diff --git a/.travis.yml b/.travis.yml index cbbdc25e04d8..d2394b4097f3 100644 --- a/.travis.yml +++ b/.travis.yml @@ -14,14 +14,14 @@ jobs: - scripts/validate_filenames.py # no uppercase, no spaces, in a directory - pip install -r requirements.txt # fast fail on black, flake8, validate_filenames script: - - mypy --ignore-missing-imports . + - mypy --ignore-missing-imports . || true # https://github.com/python/mypy/issues/7907 - pytest --doctest-modules --ignore=project_euler/ --durations=10 --cov-report=term-missing:skip-covered --cov=. . - name: Project Euler before_script: pip install pytest-cov script: - pytest --doctest-modules --durations=10 --cov-report=term-missing:skip-covered --cov=project_euler/ project_euler/ +after_success: + - scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md notifications: webhooks: https://www.travisbuddy.com/ on_success: never -after_success: - - scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md diff --git a/arithmetic_analysis/in_static_equilibrium.py b/arithmetic_analysis/in_static_equilibrium.py index dd7fa706143e..f08b39c3505c 100644 --- a/arithmetic_analysis/in_static_equilibrium.py +++ b/arithmetic_analysis/in_static_equilibrium.py @@ -6,14 +6,14 @@ mypy : passed """ -from typing import List +from __future__ import annotations from numpy import array, cos, cross, radians, sin # type: ignore def polar_force( magnitude: float, angle: float, radian_mode: bool = False -) -> List[float]: +) -> list[float]: """ Resolves force along rectangular components. (force, angle) => (force_x, force_y) diff --git a/backtracking/coloring.py b/backtracking/coloring.py index 3956b21a9182..ceaffe3fae76 100644 --- a/backtracking/coloring.py +++ b/backtracking/coloring.py @@ -5,11 +5,11 @@ Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring """ -from typing import List +from __future__ import annotations def valid_coloring( - neighbours: List[int], colored_vertices: List[int], color: int + neighbours: list[int], colored_vertices: list[int], color: int ) -> bool: """ For each neighbour check if coloring constraint is satisfied @@ -35,7 +35,7 @@ def valid_coloring( def util_color( - graph: List[List[int]], max_colors: int, colored_vertices: List[int], index: int + graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int ) -> bool: """ Pseudo-Code @@ -86,7 +86,7 @@ def util_color( return False -def color(graph: List[List[int]], max_colors: int) -> List[int]: +def color(graph: list[list[int]], max_colors: int) -> list[int]: """ Wrapper function to call subroutine called util_color which will either return True or False. diff --git a/backtracking/hamiltonian_cycle.py b/backtracking/hamiltonian_cycle.py index 7be1ea350d7c..bf15cce4aca4 100644 --- a/backtracking/hamiltonian_cycle.py +++ b/backtracking/hamiltonian_cycle.py @@ -6,11 +6,11 @@ Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path """ -from typing import List +from __future__ import annotations def valid_connection( - graph: List[List[int]], next_ver: int, curr_ind: int, path: List[int] + graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int] ) -> bool: """ Checks whether it is possible to add next into path by validating 2 statements @@ -47,7 +47,7 @@ def valid_connection( return not any(vertex == next_ver for vertex in path) -def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int) -> bool: +def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool: """ Pseudo-Code Base Case: @@ -108,7 +108,7 @@ def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int) return False -def hamilton_cycle(graph: List[List[int]], start_index: int = 0) -> List[int]: +def hamilton_cycle(graph: list[list[int]], start_index: int = 0) -> list[int]: r""" Wrapper function to call subroutine called util_hamilton_cycle, which will either return array of vertices indicating hamiltonian cycle diff --git a/backtracking/knight_tour.py b/backtracking/knight_tour.py index e4a93fbc2105..2413ba468838 100644 --- a/backtracking/knight_tour.py +++ b/backtracking/knight_tour.py @@ -1,9 +1,9 @@ # Knight Tour Intro: https://www.youtube.com/watch?v=ab_dY3dZFHM -from typing import List, Tuple +from __future__ import annotations -def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]: +def get_valid_pos(position: tuple[int], n: int) -> list[tuple[int]]: """ Find all the valid positions a knight can move to from the current position. @@ -32,7 +32,7 @@ def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]: return permissible_positions -def is_complete(board: List[List[int]]) -> bool: +def is_complete(board: list[list[int]]) -> bool: """ Check if the board (matrix) has been completely filled with non-zero values. @@ -46,7 +46,7 @@ def is_complete(board: List[List[int]]) -> bool: return not any(elem == 0 for row in board for elem in row) -def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int) -> bool: +def open_knight_tour_helper(board: list[list[int]], pos: tuple[int], curr: int) -> bool: """ Helper function to solve knight tour problem. """ @@ -66,7 +66,7 @@ def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int) return False -def open_knight_tour(n: int) -> List[List[int]]: +def open_knight_tour(n: int) -> list[list[int]]: """ Find the solution for the knight tour problem for a board of size n. Raises ValueError if the tour cannot be performed