False) + + # Show the plot + geometry + +
  3. - + + + # Import necessary library + from sage.plot.graphics import Graphics + + # Define variables + x = 2 + side_large_square = 8 + side_small_square = 2 + side_inner_square = side_large_square - 2 * side_small_square + + # Create the large square + large_square = polygon2d([(0, 0), (side_large_square, 0), + (side_large_square, side_large_square),(0, side_large_square)], fill=True, color='lightgray', edgecolor="black") + + # Create the inner square + inner_square = polygon2d([(x, x), (side_large_square - x, x), (side_large_square - x, side_large_square - x), (x, side_large_square - x)], fill=True, color='lightgray') + inner_square2 = polygon2d([(x,x), (side_large_square - x,x), (side_large_square - x, side_large_square -x), (x, side_large_square - x)], thickness=2, color='darkgray') + + # Create the small squares (one corner example, replicate for all corners) + small_square_1 = polygon2d([(0, 0), (x, 0), (x, x), (0, x)], fill=True, color='gray', edgecolor="black") + small_square_2 = polygon2d([(side_large_square - x, 0), (side_large_square, 0), (side_large_square, x), (side_large_square - x, x)], fill=True, color='gray', edgecolor="black", ) + small_square_3 = polygon2d([(0, side_large_square - x), (x, side_large_square - x), (x, side_large_square), (0, side_large_square)], fill=True, color='gray', edgecolor="black") + small_square_4 = polygon2d([(side_large_square - x, side_large_square - x), (side_large_square, side_large_square - x), (side_large_square, side_large_square), (side_large_square - x, side_large_square)], fill=True, color='gray', edgecolor="black") + + line_above_small_square = line2d([(6, 8.5), (8, 8.5)], color='black') + side_label_line = line2d([(8.5,6), (8.5,2)], color="black") + lass1 = line2d([(6,8.25), (6,8.75)]) + lass2 = line2d([(8,8.25), (8,8.75)]) + sll1 = line2d([(8.25,6),(8.75,6)]) + sll2 = line2d([(8.25,2),(8.75,2)]) + label_side = text("y", (8.75,4), fontsize=15,color='black') + label_x = text("x", (7,8.75), fontsize=15, color='black') + + # Combine all parts into one graphic + geometry = Graphics() + geometry += large_square + geometry += inner_square + geometry += inner_square2 + geometry += small_square_1 + geometry += small_square_2 + geometry += small_square_3 + geometry += small_square_4 + geometry += line_above_small_square + geometry += lass1 + geometry += lass2 + geometry += label_x + geometry += side_label_line + geometry += sll1 + geometry += sll2 + geometry += label_side + + # Set axes and title + geometry.set_axes_range(-1, side_large_square + 1, -1, side_large_square + 1) + geometry.axes(False) + + # Show the plot + geometry + +
  4. - + + + # Import necessary library + from sage.plot.graphics import Graphics + + # Define variables + x = 2 + side_large_square = 8 + side_small_square = 2 + side_inner_square = side_large_square - 2 * side_small_square + + # Create the large square + large_square = polygon2d([(0, 0), (side_large_square, 0), + (side_large_square, side_large_square),(0, side_large_square)], fill=True, color='lightgray', edgecolor="black") + + # Create the inner square + inner_square = polygon2d([(x, x), (side_large_square - x, x), (side_large_square - x, side_large_square - x), (x, side_large_square - x)], fill=True, color='lightgray') + inner_square2 = polygon2d([(x,x), (side_large_square - x,x), (side_large_square - x, side_large_square -x), (x, side_large_square - x)], thickness=2, color='darkgray') + + # Create the small squares (one corner example, replicate for all corners) + small_square_1 = polygon2d([(0, 0), (x, 0), (x, x), (0, x)], fill=True, color='gray', edgecolor="black") + small_square_2 = polygon2d([(side_large_square - x, 0), (side_large_square, 0), (side_large_square, x), (side_large_square - x, x)], fill=True, color='gray', edgecolor="black", ) + small_square_3 = polygon2d([(0, side_large_square - x), (x, side_large_square - x), (x, side_large_square), (0, side_large_square)], fill=True, color='gray', edgecolor="black") + small_square_4 = polygon2d([(side_large_square - x, side_large_square - x), (side_large_square, side_large_square - x), (side_large_square, side_large_square), (side_large_square - x, side_large_square)], fill=True, color='gray', edgecolor="black") + + line_above_small_square = line2d([(6, 8.5), (8, 8.5)], color='black') + side_label_line = line2d([(8.5,6), (8.5,2)], color="black") + lass1 = line2d([(6,8.25), (6,8.75)]) + lass2 = line2d([(8,8.25), (8,8.75)]) + sll1 = line2d([(8.25,6),(8.75,6)]) + sll2 = line2d([(8.25,2),(8.75,2)]) + label_side = text("8", (8.75,4), fontsize=15,color='black') + label_x = text("x", (7,8.75), fontsize=15, color='black') + + # Combine all parts into one graphic + geometry = Graphics() + geometry += large_square + geometry += inner_square + geometry += inner_square2 + geometry += small_square_1 + geometry += small_square_2 + geometry += small_square_3 + geometry += small_square_4 + geometry += line_above_small_square + geometry += lass1 + geometry += lass2 + geometry += label_x + geometry += side_label_line + geometry += sll1 + geometry += sll2 + geometry += label_side + + # Set axes and title + geometry.set_axes_range(-1, side_large_square + 1, -1, side_large_square + 1) + geometry.axes(False) + + # Show the plot + geometry + +
@@ -199,7 +433,43 @@
A rectangular parcel with a square end. - + + + from sage.plot.graphics import Graphics + geometry = Graphics() + front_border=polygon2d([(0,0), (0,2), (2,2), (2,0)], fill=False,color='black',thickness=2) + right_border = polygon2d([(2,0), (2,2), (6,4),(6,2)],fill=False, color='black', thickness=2) + front_bottom = polygon2d([(0,0),(2,0),(2,1)],color='cyan',alpha=1) + front = polygon2d([(0,0),(2,1),(2,2),(0,2)],color='powderblue') + left_top = polygon2d([(0,2),(2,2),(4,3),(4,4)],color='powderblue') + right_top = polygon2d([(4,3),(4,4),(6,4)],color='powderblue') + back = polygon2d([(4,3),(6,4),(6,2),(4,2)],color='powderblue') + middle = polygon2d([(2,1),(2,2),(4,3),(4,2)],color='powderblue') + bottom = polygon2d([(2,0),(2,1),(4,2),(6,2)],color='cyan',axes=False) + dash1 = line(([(0,0),(2,1)]),linestyle='dashed',color='black',thickness=2) + dash2 = line(([(2,1),(4,2)]),linestyle='dashed',color='black',thickness=2) + dash3 = line(([(4,2),(6,2)]),linestyle='dashed',color='black',thickness=2) + dash4 = line(([(4,2),(4,4)]),linestyle='dashed',color='black',thickness=2) + topline1 = line(([(4,4),(6,4)]),color='black',thickness=2) + topline2 = line(([(0,2),(4,4)]),color='black',thickness=2) + geometry += dash1 + geometry += dash2 + geometry += dash3 + geometry += dash4 + geometry += topline1 + geometry += topline2 + geometry += front_bottom + geometry += front + geometry += left_top + geometry += right_top + geometry += back + geometry += middle + geometry += bottom + geometry += front_border + geometry += right_border + geometry + +
diff --git a/source/calculus/source/04-IN/01.ptx b/source/calculus/source/04-IN/01.ptx index 35ce1ff27..040f985ce 100644 --- a/source/calculus/source/04-IN/01.ptx +++ b/source/calculus/source/04-IN/01.ptx @@ -109,9 +109,29 @@

