From eccea262c10ff0e2fe6a5c6dbaf13a8be2371dca Mon Sep 17 00:00:00 2001 From: quant12345 <kamil246@mail.ru> Date: Fri, 29 Sep 2023 17:50:16 +0500 Subject: [PATCH 1/3] Replacing the generator with numpy vector operations from lu_decomposition. --- arithmetic_analysis/lu_decomposition.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py index eaabce5449c5..094b20abfecc 100644 --- a/arithmetic_analysis/lu_decomposition.py +++ b/arithmetic_analysis/lu_decomposition.py @@ -88,15 +88,19 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray lower = np.zeros((rows, columns)) upper = np.zeros((rows, columns)) + + # in 'total', the necessary data is extracted through slices + # and the sum of the products is obtained. + for i in range(columns): for j in range(i): - total = sum(lower[i][k] * upper[k][j] for k in range(j)) + total = np.sum(lower[i, :i] * upper[:i, j]) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists") lower[i][j] = (table[i][j] - total) / upper[j][j] lower[i][i] = 1 for j in range(i, columns): - total = sum(lower[i][k] * upper[k][j] for k in range(j)) + total = np.sum(lower[i, :i] * upper[:i, j]) upper[i][j] = table[i][j] - total return lower, upper From 4e347233906017f5b96bd53a1ac6da4bdc40ab8e Mon Sep 17 00:00:00 2001 From: quant12345 <kamil246@mail.ru> Date: Fri, 29 Sep 2023 17:53:57 +0500 Subject: [PATCH 2/3] Revert "Replacing the generator with numpy vector operations from lu_decomposition." This reverts commit ad217c66165898d62b76cc89ba09c2d7049b6448. --- arithmetic_analysis/lu_decomposition.py | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py index 094b20abfecc..eaabce5449c5 100644 --- a/arithmetic_analysis/lu_decomposition.py +++ b/arithmetic_analysis/lu_decomposition.py @@ -88,19 +88,15 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray lower = np.zeros((rows, columns)) upper = np.zeros((rows, columns)) - - # in 'total', the necessary data is extracted through slices - # and the sum of the products is obtained. - for i in range(columns): for j in range(i): - total = np.sum(lower[i, :i] * upper[:i, j]) + total = sum(lower[i][k] * upper[k][j] for k in range(j)) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists") lower[i][j] = (table[i][j] - total) / upper[j][j] lower[i][i] = 1 for j in range(i, columns): - total = np.sum(lower[i, :i] * upper[:i, j]) + total = sum(lower[i][k] * upper[k][j] for k in range(j)) upper[i][j] = table[i][j] - total return lower, upper From 625938df3e075b54e5937908c698a0df0cf142b8 Mon Sep 17 00:00:00 2001 From: quant12345 <kamil246@mail.ru> Date: Tue, 10 Oct 2023 22:44:00 +0500 Subject: [PATCH 3/3] the change removes the warning: /home/runner/work/Python/Python/machine_learning/k_means_clust.py:236: FutureWarning: The provided callable <function sum at 0x7f20c02034c0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead. .agg( And /home/runner/work/Python/Python/machine_learning/k_means_clust.py:236: FutureWarning: The provided callable <function mean at 0x7f3d7db1c5e0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead. .agg( --- machine_learning/k_means_clust.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index d93c5addf2ee..3fe151442e2e 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -235,7 +235,7 @@ def report_generator( ] # group by cluster number .agg( [ - ("sum", np.sum), + ("sum", "sum"), ("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))), ("mean_without_zeros", lambda x: x.replace(0, np.NaN).mean()), ( @@ -248,7 +248,7 @@ def report_generator( ) ), ), - ("mean_with_na", np.mean), + ("mean_with_na", "mean"), ("min", lambda x: x.min()), ("5%", lambda x: x.quantile(0.05)), ("25%", lambda x: x.quantile(0.25)),