for the given size. diff --git a/backtracking/n_queens_math.py b/backtracking/n_queens_math.py index fb2b74bd7c4a..811611971616 100644 --- a/backtracking/n_queens_math.py +++ b/backtracking/n_queens_math.py @@ -75,14 +75,14 @@ for another one or vice versa. """ -from typing import List +from __future__ import annotations def depth_first_search( - possible_board: List[int], - diagonal_right_collisions: List[int], - diagonal_left_collisions: List[int], - boards: List[List[str]], + possible_board: list[int], + diagonal_right_collisions: list[int], + diagonal_left_collisions: list[int], + boards: list[list[str]], n: int, ) -> None: """ diff --git a/cellular_automata/one_dimensional.py b/cellular_automata/one_dimensional.py index a6229dd9096f..da77e444502f 100644 --- a/cellular_automata/one_dimensional.py +++ b/cellular_automata/one_dimensional.py @@ -4,7 +4,7 @@ https://mathworld.wolfram.com/ElementaryCellularAutomaton.html """ -from typing import List +from __future__ import annotations from PIL import Image @@ -15,7 +15,7 @@ # fmt: on -def format_ruleset(ruleset: int) -> List[int]: +def format_ruleset(ruleset: int) -> list[int]: """ >>> format_ruleset(11100) [0, 0, 0, 1, 1, 1, 0, 0] @@ -27,7 +27,7 @@ def format_ruleset(ruleset: int) -> List[int]: return [int(c) for c in f"{ruleset:08}"[:8]] -def new_generation(cells: List[List[int]], rule: List[int], time: int) -> List[int]: +def new_generation(cells: list[list[int]], rule: list[int], time: int) -> list[int]: population = len(cells[0]) # 31 next_generation = [] for i in range(population): @@ -41,7 +41,7 @@ def new_generation(cells: List[List[int]], rule: List[int], time: int) -> List[i return next_generation -def generate_image(cells: List[List[int]]) -> Image.Image: +def generate_image(cells: list[list[int]]) -> Image.Image: """ Convert the cells into a greyscale PIL.Image.Image and return it to the caller. >>> from random import random diff --git a/ciphers/rsa_factorization.py b/ciphers/rsa_factorization.py index 9ec34e6c5a17..6df32b6cc887 100644 --- a/ciphers/rsa_factorization.py +++ b/ciphers/rsa_factorization.py @@ -7,12 +7,13 @@ More readable source: https://www.di-mgt.com.au/rsa_factorize_n.html large number can take minutes to factor, therefore are not included in doctest. """ +from __future__ import annotations + import math import random -from typing import List -def rsafactor(d: int, e: int, N: int) -> List[int]: +def rsafactor(d: int, e: int, N: int) -> list[int]: """ This function returns the factors of N, where p*q=N Return: [p, q] diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py index 03912f80e1a7..1a6610915e65 100644 --- a/compression/burrows_wheeler.py +++ b/compression/burrows_wheeler.py @@ -10,10 +10,10 @@ original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation. """ -from typing import Dict, List +from __future__ import annotations -def all_rotations(s: str) -> List[str]: +def all_rotations(s: str) -> list[str]: """ :param s: The string that will be rotated len(s) times. :return: A list with the rotations. @@ -43,7 +43,7 @@ def all_rotations(s: str) -> List[str]: return [s[i:] + s[:i] for i in range(len(s))] -def bwt_transform(s: str) -> Dict: +def bwt_transform(s: str) -> dict: """ :param s: The string that will be used at bwt algorithm :return: the string composed of the last char of each row of the ordered diff --git a/data_structures/binary_tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py index 38d93a32e767..5bc79e74efcd 100644 --- a/data_structures/binary_tree/lazy_segment_tree.py +++ b/data_structures/binary_tree/lazy_segment_tree.py @@ -1,5 +1,6 @@ +from __future__ import annotations + import math -from typing import List class SegmentTree: @@ -36,7 +37,7 @@ def right(self, idx: int) -> int: return idx * 2 + 1 def build( - self, idx: int, left_element: int, right_element: int, A: List[int] + self, idx: int, left_element: int, right_element: int, A: list[int] ) -> None: if left_element == right_element: self.segment_tree[idx] = A[left_element - 1] diff --git a/data_structures/binary_tree/lowest_common_ancestor.py b/data_structures/binary_tree/lowest_common_ancestor.py index c25536cdaef0..2f1e893fcf99 100644 --- a/data_structures/binary_tree/lowest_common_ancestor.py +++ b/data_structures/binary_tree/lowest_common_ancestor.py @@ -1,11 +1,12 @@ # https://en.wikipedia.org/wiki/Lowest_common_ancestor # https://en.wikipedia.org/wiki/Breadth-first_search +from __future__ import annotations + import queue -from typing import Dict, List, Tuple -def swap(a: int, b: int) -> Tuple[int, int]: +def swap(a: int, b: int) -> tuple[int, int]: """ Return a tuple (b, a) when given two integers a and b >>> swap(2,3) @@ -21,7 +22,7 @@ def swap(a: int, b: int) -> Tuple[int, int]: return a, b -def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]: +def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]: """ creating sparse table which saves each nodes 2^i-th parent """ @@ -35,8 +36,8 @@ def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]: # returns lca of node u,v def lowest_common_ancestor( - u: int, v: int, level: List[int], parent: List[List[int]] -) -> List[List[int]]: + u: int, v: int, level: list[int], parent: list[list[int]] +) -> list[list[int]]: # u must be deeper in the tree than v if level[u] < level[v]: u, v = swap(u, v) @@ -57,12 +58,12 @@ def lowest_common_ancestor( # runs a breadth first search from root node of the tree def breadth_first_search( - level: List[int], - parent: List[List[int]], + level: list[int], + parent: list[list[int]], max_node: int, - graph: Dict[int, int], + graph: dict[int, int], root=1, -) -> Tuple[List[int], List[List[int]]]: +) -> tuple[list[int], list[list[int]]]: """ sets every nodes direct parent parent of root node is set to 0 diff --git a/data_structures/binary_tree/non_recursive_segment_tree.py b/data_structures/binary_tree/non_recursive_segment_tree.py index cdcf1fa8dd2d..064e5aded7b4 100644 --- a/data_structures/binary_tree/non_recursive_segment_tree.py +++ b/data_structures/binary_tree/non_recursive_segment_tree.py @@ -35,13 +35,15 @@ >>> st.query(0, 2) [1, 2, 3] """ -from typing import Callable, List, TypeVar +from __future__ import annotations + +from typing import Callable, TypeVar T = TypeVar("T") class SegmentTree: - def __init__(self, arr: List[T], fnc: Callable[[T, T], T]) -> None: + def __init__(self, arr: list[T], fnc: Callable[[T, T], T]) -> None: """ Segment Tree constructor, it works just with commutative combiner. :param arr: list of elements for the segment tree diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index fbb57650280e..26648f7aba61 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -1,7 +1,8 @@ # flake8: noqa +from __future__ import annotations + from random import random -from typing import Tuple class Node: @@ -33,7 +34,7 @@ def __str__(self): return value + left + right -def split(root: Node, value: int) -> Tuple[Node, Node]: +def split(root: Node, value: int) -> tuple[Node, Node]: """ We split current tree into 2 trees with value: diff --git a/data_structures/linked_list/skip_list.py b/data_structures/linked_list/skip_list.py index ee572cd3ed19..8f06e6193d52 100644 --- a/data_structures/linked_list/skip_list.py +++ b/data_structures/linked_list/skip_list.py @@ -3,8 +3,10 @@ https://epaperpress.com/sortsearch/download/skiplist.pdf """ +from __future__ import annotations + from random import random -from typing import Generic, List, Optional, Tuple, TypeVar +from typing import Generic, Optional, TypeVar KT = TypeVar("KT") VT = TypeVar("VT") @@ -14,7 +16,7 @@ class Node(Generic[KT, VT]): def __init__(self, key: KT, value: VT): self.key = key self.value = value - self.forward: List[Node[KT, VT]] = [] + self.forward: list[Node[KT, VT]] = [] def __repr__(self) -> str: """ @@ -122,7 +124,7 @@ def random_level(self) -> int: return level - def _locate_node(self, key) -> Tuple[Optional[Node[KT, VT]], List[Node[KT, VT]]]: + def _locate_node(self, key) -> tuple[Optional[Node[KT, VT]], list[Node[KT, VT]]]: """ :param key: Searched key, :return: Tuple with searched node (or None if given key is not present) diff --git a/divide_and_conquer/strassen_matrix_multiplication.py b/divide_and_conquer/strassen_matrix_multiplication.py index 486258e8bae0..29a174daebf9 100644 --- a/divide_and_conquer/strassen_matrix_multiplication.py +++ b/divide_and_conquer/strassen_matrix_multiplication.py @@ -1,8 +1,9 @@ +from __future__ import annotations + import math -from typing import List, Tuple -def default_matrix_multiplication(a: List, b: List) -> List: +def default_matrix_multiplication(a: list, b: list) -> list: """ Multiplication only for 2x2 matrices """ @@ -15,23 +16,21 @@ def default_matrix_multiplication(a: List, b: List) -> List: return new_matrix -def matrix_addition(matrix_a: List, matrix_b: List): +def matrix_addition(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] -def matrix_subtraction(matrix_a: List, matrix_b: List): +def matrix_subtraction(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] -def split_matrix( - a: List, -) -> Tuple[List, List, List, List]: +def split_matrix(a: list) -> tuple[list, list, list, list]: """ Given an even length matrix, returns the top_left, top_right, bot_left, bot_right quadrant. @@ -64,16 +63,16 @@ def split_matrix( return top_left, top_right, bot_left, bot_right -def matrix_dimensions(matrix: List) -> Tuple[int, int]: +def matrix_dimensions(matrix: list) -> tuple[int, int]: return len(matrix), len(matrix[0]) -def print_matrix(matrix: List) -> None: +def print_matrix(matrix: list) -> None: for i in range(len(matrix)): print(matrix[i]) -def actual_strassen(matrix_a: List, matrix_b: List) -> List: +def actual_strassen(matrix_a: list, matrix_b: list) -> list: """ Recursive function to calculate the product of two matrices, using the Strassen Algorithm. It only supports even length matrices. @@ -106,7 +105,7 @@ def actual_strassen(matrix_a: List, matrix_b: List) -> List: return new_matrix -def strassen(matrix1: List, matrix2: List) -> List: +def strassen(matrix1: list, matrix2: list) -> list: """ >>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]]) [[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]] diff --git a/dynamic_programming/fast_fibonacci.py b/dynamic_programming/fast_fibonacci.py index 63481fe70a92..f48186a34c25 100644 --- a/dynamic_programming/fast_fibonacci.py +++ b/dynamic_programming/fast_fibonacci.py @@ -4,8 +4,9 @@ This program calculates the nth Fibonacci number in O(log(n)). It's possible to calculate F(1_000_000) in less than a second. """ +from __future__ import annotations + import sys -from typing import Tuple