The graph of g(t) and the areas A_1, A_2, A_3 are given below.

-
- -
+
+ + + + x = var('x') + f = -0.0019378058*x^5+0.0272617825*x^4-0.0281391103*x^3-0.6767556453*x^2 + 1.6980068882*x-0.0048902147 + p = plot(f,(x,0,10),thickness=2, gridlines=True, aspect_ratio=1.5, axes_labels=('$t$','$g(t)$')) + p + + + + + x = var('x') + f = -0.0019378058*x^5+0.0272617825*x^4-0.0281391103*x^3-0.6767556453*x^2 + 1.6980068882*x-0.0048902147 + p = plot(f,(x,0,10),thickness=2, gridlines=True, aspect_ratio=1.5, fill=True, axes_labels=('$t$','$g(t)$')) + a1 = text("$A_1 = 2$",(1.25,0.5), fontsize=12, color='black') + a2 = text("$A_2 = 2.5$", (4.75, -0.5), fontsize=12, color='black') + a3 = text("$A_3 = 9$", (8.25,1.75), fontsize=12, color='black') + p+a1+a2+a3 + + + +

Find \int_{3}^{3} g(t) \, dt

Find \int_{3}^{6} g(t) \, dt

diff --git a/source/calculus/source/04-IN/02.ptx b/source/calculus/source/04-IN/02.ptx index 8b17a3702..c2e8f7806 100644 --- a/source/calculus/source/04-IN/02.ptx +++ b/source/calculus/source/04-IN/02.ptx @@ -31,6 +31,26 @@ axes for plotting y = v(t); at right, for plotting y = s(t). + + + + x = var('x') + f = 0 + ticks = [True,[a for a in (1..8)]] + p = plot(f,(x,0,2.25), thickness=0, ymin = 0.25, ymax = 8.25, gridlines='minor', axes_labels=('hrs','mph'), axes_labels_size=1, aspect_ratio=.25, ticks=ticks) + p + + + + + x = var('x') + f = 0 + ticks = [True,[a for a in (1..8)]] + p = plot(f,(x,0,2.25), thickness=0, ymin = 0.25, ymax = 8.25, gridlines='minor', axes_labels=('hrs','miles'), axes_labels_size=1, aspect_ratio=.25, ticks=ticks) + p + + +
@@ -130,7 +150,27 @@
The graph of y = v(t). - + + + x = var('x') + f = (x-1)^3 + 2.5 + p = plot(f, (x,-.25,2.25), thickness=2, ymin=0, ymax = 3.5, gridlines=True, axes_labels=('hrs','mph'), axes_labels_size=1, aspect_ratio=.6) + a = text("$y = v(t)$",(1, 2.65), fontsize=12, color='black') + p + a + + +
@@ -214,51 +254,64 @@
A generic Riemann sum. - - \begin{tikzpicture} - \draw[thick] (0,0) -- (5,0); - \draw[fill=gray!50] (0, 0) rectangle (0.8, 1); - \draw[fill=gray!50] (0.8, 0) rectangle (1.9, 1.75); - \draw[fill=gray!50] (1.9, 0) rectangle (3.4, -1.2); - \draw[fill=gray!50] (3.4, 0) rectangle (4.2, 0.85); - \draw[fill=gray!50] (4.2, 0) rectangle (5.7, 0.35); - \draw[fill=gray!50] (5.7, 0) rectangle (6, -0.5); - \draw[fill=black] (0.2, 1.0) circle (0.05); - \draw[fill=black] (1.55, 1.75) circle (0.05); - \draw[fill=black] (2.15, -1.2) circle (0.05); - \draw[fill=black] (3.8, 0.85) circle (0.05); - \draw[fill=black] (4.5, 0.35) circle (0.05); - \draw[fill=black] (6.0, -0.5) circle (0.05); - \node[above, font=\tiny] at (0.2, 1.0) {$(s_1, f(s_1))$}; - \node[above, font=\tiny] at (1.55, 1.75) {$(s_2, f(s_2))$}; - \node[below, font=\tiny] at (2.15, -1.2) {$(s_3, f(s_3))$}; - \node[above, font=\tiny] at (3.8, 0.85) {$(s_4, f(s_4))$}; - \node[above, font=\tiny] at (4.5, 0.35) {$(s_5, f(s_5))$}; - \node[below, font=\tiny] at (6.0, -0.5) {$(s_6, f(s_6))$}; - \draw[thick, style=dashed, color=blue] - (0, 0.8) .. controls (0.1, 0.9) and (0.1, 1.1) .. - (0.2, 1.0) .. controls (1, 2) and (1, -1.0) .. - (1.55, 1.75) .. controls (1.8, -0.42) and (2.1, 1.9) .. - (2.15, -1.2) .. controls (2.6, -1.3) and (3.2, -1.1) .. - (3.8, 0.85) .. controls (3.9, 0.9) and (3.9, 0.8) .. - (4.5, 0.35) .. controls (4.6, 0.4) and (4.6, 0.3) .. - (6.0, -0.5) - ; - \node[font=\tiny] at (0,-0.15) {$x_0$}; - \node[font=\tiny] at (0.8,-0.15) {$x_1$}; - \node[font=\tiny] at (1.9,-0.15) {$x_2$}; - \node[font=\tiny] at (3.4,-0.15) {$x_3$}; - \node[font=\tiny] at (4.2,-0.15) {$x_4$}; - \node[font=\tiny] at (5.7,-0.15) {$x_5$}; - \node[font=\tiny] at (6,-0.15) {$x_6$}; - \end{tikzpicture} - - %(2.15, -1.2) - %(3.8, 0.85) - %(4.5, 0.35) - %(6.0, -0.5) - - + + # Import necessary library + from sage.plot.graphics import Graphics + + # Create a new graphics object + geometry = Graphics() + + # Add rectangles + rectangles = [ + ((0, 0), (0.8, 1)), + ((0.8, 0), (1.9, 1.75)), + ((1.9, 0), (3.4, -1.2)), + ((3.4, 0), (4.2, 0.85)), + ((4.2, 0), (5.7, 0.35)), + ((5.7, 0), (6, -0.5)), + ] + for rect in rectangles: + geometry += polygon2d( + [rect[0], (rect[1][0], rect[0][1]), rect[1], (rect[0][0], rect[1][1])], + fill=True, color='lightgray', edgecolor='black' + ) + + # Add points and their labels + points = [ + (0.2, 1.0, "$(s_1, f(s_1))$", "above"), + (1.55, 1.75, "$(s_2, f(s_2))$", "above"), + (2.15, -1.2, "$(s_3, f(s_3))$", "below"), + (3.8, 0.85, "$(s_4, f(s_4))$", "above"), + (4.5, 0.35, "$(s_5, f(s_5))$", "above"), + (6.0, -0.5, "$(s_6, f(s_6))$", "below"), + ] + for (x, y, label, position) in points: + geometry += point((x, y), color="black", size=20) + geometry += text(label, (x, y + (0.2 if position == "above" else -0.2)), fontsize=12, color="black") + + # Add x-axis labels + x_labels = [ + (0, "$x_0$"), (0.8, "$x_1$"), (1.9, "$x_2$"), (3.4, "$x_3$"), + (4.2, "$x_4$"), (5.7, "$x_5$"), (6, "$x_6$") + ] + for (x, label) in x_labels: + geometry += text(label, (x, -0.15), fontsize=12, color="black") + + # Define the Bézier path + bezier_segments = [ + bezier_path([[(0, 0.8), (0.1, 0.9), (0.1, 1.1), (0.2, 1.0)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed'), + bezier_path([[(0.2, 1.0), (1, 2), (1, -1.0), (1.55, 1.75)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed'), + bezier_path([[(1.55, 1.75), (1.8, -0.42), (2.1, 1.9), (2.15, -1.2)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed'), + bezier_path([[(2.15, -1.2), (2.6, -1.3), (3.2, -1.1), (3.8, 0.85)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed'), + bezier_path([[(3.8, 0.85), (3.9, 0.9), (3.9, 0.8), (4.5, 0.35)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed'), + bezier_path([[(4.5, 0.35), (4.6, 0.4), (4.6, 0.3), (6.0, -0.5)]], alpha=0.75, color = 'blue', thickness=2, linestyle='dashed') + ] + + # Add the Bézier curves to the graphics + geometry += sum(bezier_segments, Graphics()) + geometry.axes(False) + geometry +
@@ -374,36 +427,22 @@

Explain how to approximate the area under the curve - f(x) = -\frac{1}{5} (x-4)(x-10)(x-12) + f(x) = \frac{1}{5} (x-4)(x-10)(x-12) on the interval [4,10] using a right Riemann sum with 3 subintervals.

