diff --git a/source/linear-algebra/source/02-EV/04.ptx b/source/linear-algebra/source/02-EV/04.ptx
index 42693c03c..49a6a79e1 100644
--- a/source/linear-algebra/source/02-EV/04.ptx
+++ b/source/linear-algebra/source/02-EV/04.ptx
@@ -150,134 +150,203 @@
Consider the following three vectors in \IR^3:
- \vec v_1=\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right],
+ \vec v_1=\left[\begin{array}{c}-2 \\ 0 \\ 3\end{array}\right],
\vec v_2=\left[\begin{array}{c}1 \\ 3 \\ 0\end{array}\right],
\text{ and }
- \vec v_3=\left[\begin{array}{c}-2 \\ 5 \\ 4\end{array}\right]
+ \vec v_3=\left[\begin{array}{c}-2 \\ 6 \\ 6\end{array}\right]
.
-
- Let \vec w = 3\vec v_1 - \vec v_2 - 5 \vec v_3 = \left[\begin{array}{c}\unknown \\ \unknown \\ \unknown\end{array}\right].
- The set \{\vec v_1,\vec v_2,\vec v_3,\vec w\} is...
-
- linearly dependent: at least one vector is a linear combination of others
- linearly independent: no vector is a linear combination of others
-
-
+
+
+ Let \vec v_4 = 3\vec v_1 - \vec v_2 - 2 \vec v_3 =
+ \left[\begin{array}{c}-3 \\ -15 \\ -3\end{array}\right].
+ The set \{\vec v_1,\vec v_2,\vec v_3,\vec v_4\} is...
+
+ linearly dependent: at least one vector is a linear combination of others
+ linearly independent: no vector is a linear combination of others
+
+
+
+
+
+ A. We explicitly constructed \vec v_4 as a linear combination of the others.
+ (It turns out \vec v_3 is a linear combo as well.)
+
+
-
- Find \RREF \left[\begin{array}{ccc|c}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w \\
- \end{array}\right]=
- \RREF \left[\begin{array}{ccc|c}
- -2 & 1 &-2 & \unknown \\
- 0 & 3 & 5 & \unknown \\
- 0 &0 &4 & \unknown
- \end{array}\right]= \unknown .
-
-
- What does this tell you about solution set for the vector equation
- x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 =\vec w?
-
- -
-
- It is inconsistent.
-
-
- -
-
- It is consistent with one solution.
-
-
- -
-
- It is consistent with infinitely many solutions.
-
-
-
-
-
+
+
+ Find \RREF \left[\begin{array}{ccc|c}
+ \vec v_1 & \vec v_2 & \vec v_3 & \vec v_4 \\
+ \end{array}\right]=
+ \RREF \left[\begin{array}{ccc|c}
+ -2 & 1 &-2 & -3 \\
+ 0 & 3 & 6 & -15 \\
+ 3 &0 &6 & -3
+ \end{array}\right]= \unknown .
+
+
+ What does this guarantee about the solution set for the vector equation
+ x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 =\vec v_4?
+
+ -
+
+ It is inconsistent.
+
+
+ -
+
+ It is consistent with one solution.
+
+
+ -
+
+ It is consistent with infinitely many solutions.
+
+
+ -
+
+ None of these.
+
+
+
+
+
+
+
+ C. Since
+ \RREF \left[\begin{array}{ccc|c}
+ -2 & 1 &-2 & -3 \\
+ 0 & 3 & 6 & -15 \\
+ 3 &0 &6 & -3
+ \end{array}\right] =
+ \RREF \left[\begin{array}{ccc|c}
+ 1 & 0 &2 & -1 \\
+ 0 & 1 & 2 & -5 \\
+ 0 &0 &0 & 0
+ \end{array}\right]
+ has no contradiction and a free variable, it has infinitely-many solutions.
+
+
+
-
- Find \RREF \left[\begin{array}{cccc|c}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w & \vec 0\\
- \end{array}\right]=
- \RREF \left[\begin{array}{cccc|c}
- -2 & 1 &-2 & \unknown & 0\\
- 0 & 3 & 5 & \unknown & 0 \\
- 0 &0 &4 & \unknown & 0
- \end{array}\right]= \unknown .
-
-
- What does this tell you about solution set for the vector equation
- x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec w=\vec{0}?
-
- -
-
- It is inconsistent.
-
-
- -
-
- It is consistent with one solution.
-
-
- -
-
- It is consistent with infinitely many solutions.
-
-
-
-
-
-
+
- Which of the following is the best conclusion obtained when we solved
- x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec w=\vec{0}?
+ Let \vec w=\left[\begin{array}{c}\unknown \\ \unknown \\ \unknown\end{array}\right]
+ be some arbitrary vector in \mathbb R^3.