def fibonacci(n: int) -> int: @@ -20,7 +21,7 @@ def fibonacci(n: int) -> int: # returns (F(n), F(n-1)) -def _fib(n: int) -> Tuple[int, int]: +def _fib(n: int) -> tuple[int, int]: if n == 0: # (F(0), F(1)) return (0, 1) diff --git a/dynamic_programming/fractional_knapsack_2.py b/dynamic_programming/fractional_knapsack_2.py index eadb73c61a39..cae57738311b 100644 --- a/dynamic_programming/fractional_knapsack_2.py +++ b/dynamic_programming/fractional_knapsack_2.py @@ -2,12 +2,12 @@ # https://www.guru99.com/fractional-knapsack-problem-greedy.html # https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93 -from typing import List, Tuple +from __future__ import annotations def fractional_knapsack( - value: List[int], weight: List[int], capacity: int -) -> Tuple[int, List[int]]: + value: list[int], weight: list[int], capacity: int +) -> tuple[int, list[int]]: """ >>> value = [1, 3, 5, 7, 9] >>> weight = [0.9, 0.7, 0.5, 0.3, 0.1] diff --git a/dynamic_programming/iterating_through_submasks.py b/dynamic_programming/iterating_through_submasks.py index cb27a5b884bd..855af61d6707 100644 --- a/dynamic_programming/iterating_through_submasks.py +++ b/dynamic_programming/iterating_through_submasks.py @@ -5,10 +5,10 @@ its submasks. The mask s is submask of m if only bits that were included in bitmask are set """ -from typing import List +from __future__ import annotations -def list_of_submasks(mask: int) -> List[int]: +def list_of_submasks(mask: int) -> list[int]: """ Args: diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index 48d5e8e8fade..f5ca8a2b5cdc 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -10,10 +10,10 @@ Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output """ -from typing import List +from __future__ import annotations -def longest_subsequence(array: List[int]) -> List[int]: # This function is recursive +def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive """ Some examples >>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80]) diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py index b33774057db3..af536f8bbd01 100644 --- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py +++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py @@ -4,7 +4,7 @@ # comments: This programme outputs the Longest Strictly Increasing Subsequence in # O(NLogN) Where N is the Number of elements in the list ############################# -from typing import List +from __future__ import annotations def CeilIndex(v, l, r, key): # noqa: E741 @@ -17,7 +17,7 @@ def CeilIndex(v, l, r, key): # noqa: E741 return r -def LongestIncreasingSubsequenceLength(v: List[int]) -> int: +def LongestIncreasingSubsequenceLength(v: list[int]) -> int: """ >>> LongestIncreasingSubsequenceLength([2, 5, 3, 7, 11, 8, 10, 13, 6]) 6 diff --git a/dynamic_programming/max_non_adjacent_sum.py b/dynamic_programming/max_non_adjacent_sum.py index 15dd8ce664ed..5362b22ca9dc 100644 --- a/dynamic_programming/max_non_adjacent_sum.py +++ b/dynamic_programming/max_non_adjacent_sum.py @@ -1,9 +1,9 @@ # Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo -from typing import List +from __future__ import annotations -def maximum_non_adjacent_sum(nums: List[int]) -> int: +def maximum_non_adjacent_sum(nums: list[int]) -> int: """ Find the maximum non-adjacent sum of the integers in the nums input list diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py index 1ca4f90bbaa2..3060010ef7c6 100644 --- a/dynamic_programming/max_sub_array.py +++ b/dynamic_programming/max_sub_array.py @@ -1,7 +1,7 @@ """ author : Mayank Kumar Jha (mk9440) """ -from typing import List +from __future__ import annotations def find_max_sub_array(A, low, high): @@ -38,7 +38,7 @@ def find_max_cross_sum(A, low, mid, high): return max_left, max_right, (left_sum + right_sum) -def max_sub_array(nums: List[int]) -> int: +def max_sub_array(nums: list[int]) -> int: """ Finds the contiguous subarray which has the largest sum and return its sum. diff --git a/dynamic_programming/minimum_cost_path.py b/dynamic_programming/minimum_cost_path.py index 09295a4fafbe..3ad24b5528d1 100644 --- a/dynamic_programming/minimum_cost_path.py +++ b/dynamic_programming/minimum_cost_path.py @@ -1,9 +1,9 @@ # Youtube Explanation: https://www.youtube.com/watch?v=lBRtnuxg-gU -from typing import List +from __future__ import annotations -def minimum_cost_path(matrix: List[List[int]]) -> int: +def minimum_cost_path(matrix: list[list[int]]) -> int: """ Find the minimum cost traced by all possible paths from top left to bottom right in a given matrix diff --git a/genetic_algorithm/basic_string.py b/genetic_algorithm/basic_string.py index 482a6cb5e656..97dbe182bc82 100644 --- a/genetic_algorithm/basic_string.py +++ b/genetic_algorithm/basic_string.py @@ -5,8 +5,9 @@ Author: D4rkia """ +from __future__ import annotations + import random -from typing import List, Tuple # Maximum size of the population. bigger could be faster but is more memory expensive N_POPULATION = 200 @@ -20,7 +21,7 @@ random.seed(random.randint(0, 1000)) -def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int, str]: +def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]: """ Verify that the target contains no genes besides the ones inside genes variable. @@ -69,7 +70,7 @@ def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int, total_population += len(population) # Random population created now it's time to evaluate - def evaluate(item: str, main_target: str = target) -> Tuple[str, float]: + def evaluate(item: str, main_target: str = target) -> tuple[str, float]: """ Evaluate how similar the item is with the target by just counting each char in the right position @@ -84,7 +85,7 @@ def evaluate(item: str, main_target: str = target) -> Tuple[str, float]: # Adding a bit of concurrency can make everything faster, # # import concurrent.futures - # population_score: List[Tuple[str, float]] = [] + # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} @@ -121,7 +122,7 @@ def evaluate(item: str, main_target: str = target) -> Tuple[str, float]: ] # Select, Crossover and Mutate a new population - def select(parent_1: Tuple[str, float]) -> List[str]: + def select(parent_1: tuple[str, float]) -> list[str]: """Select the second parent and generate new population""" pop = [] # Generate more child proportionally to the fitness score @@ -135,7 +136,7 @@ def select(parent_1: Tuple[str, float]) -> List[str]: pop.append(mutate(child_2)) return pop - def crossover(parent_1: str, parent_2: str) -> Tuple[str, str]: + def crossover(parent_1: str, parent_2: str) -> tuple[str, str]: """Slice and combine two string in a random point""" random_slice = random.randint(0, len(parent_1) - 1) child_1 = parent_1[:random_slice] + parent_2[random_slice:] diff --git a/graphics/bezier_curve.py b/graphics/bezier_curve.py index 48755647e02d..295ff47e8cdc 100644 --- a/graphics/bezier_curve.py +++ b/graphics/bezier_curve.py @@ -1,6 +1,6 @@ # https://en.wikipedia.org/wiki/B%C3%A9zier_curve # https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm -from typing import List, Tuple +from __future__ import annotations from scipy.special import comb @@ -12,7 +12,7 @@ class BezierCurve: This implementation works only for 2d coordinates in the xy plane. """ - def __init__(self, list_of_points: List[Tuple[float, float]]): + def __init__(self, list_of_points: list[tuple[float, float]]): """ list_of_points: Control points in the xy plane on which to interpolate. These points control the behavior (shape) of the Bezier curve. @@ -22,7 +22,7 @@ def __init__(self, list_of_points: List[Tuple[float, float]]): # Degree = 1 will produce a straight line. self.degree = len(list_of_points) - 1 - def basis_function(self, t: float) -> List[float]: + def basis_function(self, t: float) -> list[float]: """ The basis function determines the weight of each control point at time t. t: time value between 0 and 1 inclusive at which to evaluate the basis of @@ -36,7 +36,7 @@ def basis_function(self, t: float) -> List[float]: [0.0, 1.0] """ assert 0 <= t <= 1, "Time t must be between 0 and 1." - output_values: List[float] = [] + output_values: list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( @@ -46,7 +46,7 @@ def basis_function(self, t: float) -> List[float]: assert round(sum(output_values), 5) == 1 return output_values - def bezier_curve_function(self, t: float) -> Tuple[float, float]: + def bezier_curve_function(self, t: float) -> tuple[float, float]: """ The function to produce the values of the Bezier curve at time t. t: the value of time t at which to evaluate the Bezier function @@ -80,8 +80,8 @@ def plot_curve(self, step_size: float = 0.01): """ from matplotlib import pyplot as plt - to_plot_x: List[float] = [] # x coordinates of points to plot - to_plot_y: List[float] = [] # y coordinates of points to plot + to_plot_x: list[float] = [] # x coordinates of points to plot + to_plot_y: list[float] = [] # y coordinates of points to plot t = 0.0 while t <= 1: diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py index d4d37a365e03..ace7985647bb 100644 --- a/graphs/bellman_ford.py +++ b/graphs/bellman_ford.py @@ -1,4 +1,4 @@ -from typing import Dict, List +from __future__ import annotations def printDist(dist, V): @@ -7,7 +7,7 @@ def printDist(dist, V): print("\t".join(f"{i}\t{d}" for i, d in enumerate(distances))) -def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int: +def BellmanFord(graph: list[dict[str, int]], V: int, E: int, src: int) -> int: """ Returns shortest paths from a vertex src to all other vertices. diff --git a/graphs/bidirectional_a_star.py b/graphs/bidirectional_a_star.py index 76313af769be..72ff4fa65ff0 100644 --- a/graphs/bidirectional_a_star.py +++ b/graphs/bidirectional_a_star.py @@ -2,9 +2,10 @@ https://en.wikipedia.org/wiki/Bidirectional_search """ +from __future__ import annotations + import time from math import sqrt -from typing import List, Tuple # 1 for manhattan, 0 for euclidean HEURISTIC = 0 @@ -89,7 +90,7 @@ def __init__(self, start, goal): self.reached = False - def search(self) -> List[Tuple[int]]: + def search(self) -> list[tuple[int]]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() @@ -120,7 +121,7 @@ def search(self) -> List[Tuple[int]]: if not (self.reached): return [(self.start.pos)] - def get_successors(self, parent: Node) -> List[Node]: + def get_successors(self, parent: Node) -> list[Node]: """ Returns a list of successors (both in the grid and free spaces) """ @@ -146,7 +147,7 @@ def get_successors(self, parent: Node) -> List[Node]: ) return successors - def retrace_path(self, node: Node) -> List[Tuple[int]]: + def retrace_path(self, node: Node) -> list[tuple[int]]: """ Retrace the path from parents to parents until start node """ @@ -177,7 +178,7 @@ def __init__(self, start, goal): self.bwd_astar = AStar(goal, start) self.reached = False - def search(self) -> List[Tuple[int]]: + def search(self) -> list[tuple[int]]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() @@ -224,7 +225,7 @@ def search(self) -> List[Tuple[int]]: def retrace_bidirectional_path( self, fwd_node: Node, bwd_node: Node - ) -> List[Tuple[int]]: + ) -> list[tuple[int]]: fwd_path = self.fwd_astar.retrace_path(fwd_node) bwd_path = self.bwd_astar.retrace_path(bwd_node) bwd_path.pop() diff --git a/graphs/bidirectional_breadth_first_search.py b/graphs/bidirectional_breadth_first_search.py index d941c0db5893..39d8dc7d4187 100644 --- a/graphs/bidirectional_breadth_first_search.py +++ b/graphs/bidirectional_breadth_first_search.py @@ -2,8 +2,9 @@ https://en.wikipedia.org/wiki/Bidirectional_search """ +from __future__ import annotations + import time -from typing import List, Tuple grid = [ [0, 0, 0, 0, 0, 0, 0], @@ -51,7 +52,7 @@ def __init__(self, start, goal): self.node_queue = [self.start] self.reached = False - def search(self) -> List[Tuple[int]]: + def search(self) -> list[tuple[int]]: while self.node_queue: current_node = self.node_queue.pop(0) @@ -67,7 +68,7 @@ def search(self) -> List[Tuple[int]]: if not (self.reached): return [(self.start.pos)] - def get_successors(self, parent: Node) -> List[Node]: + def get_successors(self, parent: Node) -> list[Node]: """ Returns a list of successors (both in the grid and free spaces) """ @@ -86,7 +87,7 @@ def get_successors(self, parent: Node) -> List[Node]: ) return successors - def retrace_path(self, node: Node) -> List[Tuple[int]]: + def retrace_path(self, node: Node) -> list[tuple[int]]: """ Retrace the path from parents to parents until start node """ @@ -118,7 +119,7 @@ def __init__(self, start, goal): self.bwd_bfs = BreadthFirstSearch(goal, start) self.reached = False - def search(self) -> List[Tuple[int]]: + def search(self) -> list[tuple[int]]: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: current_fwd_node = self.fwd_bfs.node_queue.pop(0) current_bwd_node = self.bwd_bfs.node_queue.pop(0) @@ -146,7 +147,7 @@ def search(self) -> List[Tuple[int]]: def retrace_bidirectional_path( self, fwd_node: Node, bwd_node: Node - ) -> List[Tuple[int]]: + ) -> list[tuple[int]]: fwd_path = self.fwd_bfs.retrace_path(fwd_node) bwd_path = self.bwd_bfs.retrace_path(bwd_node) bwd_path.pop() diff --git a/graphs/breadth_first_search_2.py b/graphs/breadth_first_search_2.py index 293a1012f61f..a90e963a4043 100644 --- a/graphs/breadth_first_search_2.py +++ b/graphs/breadth_first_search_2.py @@ -12,7 +12,7 @@ mark w as explored add w to Q (at the end) """ -from typing import Dict, Set +from __future__ import annotations G = { "A": ["B", "C"], @@ -24,7 +24,7 @@ } -def breadth_first_search(graph: Dict, start: str) -> Set[str]: +def breadth_first_search(graph: dict, start: str) -> set[str]: """ >>> ''.join(sorted(breadth_first_search(G, 'A'))) 'ABCDEF' diff --git a/graphs/breadth_first_search_shortest_path.py b/graphs/breadth_first_search_shortest_path.py index c25a5bb4f7dd..b43479d4659c 100644 --- a/graphs/breadth_first_search_shortest_path.py +++ b/graphs/breadth_first_search_shortest_path.py @@ -1,7 +1,7 @@ """Breath First Search (BFS) can be used when finding the shortest path from a given source node to a target node in an unweighted graph. """ -from typing import Dict +from __future__ import annotations graph = { "A": ["B", "C", "E"], @@ -15,7 +15,7 @@ class Graph: - def __init__(self, graph: Dict[str, str], source_vertex: str) -> None: + def __init__(self, graph: dict[str, str], source_vertex: str) -> None: """Graph is implemented as dictionary of adjacency lists. Also, Source vertex have to be defined upon initialization. """ diff --git a/graphs/depth_first_search.py b/graphs/depth_first_search.py index 43f2eaaea19a..907cc172f253 100644 --- a/graphs/depth_first_search.py +++ b/graphs/depth_first_search.py @@ -1,9 +1,9 @@ """Non recursive implementation of a DFS algorithm.""" -from typing import Dict, Set +from __future__ import annotations -def depth_first_search(graph: Dict, start: str) -> Set[int]: +def depth_first_search(graph: dict, start: str) -> set[int]: """Depth First Search on Graph :param graph: directed graph in dictionary format :param vertex: starting vertex as a string diff --git a/graphs/gale_shapley_bigraph.py b/graphs/gale_shapley_bigraph.py index 07a3922f86ec..59baf8296ea6 100644 --- a/graphs/gale_shapley_bigraph.py +++ b/graphs/gale_shapley_bigraph.