- The graph of the function f(x) = -1/5 (x-4)(x-10)(x-12) + The graph of the function f(x) = 1/5 (x-4)(x-10)(x-12) crosses the x-axis upward at (4,0) and downward at (10,0) with a maximum at about (6.3, 9.7). - - \begin{tikzpicture} - \begin{axis}[ - axis lines=middle, - grid=both, - xmin=3, - xmax=11, - ymin=-1, - ymax=12, - xlabel=$x$, - ylabel=$y$, - xtick={3,4,...,10}, - ytick={0,1,...,12}, - legend pos=north east, - ] - \addplot[domain=3:11, smooth, thick, blue] {1/5*(x-4)*(x-10)*(x-12)}; - \addlegendentry{{\tiny $f(x)=\frac{1}{5}(x-4)(x-10)(x-12)$}} - \end{axis} - \end{tikzpicture} - + + x = var('x') + f = 0.2*(x-4)*(x-10)*(x-12) + p = plot(f,(x,3,10.5),gridlines=True,ymin = -1, ymax = 11, thickness=2, axes_labels=('$x$','$y$')) + p + diff --git a/source/calculus/source/04-IN/05.ptx b/source/calculus/source/04-IN/05.ptx index 0f7c7e425..285c071c4 100644 --- a/source/calculus/source/04-IN/05.ptx +++ b/source/calculus/source/04-IN/05.ptx @@ -18,7 +18,15 @@
- + + + x= var('x') + f = 0.5*x+2 + ticks = [[-4,-3,-2,-1,0,1,2,3,4,5,6,7,8],[1,2,3,4,5,6]] + p = plot(f,(x,-4,8),gridlines=True, thickness=2, axes_labels=('$x$','$f(x)$'), aspect_ratio=1.25, ticks=ticks) + p + +
@@ -27,7 +35,14 @@

Approximate the area under the curve f(x)=(x-1)^2+2 on the interval [1,5] using a left Riemann sum with four uniform subdivisions. Draw your rectangles on the graph.

- + + + x = var('x') + f = (x-1)^2 + 2 + p = plot(f,(x,0,5), gridlines=True, thickness=2, axes_labels=('$x$','$f(x)$'), aspect_ratio = .25) + p + +
@@ -96,21 +111,44 @@

\displaystyle \int_0^2 \left(x^2+3\right) \, dx

- + + + x = var('x') + f = x^2 + 3 + ticks = [True, [1..12]] + p = plot(f,(x,-3,3), ymin = 0, gridlines=True, thickness=2, axes_labels=('$x$','$y$'),ticks=ticks) + p + +

\displaystyle \int_1^4 \left(\sqrt{x}\right) \, dx

- + + + x = var('x') + f = sqrt(x) + p = plot(f,(x,0,6), gridlines=True, thickness=2, axes_labels=('$x$','$y$')) + p + +

\displaystyle \int_{-\pi/4}^{\pi/2} \left(\cos x\right) \, dx

- + + + x = var('x') + f = cos(x) + ticks = [[-pi/2, -pi/4,0,pi/4,pi/2,3*pi/4,pi],True] + p = plot(f,(x,-pi/2,pi), gridlines='minor', thickness=2, axes_labels=('$x$','$y$'), tick_formatter=[pi,None], ticks=ticks) + p + +
@@ -124,7 +162,14 @@

- + + + x = var('x') + f = 2*x-6 + p = plot(f,(x,0,8), gridlines=True, thickness=2, axes_labels=('$x$','$f(x)$')) + p + +

What do you notice?

@@ -134,7 +179,14 @@

Find the area bounded by the curves f(x)=e^x-2, the x-axis, x=0, and x=1.

- + + + x = var('x') + f = exp(x)-2 + p = plot(f,(x,-1,1.5), gridlines=True, thickness=2, axes_labels=('$x$','$f(x)$')) + p + +
@@ -147,12 +199,29 @@

y=\frac{1}{x^2}

+ + + x = var('x') + f = 1/x^2 + p1 = plot(f,(x,.5,3.5), gridlines=True, thickness=2, axes_labels=('$x$','$y$')) + p2 = plot(f,(x,1,3),fill=True) + p1+p2 + +

y=3x^2-x^3

- + + + x=var('x') + f = 3*x^2-x^3 + p1 = plot(f,(x,-1,4),ymin = -2, thickness=2,gridlines=True, axes_labels=('$x$','$y$')) + p2 = plot(f,(x,0,2),fill=True) + p1+p2 + +
diff --git a/source/calculus/source/04-IN/08.ptx b/source/calculus/source/04-IN/08.ptx index 7fd03c4bd..56ca66010 100644 --- a/source/calculus/source/04-IN/08.ptx +++ b/source/calculus/source/04-IN/08.ptx @@ -60,9 +60,30 @@

We now look for a general way of writing definite integrals for the area between two given curves, f(x) and g(x). Consider this area, illustrated in .