+ Consider \RREF \left[\begin{array}{cccc}
+ \vec v_1 & \vec v_2 & \vec v_3 & \vec v_4 \\
+ \end{array}\right]=
+ \RREF \left[\begin{array}{cccc}
+ -2 & 1 &-2 & -3 \\
+ 0 & 3 & 6 & -15 \\
+ 3 &0 &6 & -3
+ \end{array}\right]= \unknown .
+
+
+ What does this guarantee about the solution set for the vector equation
+ x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec w?
-
-A pivot column in the augmented matrix \RREF \left[\begin{array}{cccc|c}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w & \vec 0 \\
- \end{array}\right] guarantees the linear independence
-of \{\vec v_1,\vec v_2,\vec v_3,\vec w\}
-by preventing contradictions.
+ It is inconsistent.
-
-A pivot column in the coefficient matrix \RREF \left[\begin{array}{cccc}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w \\
- \end{array}\right] guarantees the linear independence
-of \{\vec v_1,\vec v_2,\vec v_3,\vec w\}
-by preventing contradictions.
+ It is consistent with exactly one solution.
-
-A non-pivot column in the augmented matrix \RREF \left[\begin{array}{cccc|c}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w & \vec 0 \\
- \end{array}\right] guarantees the linear dependence
-of \{\vec v_1,\vec v_2,\vec v_3,\vec w\}
-by describing a linear combination of one vector in terms of the others.
+ It is not consistent with exactly one solution.
-
-A non-pivot column in the coefficient matrix \RREF \left[\begin{array}{cccc}
- \vec v_1 & \vec v_2 & \vec v_3 & \vec w \\
- \end{array}\right] guarantees the linear dependence
-of \{\vec v_1,\vec v_2,\vec v_3,\vec w\}
-by describing a linear combination of one vector in terms of the others.
+ It is consistent with infinitely many solutions.
-
-
+
+
+
+ D. Due to the row of zeros, it might be inconsistent. But if it is consistent,
+ the free variable column guarantees it will have infinitely-many solutions.
+
+
+
+
+
+
+ Which of the following describes any solution to the equation
+ x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec{w}
+ for any linearly dependent set \{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}
+ and some vector \vec w\in \mathbb R^n?
+
+ -
+
+No such solution can exist.
+
+
+ -
+
+It cannot be unique.
+
+
+ -
+
+It must be unique.
+
+
+
+
+
+
+
+ B. If we assume the solution exists, the previous answer shows us that it cannot be the only one,
+ due to the free variable column.
+
+
+
+
+
+
+ Which of the following describes any solution to the equation
+ x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3 + x_4\vec v_4=\vec{w}
+ for any linearly independent set \{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}
+ and some vector \vec w\in \mathbb R^n?
+
+ -
+
+No such solution can exist.
+
+
+ -
+
+It cannot be unique.
+
+
+ -
+
+It must be unique.
+
+
+
+
+
+
+
+ C. If we assume the solution exists, it must be the only one,
+ due to the lack of a free variable column.
+
+
+
+
@@ -286,18 +355,15 @@ by describing a linear combination of one vector in terms of the others.
For any vector space,
the set \{\vec v_1,\dots\vec v_n\} is linearly dependent if and only
- if the vector equation x_1\vec v_1+ x_2 \vec v_2+\dots+x_n\vec v_n=\vec{0} is consistent with
- infinitely many solutions.
+ if the vector equation x_1\vec v_1+ x_2 \vec v_2+\dots+x_n\vec v_n=\vec w cannot have
+ a unique solution for any \vec w.
- Likewise, the set of vectors
+ On the other hand, the set of vectors
\{\vec v_1,\dots\vec v_n\} is linearly independent
- if and only the vector equation x_1\vec v_1+ x_2 \vec v_2 + \cdots + x_n\vec v_n = \vec{0}
- has exactly one solution: \left[\begin{array}{c}
- x_1 \\ \vdots \\ x_n
- \end{array}\right]=\left[\begin{array}{c}
- 0 \\ \vdots \\ 0
- \end{array}\right].
+ if and only if any solution to the vector equation
+ x_1\vec v_1+ x_2 \vec v_2 + \cdots + x_n\vec v_n = \vec w
+ must be unique for any \vec w.
@@ -322,8 +388,8 @@ by describing a linear combination of one vector in terms of the others.
\left[\begin{array}{c}4\\3\\0\\1\end{array}\right]
\right\}
- is linearly dependent (the part that shows its linear system has
- infinitely many solutions).
+ is linearly dependent (the part that shows its linear system cannot have
+ a unique solution).