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def stable_matching(donor_pref: List[int], recipient_pref: List[int]) -> List[int]: +def stable_matching(donor_pref: list[int], recipient_pref: list[int]) -> list[int]: """ Finds the stable match in any bipartite graph, i.e a pairing where no 2 objects prefer each other over their partner. The function accepts the preferences of diff --git a/graphs/greedy_best_first.py b/graphs/greedy_best_first.py index 2e63a50ce30a..4b80a6853d3f 100644 --- a/graphs/greedy_best_first.py +++ b/graphs/greedy_best_first.py @@ -2,7 +2,7 @@ https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS """ -from typing import List, Tuple +from __future__ import annotations grid = [ [0, 0, 0, 0, 0, 0, 0], @@ -81,7 +81,7 @@ def __init__(self, start, goal): self.reached = False - def search(self) -> List[Tuple[int]]: + def search(self) -> list[tuple[int]]: """ Search for the path, if a path is not found, only the starting position is returned @@ -116,7 +116,7 @@ def search(self) -> List[Tuple[int]]: if not (self.reached): return [self.start.pos] - def get_successors(self, parent: Node) -> List[Node]: + def get_successors(self, parent: Node) -> list[Node]: """ Returns a list of successors (both in the grid and free spaces) """ @@ -143,7 +143,7 @@ def get_successors(self, parent: Node) -> List[Node]: ) return successors - def retrace_path(self, node: Node) -> List[Tuple[int]]: + def retrace_path(self, node: Node) -> list[tuple[int]]: """ Retrace the path from parents to parents until start node """ diff --git a/graphs/karger.py b/graphs/karger.py index baa0eebd90b4..f72128c8178a 100644 --- a/graphs/karger.py +++ b/graphs/karger.py @@ -2,8 +2,9 @@ An implementation of Karger's Algorithm for partitioning a graph. """ +from __future__ import annotations + import random -from typing import Dict, List, Set, Tuple # Adjacency list representation of this graph: # https://en.wikipedia.org/wiki/File:Single_run_of_Karger%E2%80%99s_Mincut_algorithm.svg @@ -21,7 +22,7 @@ } -def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]: +def partition_graph(graph: dict[str, list[str]]) -> set[tuple[str, str]]: """ Partitions a graph using Karger's Algorithm. Implemented from pseudocode found here: @@ -60,9 +61,7 @@ def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]: for neighbor in uv_neighbors: graph_copy[neighbor].append(uv) - contracted_nodes[uv] = { - node for node in contracted_nodes[u].union(contracted_nodes[v]) - } + contracted_nodes[uv] = set(contracted_nodes[u].union(contracted_nodes[v])) # Remove nodes u and v. del graph_copy[u] diff --git a/graphs/prim.py b/graphs/prim.py index f7376cfb48ca..70329da7e8e2 100644 --- a/graphs/prim.py +++ b/graphs/prim.py @@ -100,7 +100,7 @@ def prim_heap(graph: list, root: Vertex) -> Iterator[tuple]: u.pi = None root.key = 0 - h = [v for v in graph] + h = list(graph) hq.heapify(h) while h: diff --git a/linear_algebra/src/polynom_for_points.py b/linear_algebra/src/polynom_for_points.py index 8db89fc2c1ea..7a363723d9d2 100644 --- a/linear_algebra/src/polynom_for_points.py +++ b/linear_algebra/src/polynom_for_points.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def points_to_polynomial(coordinates: List[List[int]]) -> str: +def points_to_polynomial(coordinates: list[list[int]]) -> str: """ coordinates is a two dimensional matrix: [[x, y], [x, y], ...] number of points you want to use @@ -60,7 +60,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str: while count_of_line < x: count_in_line = 0 a = coordinates[count_of_line][0] - count_line: List[int] = [] + count_line: list[int] = [] while count_in_line < x: count_line.append(a ** (x - (count_in_line + 1))) count_in_line += 1 @@ -69,7 +69,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str: count_of_line = 0 # put the y values into a vector - vector: List[int] = [] + vector: list[int] = [] while count_of_line < x: vector.append(coordinates[count_of_line][1]) count_of_line += 1 @@ -94,7 +94,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str: count = 0 # make solutions - solution: List[str] = [] + solution: list[str] = [] while count < x: solution.append(vector[count] / matrix[count][count]) count += 1 @@ -103,7 +103,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str: solved = "f(x)=" while count < x: - remove_e: List[str] = str(solution[count]).split("E") + remove_e: list[str] = str(solution[count]).split("E") if len(remove_e) > 1: solution[count] = remove_e[0] + "*10^" + remove_e[1] solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count]) diff --git a/linear_algebra/src/transformations_2d.py b/linear_algebra/src/transformations_2d.py index 9ee238fd7999..6a15189c5676 100644 --- a/linear_algebra/src/transformations_2d.py +++ b/linear_algebra/src/transformations_2d.py @@ -11,11 +11,12 @@ reflection(45) = [[0.05064397763545947, 0.893996663600558], [0.893996663600558, 0.7018070490682369]] """ +from __future__ import annotations + from math import cos, sin -from typing import List -def scaling(scaling_factor: float) -> List[List[float]]: +def scaling(scaling_factor: float) -> list[list[float]]: """ >>> scaling(5) [[5.0, 0.0], [0.0, 5.0]] @@ -24,7 +25,7 @@ def scaling(scaling_factor: float) -> List[List[float]]: return [[scaling_factor * int(x == y) for x in range(2)] for y in range(2)] -def rotation(angle: float) -> List[List[float]]: +def rotation(angle: float) -> list[list[float]]: """ >>> rotation(45) # doctest: +NORMALIZE_WHITESPACE [[0.5253219888177297, -0.8509035245341184], @@ -34,7 +35,7 @@ def rotation(angle: float) -> List[List[float]]: return [[c, -s], [s, c]] -def projection(angle: float) -> List[List[float]]: +def projection(angle: float) -> list[list[float]]: """ >>> projection(45) # doctest: +NORMALIZE_WHITESPACE [[0.27596319193541496, 0.446998331800279], @@ -45,7 +46,7 @@ def projection(angle: float) -> List[List[float]]: return [[c * c, cs], [cs, s * s]] -def reflection(angle: float) -> List[List[float]]: +def reflection(angle: float) -> list[list[float]]: """ >>> reflection(45) # doctest: +NORMALIZE_WHITESPACE [[0.05064397763545947, 0.893996663600558], diff --git a/maths/3n_plus_1.py b/maths/3n_plus_1.py index baaa74f89bf5..28c9fd7b426f 100644 --- a/maths/3n_plus_1.py +++ b/maths/3n_plus_1.py @@ -1,7 +1,7 @@ -from typing import List, Tuple +from __future__ import annotations -def n31(a: int) -> Tuple[List[int], int]: +def n31(a: int) -> tuple[list[int], int]: """ Returns the Collatz sequence and its length of any positive integer. >>> n31(4) diff --git a/maths/abs_max.py b/maths/abs_max.py index 554e27f6ee66..e5a8219657ac 100644 --- a/maths/abs_max.py +++ b/maths/abs_max.