- Area between f(x) and g(x). - -
+ Area between f(x) and g(x). + + + x=var('x') + f(x) = 4*(.5*(x-1))-(.5*(x-1))^2+1 + g(x) = (.5*(x-1))^2+1 + pf1 = plot(f,(x,0,5.25), ticks=[[],[]], color='blue', aspect_ratio=1) + pg1 = plot(g,(x,0,5.25), ticks=[[],[]], color='red', aspect_ratio=1) + pf2 = plot(f,(x,1,5), fill=f, ticks=[[],[]], color='blue', aspect_ratio=1) + pg2 = plot(g,(x,1,5), fill=f, ticks=[[],[]], color='red', aspect_ratio=1) + t1 = text('$f(x)$', (2, f(2)+1), color='blue', fontsize=12) + t2 = text('$g(x)$', (3.5, g(3.5)-1), color='red', fontsize=12) + c1 = circle((1,f(1)), 0.1, fill=True, color='black', facecolor='black') + c2 = circle((5,f(5)), 0.1, fill=True, color='black', facecolor='black') + line1 = line(([1,f(1)],[1,0]), linestyle='dashed', color='black') + line2 = line(([5,f(5)],[5,0]), linestyle='dashed', color='black') + c3 = circle((1,0), 0.1, fill=True, color='black', facecolor='black') + c4 = circle((5,0), 0.1, fill=True, color='black', facecolor='black') + t3 = text('$a$',(1,-0.5), fontsize=12, color='black') + t4 = text('$b$',(5,-0.5), fontsize=12, color='black') + pf1+pf2+pg1+pg2+t1+t2+c1+c2+line1+line2+c3+c4+t3+t4 + + + diff --git a/source/calculus/source/07-CO/04.ptx b/source/calculus/source/07-CO/04.ptx index 65799cd9d..5389a1024 100644 --- a/source/calculus/source/07-CO/04.ptx +++ b/source/calculus/source/07-CO/04.ptx @@ -37,7 +37,23 @@ A point in the polar coordinate system. A point in the polar coordinate system. - + + circ = arc((0,0),1,sector=(0,pi/2),color='black',thickness=2,linestyle='dashed',axes=False) + xaxis = arrow((0,0),(1.5,0),color='black',axes=False) + xaxis_label = text('$x$',(1.6,0),color='black',fontsize=13) + yaxis = arrow((0,0),(0,1.5),color='black') + yaxis_label = text('$y$',(0,1.6),color='black',fontsize=13) + radius = arrow((0,0),(sqrt(2)/2,sqrt(2)/2),color='black') + radius_label = text('$r$',(0.35,0.45), color='black',fontsize=15) + yline = line(([(0,sqrt(2)/2),(sqrt(2)/2,sqrt(2)/2)]),linestyle='dashed',color='red') + yline_label = text('$y$',(-.1,sqrt(2)/2),color='red',fontsize=15) + xline = line(([(sqrt(2)/2,sqrt(2)/2),(sqrt(2)/2,0)]),color='red',linestyle='dashed') + xline_label = text('$x$',(sqrt(2)/2,-.1),color='red',fontsize=15) + pt = text('$(r,\\theta)$',(sqrt(2)/2+.1,sqrt(2)/2+.1),color='black',fontsize=15) + inner_arc = arc((0,0),.2,sector=(0,pi/4),color='black') + inner_arc_label = text('$\\theta$', (.25,.2*sqrt(2)/3),color='black',fontsize=15) + circ + xaxis + xaxis_label + yaxis + yaxis_label + radius + radius_label + yline + yline_label + xline + xline_label + pt + inner_arc + inner_arc_label + @@ -47,13 +63,28 @@ The polar grid. The polar grid - - + +circ_range = [1,..,5] +plt = Graphics() +for i in circ_range: + plt += polar_plot(i-0.5,x,0,2*pi,thickness=1,figsize=10) + plt += polar_plot(i,(x,0,2*pi), axes=False, thickness=1.5,figsize=10) + bbox = {'boxstyle': 'square,pad=0.05','fc':"white", 'ec':"white"} + lbl = text(i,(i,-.25),color='black',background_color='white',bounding_box = bbox,fontsize=13) + plt += lbl +for angle in [0,1,..,23]: + plt += line(([(0,0),(5*cos(angle*pi/12),5*sin(angle*pi/12))])) + actual_angle = angle*pi/12 + if denominator(actual_angle) != 1: + plt += text(f"$\\dfrac{{{latex(numerator(actual_angle))}}}{{{denominator(actual_angle)}}}$",(5.5*cos(angle*pi/12),5.5*sin(angle*pi/12)),color='black',fontsize=13) + else: + plt += text(f"${latex(angle*pi/12)}$",(5.5*cos(angle*pi/12),5.5*sin(angle*pi/12)),color='black',fontsize=13) +xaxis = arrow((0,0),(5.25,0),arrowsize=0.5,color='black') +plt += xaxis +plt + - - - - + diff --git a/source/calculus/source/07-CO/06.ptx b/source/calculus/source/07-CO/06.ptx index b0c936503..1e9a99a14 100644 --- a/source/calculus/source/07-CO/06.ptx +++ b/source/calculus/source/07-CO/06.ptx @@ -30,66 +30,45 @@ Finding the polar area differential Illustration of polar area differential. - - \begin{tikzpicture}[>=latex] - -% Draw the lines at multiples of pi/12 -\foreach \ang in {0,...,31} { - \draw [lightgray] (0,0) -- (\ang * 180 / 16:4); -} - -% Concentric circles and radius labels -\foreach \s in {0, 1, 2, 3} { - \draw [lightgray] (0,0) circle (\s + 0.5); - \draw (0,0) circle (\s); - \node [fill=white] at (\s, 0) [below] {\scriptsize $\s$}; -} - -% Add the labels at multiples of pi/4 -\foreach \ang/\lab/\dir in { - 0/0/right, - 1/{\pi/4}/{above right}, - 2/{\pi/2}/above, - 3/{3\pi/4}/{above left}, - 4/{\pi}/left, - 5/{5\pi/4}/{below left}, - 7/{7\pi/4}/{below right}, - 6/{3\pi/2}/below} { - \draw (0,0) -- (\ang * 180 / 4:4.1); - \node [fill=white] at (\ang * 180 / 4:4.2) [\dir] {\scriptsize $\lab$}; -} - -% The double-lined circle around the whole diagram -\draw [style=double] (0,0) circle (4); - -\draw [fill=red!50!black, opacity=0.4] ({cos(30)},{sin(30)})--plot [domain=pi/6:pi/3] - (xy polar cs:angle=\x r, radius= {2+2*cos(\x r)})--plot [domain=pi/3:pi/6] - (xy polar cs:angle=\x r, radius= {1})--({cos(30)},{sin(30)}); -\draw [thick, color=red, domain=0:2*pi, samples=200, smooth] - plot (xy polar cs:angle=\x r, radius={2+2*cos(\x r)}); -\draw [thick, color=blue, domain=0:2*pi, samples=200, smooth] - plot (xy polar cs:angle=\x r, radius={1}); - -\draw [fill=blue!50!black, opacity=0.4] ({cos(30)},{sin(30)})--plot [domain=pi/6:4*pi/18] - (xy polar cs:angle=\x r, radius= {2+2*cos(pi/6 r)})--plot [domain=4*pi/18:pi/6] - (xy polar cs:angle=\x r, radius= {1})--({cos(30)},{sin(30)}); - -\draw [fill=blue!50!black, opacity=0.4] ({cos(40)},{sin(40)})--plot [domain=4*pi/18:5*pi/18] - (xy polar cs:angle=\x r, radius= {2+2*cos(4*pi/18 r)})--plot [domain=5*pi/18:4*pi/18] - (xy polar cs:angle=\x r, radius= {1})--({cos(40)},{sin(40)}); - -\draw [fill=blue!50!black, opacity=0.4] ({cos(50)},{sin(50)})--plot [domain=5*pi/18:6*pi/18] - (xy polar cs:angle=\x r, radius= {2+2*cos(5*pi/18 r)})--plot [domain=6*pi/18:5*pi/18] - (xy polar cs:angle=\x r, radius= {1})--({cos(50)},{sin(50)}); -%\node [fill=white] at (2,1) {$r=1+\cos\theta$}; - -\draw[purple, dashed] (0,0)--({cos(30)*(2+2*cos(30))}, {sin(30)*(2+2*cos(30))}); -\draw[purple, dashed] (0,0)--({cos(40)*(2+2*cos(30))}, {sin(40)*(2+2*cos(30))}); -\draw[purple, dashed] (0,0)--({cos(50)*(2+2*cos(40))}, {sin(50)*(2+2*cos(40))}); -\draw[purple, dashed] (0,0)--({cos(60)*(2+2*cos(50))}, {sin(60)*(2+2*cos(50))}); - -\end{tikzpicture} - + + x = var('x') + f(x) = 2 + 2*cos(x) + g(x) = 1 + plt = Graphics() + circ_range = [1,..,5] + for i in circ_range: + plt += polar_plot(i,(x,0,2*pi), axes=False, thickness=1.5,figsize=10,color='black') + bbox = {'boxstyle': 'square,pad=0.05','fc':"white", 'ec':"white"} + lbl = text(i,(i,-.25),color='black',background_color='white',bounding_box = bbox,fontsize=13) + plt += lbl + for angle in [0,1,..,23]: + plt += line(([(0,0),(5*cos(angle*pi/12),5*sin(angle*pi/12))]),color='black',thickness=0.5) + actual_angle = angle*pi/12 + if denominator(actual_angle) != 1: + plt += text(f"$\\dfrac{{{latex(numerator(actual_angle))}}}{{{denominator(actual_angle)}}}$",(5.5*cos(angle*pi/12),5.5*sin(angle*pi/12)),color='black',fontsize=13) + else: + plt += text(f"${latex(angle*pi/12)}$",(5.5*cos(angle*pi/12),5.5*sin(angle*pi/12)),color='black',fontsize=13) + xaxis = arrow((0,0),(5.25,0),arrowsize=0.5,color='black') + def polar_rectangle(start,end): + radius = f(start) + a = arc((0,0),radius,sector=(start,end),thickness=2) + a_side1 = line(([(0,0),(radius*cos(start),radius*sin(start))]),thickness=2,linestyle='dashed',color='darkblue') + a_side2 = line(([(0,0),(radius*cos(end),radius*sin(end))]),thickness=2,linestyle='dashed',color='darkblue') + pp = polar_plot(f,(x,start,end),fill=g,fillcolor='cyan') + d = polar_plot(radius,(x,start,end),fill=g,fillcolor='grey',fillalpha=0.5) + p = a + a_side1 + a_side2 + pp + d + return p + rec1 = polar_rectangle(pi/12,pi/6) + rec2 = polar_rectangle(pi/6,pi/4) + rec3 = polar_rectangle(pi/4,pi/3) + plt += polar_plot(f(x),(x,0,2*pi),color = 'red',thickness=2) + plt += polar_plot(g(x),(x,0,2*pi),color = 'blue',thickness=2) + plt += rec1 + plt += rec2 + plt += rec3 + plt += xaxis + plt + diff --git a/source/calculus/source/08-SQ/06.ptx b/source/calculus/source/08-SQ/06.ptx index 4b29f89ab..d5fa05f77 100644 --- a/source/calculus/source/08-SQ/06.ptx +++ b/source/calculus/source/08-SQ/06.ptx @@ -311,48 +311,33 @@ Plots of \{a_n\}, \{b_n\} Plots of sequences \{a_n\}, \{b_n\} where a_n\geq b_n\geq 0. - - \begin{tikzpicture} - \draw[->] (-1, 0) -- (10.2, 0) node[below right] {$x$}; - \draw[->] (0, -1) -- (0, 4.2) node[above] {$y$}; - - - \draw[blue] (0,4)\foreach \x in {0,...,9}{ - --({\x+1}, {4/(\x+1)})--({\x+1}, {4/(\x+2)})}; - \draw (0,0)--(0,4); - \foreach \x in {0,...,9}{ - \draw[blue] ({\x+1}, {4/(\x+2)})--({\x+1}, {0});} - - \draw[blue, fill, opacity=0.2] (0,0)--(0,4)\foreach \x in {0,...,9}{ - --({\x+1}, {4/(\x+1)})--({\x+1}, {4/(\x+2)})} - --(10,0) - --cycle; - - \draw[red] (0,4)\foreach \x in {0,...,9}{ - --({\x+1}, {4/(\x+1)^2})--({\x+1}, {4/(\x+2)^2})}; - \draw (0,0)--(0,4); - \foreach \x in {0,...,9}{ - \draw[red] ({\x+1}, {4/(\x+2)^2})--({\x+1}, {0});} - - \draw[red, fill, opacity=0.2] (0,0)--(0,4)\foreach \x in {0,...,9}{ - --({\x+1}, {4/(\x+1)^2})--({\x+1}, {4/(\x+2)^2})} - --(10,0) - --cycle; - - \draw[blue] (0,4)--node[left]{$a_0$} (0,4); - \draw[red] (1,4)--node[right]{$b_0$} (1,4); - - \draw[blue] (2,4/2)--node[ right]{$a_1$} (2,4/2); - \draw[red] (2,4/2^2)--node[ right]{$b_1$} (2,4/2^2); - - \draw[blue] (3,4/3)--node[ right]{$a_2$} (3,4/3); - \draw[red] (3,4/3^2)--node[right]{$b_2$} (3,4/3^2); - - \draw (10,0)-- node[above right]{$\cdots$} (10,0); - - - \end{tikzpicture} - + + x = var('x') + plt = Graphics() + f(x) = 4*0.8^(x+1) + g(x) = 4*0.7^(x+1) + for i in [0,..,10]: + plt += polygon(([(i,0),(i,f(i)),(i+1,f(i)),(i+1,0)]),fill='blue',alpha=0.25,edgecolor='black',axes=False) + plt += polygon(([(i,0),(i,g(i)),(i+1,g(i)),(i+1,0)]),color='red',alpha=0.25,edgecolor='black') + a0 = text('$a_0$',(1.25,f(0)),color='blue',fontsize=12) + b0 = text('$b_0$',(1.25,g(0)),color='red',fontsize=12) + a1 = text('$a_1$',(2.25,f(1)),color='blue',fontsize=12) + b1 = text('$b_1$',(2.25,g(1)),color='red',fontsize=12) + a2 = text('$a_2$',(3.25,f(2)),color='blue',fontsize=12) + b2 = text('$b_2$',(3.25,g(2)),color='red',fontsize=12) + plt += a0 + plt += b0 + plt += a1 + plt += b1 + plt += a2 + plt += b2 + plt += text('$\\cdots$',(11.5,.1),color='black',fontsize=15) + plt += arrow((0,0),(12.5,0),arrowsize=0.5,color='black') + plt += text('$x$', (12.75,0), color='black',fontsize=13) + plt += arrow((0,0),(0,4),arrowsize=0.5,color='black') + plt += text('$y$', (0,4.25),color='black',fontsize=13) + plt +

@@ -449,67 +434,26 @@ Plots of \{a_n\}, \{b_n\} Plots of sequences \{a_n\}, \{b_n\} where a_n\geq b_n\geq 0 initially but eventually a_n\leq b_n\geq 0. - - \begin{tikzpicture} - \draw[->] (-1, 0) -- (10.2, 0) node[below right] {$x$}; - \draw[->] (0, -1) -- (0, 4.2) node[above] {$y$}; - - - \draw[blue] (0,4)\foreach \x in {0,...,4}{ - --({\x+1}, {4*(0.8^(\x))})--({\x+1}, {4*0.8^(\x+1)})}; - \draw (0,0)--(0,4); - \foreach \x in {0,...,4}{ - \draw[blue] ({\x+1}, {4*0.8^(\x+1)})--({\x+1}, {0});} - - \draw[blue, fill, opacity=0.2] (0,0)--(0,4)\foreach \x in {0,...,4}{ - --({\x+1}, {4*0.8^(\x)})--({\x+1}, {4*0.8^(\x+1)})} - --(5,0) - --cycle; - - \draw[red] (0,4)\foreach \x in {0,...,4}{ - --({\x+1}, {4*(0.7^(\x))})--({\x+1}, {4*0.7^(\x+1)})}; - \draw (0,0)--(0,4); - \foreach \x in {0,...,4}{ - \draw[red] ({\x+1}, {4*0.7^(\x+1)})--({\x+1}, {0});} - - \draw[red, fill, opacity=0.2] (0,0)--(0,4)\foreach \x in {0,...,4}{ - --({\x+1}, {4*0.7^(\x)})--({\x+1}, {4*0.7^(\x+1)})} - --(5,0) - --cycle; - - \draw (5.5,0)--node[above]{$\cdots$} (5.5,0); - - \draw[blue] (6,4*0.75^9)\foreach \x in {6,...,9}{ - --({\x+1}, {4*(0.75^(\x+3))})--({\x+1}, {4*0.75^(\x+4)})}; - \draw[blue] (6,0)--(6,4*0.75^9); - \foreach \x in {6,...,9}{ - \draw[blue] ({\x+1}, {4*0.75^(\x+4)})--({\x+1}, {0});} - - \draw[blue, fill, opacity=0.2] (6,0)--(6,4*0.75^9)\foreach \x in {6,...,9}{ - --({\x+1}, {4*0.75^(\x+3)})--({\x+1}, {4*0.75^(\x+4)})} - --(10,0) - --cycle; - - - \draw[red] (6,4*0.8^9)\foreach \x in {6,...,9}{ - --({\x+1}, {4*(0.8^(\x+3))})--({\x+1}, {4*0.8^(\x+4)})}; - \draw[blue] (6,0)--(6,4*0.8^9); - \foreach \x in {6,...,9}{ - \draw[red] ({\x+1}, {4*0.8^(\x+4)})--({\x+1}, {0});} - - \draw[red, fill, opacity=0.2] (6,0)--(6,4*0.8^9)\foreach \x in {6,...,9}{ - --({\x+1}, {4*0.8^(\x+3)})--({\x+1}, {4*0.8^(\x+4)})} - --(10,0) - --cycle; - - \draw (6,-0.1)--(6,0.1); - \draw (6,-0.1)--node[below]{$100$} (6,-0.1); - - \draw (10.5,0)--node[above]{$\cdots$} (10.5,0); - - - \end{tikzpicture} - + + x = var('x') + plt = Graphics() + f(x) = 4*0.8^(x+1) + g(x) = 4*0.7^(x+1) + for i in [0,..,4]: + plt += polygon(([(i,0),(i,f(i)),(i+1,f(i)),(i+1,0)]),fill='blue',alpha=0.25,edgecolor='black',axes=False) + plt += polygon(([(i,0),(i,g(i)),(i+1,g(i)),(i+1,0)]),color='red',alpha=0.25,edgecolor='black') + plt += text('$\\cdots$',(5.5,.5),color='black',fontsize=15) + for i in [6,..,10]: + plt += polygon(([(i,0),(i,f(i)),(i+1,f(i)),(i+1,0)]),color='cyan',alpha=0.25,edgecolor='black',axes=False) + plt += polygon(([(i,0),(i,g(i)),(i+1,g(i)),(i+1,0)]),color='red',alpha=0.25,edgecolor='black') + plt += arrow((0,0),(12.5,0),arrowsize=0.5,color='black') + plt += text('$x$', (12.75,0), color='black',fontsize=13) + plt += arrow((0,0),(0,4),arrowsize=0.5,color='black') + plt += text('$y$', (0,4.25),color='black',fontsize=13) + plt += text('100', (6,-0.25),color='black',fontsize=15) + plt += text('$\\cdots$',(11.5,0.2),color='black',fontsize=15) + plt +

diff --git a/source/calculus/source/09-PS/01.ptx b/source/calculus/source/09-PS/01.ptx index 02cbbf260..8ff868cd3 100644 --- a/source/calculus/source/09-PS/01.ptx +++ b/source/calculus/source/09-PS/01.ptx @@ -418,33 +418,13 @@ Plots of y=f_5(x), y=e^x. Plots of y=f_5(x), y=e^x. - - \begin{tikzpicture} - \begin{axis}[ - axis lines=middle, - grid=major, - xmin=-2, - xmax=2, - ymin=-1, - ymax=8, - xlabel=$x$, - ylabel=$y$, - xtick={-2,-1,...,2}, - ytick={0,1,...,7}, - tick style={very thick}, - legend style={ - at={(rel axis cs:0,1)}, - anchor=north west,draw=none,inner sep=0pt,fill=gray!10} - ] - - \addplot[blue,samples=100] {e^x}; - \addlegendentry{$y=e^x$} - - \addplot[red, dashed,samples=100] {1+x+x^2/2+x^3/6+x^4/24+x^5/120}; - \addlegendentry{$y=f_5(x)$} - \end{axis} - \end{tikzpicture} - + + g = Graphics() + taylor = 1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + g += plot(exp(x),(x,-2,2),color='blue',thickness=2,axes_labels=('$x$','$y$'),legend_label = '$y = e^x$') + g += plot(taylor,(x,-2,2),color='red',thickness=1.5, linestyle='dashed',legend_label = '$y = f_5(x)$') + g +

What might we conclude?

diff --git a/source/precalculus/source/03-LF/06.ptx b/source/precalculus/source/03-LF/06.ptx index 273bc3a80..288c036d5 100644 --- a/source/precalculus/source/03-LF/06.ptx +++ b/source/precalculus/source/03-LF/06.ptx @@ -32,11 +32,10 @@

    -
  1. 4a+2c=128.50

  2. -
  3. a+c=128.50 -

  4. -
  5. 4c+2a=128.50

  6. -
  7. a+c=336.50

  8. +
  9. 2c+4a=\$128.50

  10. +
  11. c+a=\$128.50

  12. +
  13. 4c+2a=\$128.50

  14. +
  15. c+a=\$336.50

@@ -52,11 +51,10 @@

    -
  1. 6c+4a=208

  2. -
  3. a+c=208 -

  4. -
  5. 4a+6c=208

  6. -
  7. a+c=336.50

  8. +
  9. 6c+4a=\$208

  10. +
  11. c+a=\$208

  12. +
  13. 4c+6a=\$208

  14. +
  15. c+a=\$336.50

@@ -634,4 +632,4 @@ Videos

It would be great to include videos down here, like in the Calculus book!

--> - \ No newline at end of file +