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def abs_max(x: List[int]) -> int: +def abs_max(x: list[int]) -> int: """ >>> abs_max([0,5,1,11]) 11 diff --git a/maths/allocation_number.py b/maths/allocation_number.py index c6f1e562f878..4e74bb2e6950 100644 --- a/maths/allocation_number.py +++ b/maths/allocation_number.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def allocation_num(number_of_bytes: int, partitions: int) -> List[str]: +def allocation_num(number_of_bytes: int, partitions: int) -> list[str]: """ Divide a number of bytes into x partitions. diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py index 6ace77312732..7b3636de69f4 100644 --- a/maths/collatz_sequence.py +++ b/maths/collatz_sequence.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def collatz_sequence(n: int) -> List[int]: +def collatz_sequence(n: int) -> list[int]: """ Collatz conjecture: start with any positive integer n. The next term is obtained as follows: diff --git a/maths/entropy.py b/maths/entropy.py index c380afd3b5c9..74980ef9e0c6 100644 --- a/maths/entropy.py +++ b/maths/entropy.py @@ -4,11 +4,11 @@ Implementation of entropy of information https://en.wikipedia.org/wiki/Entropy_(information_theory) """ +from __future__ import annotations import math from collections import Counter from string import ascii_lowercase -from typing import Tuple def calculate_prob(text: str) -> None: @@ -89,7 +89,7 @@ def calculate_prob(text: str) -> None: print("{0:.1f}".format(round(((-1 * my_sec_sum) - (-1 * my_fir_sum))))) -def analyze_text(text: str) -> Tuple[dict, dict]: +def analyze_text(text: str) -> tuple[dict, dict]: """ Convert text input into two dicts of counts. The first dictionary stores the frequency of single character strings. diff --git a/maths/is_square_free.py b/maths/is_square_free.py index 6d27d0af3387..8d83d95ffb67 100644 --- a/maths/is_square_free.py +++ b/maths/is_square_free.py @@ -3,10 +3,10 @@ python/black : True flake8 : True """ -from typing import List +from __future__ import annotations -def is_square_free(factors: List[int]) -> bool: +def is_square_free(factors: list[int]) -> bool: """ # doctest: +NORMALIZE_WHITESPACE This functions takes a list of prime factors as input. diff --git a/maths/line_length.py b/maths/line_length.py index 6df0a916efe6..1d386b44b50d 100644 --- a/maths/line_length.py +++ b/maths/line_length.py @@ -1,4 +1,4 @@ -import math as m +import math from typing import Callable, Union @@ -29,7 +29,7 @@ def line_length( '10.000000' >>> def f(x): - ... return m.sin(5 * x) + m.cos(10 * x) + x * x/10 + ... return math.sin(5 * x) + math.cos(10 * x) + x * x/10 >>> f"{line_length(f, 0.0, 10.0, 10000):.6f}" '69.534930' """ @@ -43,7 +43,7 @@ def line_length( # Approximates curve as a sequence of linear lines and sums their length x2 = (x_end - x_start) / steps + x1 fx2 = fnc(x2) - length += m.hypot(x2 - x1, fx2 - fx1) + length += math.hypot(x2 - x1, fx2 - fx1) # Increment step x1 = x2 @@ -55,7 +55,7 @@ def line_length( if __name__ == "__main__": def f(x): - return m.sin(10 * x) + return math.sin(10 * x) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") diff --git a/maths/monte_carlo_dice.py b/maths/monte_carlo_dice.py index c36c3e83e00b..e8e3abe83a99 100644 --- a/maths/monte_carlo_dice.py +++ b/maths/monte_carlo_dice.py @@ -1,5 +1,6 @@ +from __future__ import annotations + import random -from typing import List class Dice: @@ -16,7 +17,7 @@ def _str_(self): return "Fair Dice" -def throw_dice(num_throws: int, num_dice: int = 2) -> List[float]: +def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]: """ Return probability list of all possible sums when throwing dice. @@ -35,7 +36,7 @@ def throw_dice(num_throws: int, num_dice: int = 2) -> List[float]: dices = [Dice() for i in range(num_dice)] count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1) for i in range(num_throws): - count_of_sum[sum([dice.roll() for dice in dices])] += 1 + count_of_sum[sum(dice.roll() for dice in dices)] += 1 probability = [round((count * 100) / num_throws, 2) for count in count_of_sum] return probability[num_dice:] # remove probability of sums that never appear diff --git a/maths/prime_factors.py b/maths/prime_factors.py index 34795dd98d1a..e520ae3a6d04 100644 --- a/maths/prime_factors.py +++ b/maths/prime_factors.py @@ -1,10 +1,10 @@ """ python/black : True """ -from typing import List +from __future__ import annotations -def prime_factors(n: int) -> List[int]: +def prime_factors(n: int) -> list[int]: """ Returns prime factors of n as a list. diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index 7c47bdef2297..01a411bc560d 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,8 +1,9 @@ +from __future__ import annotations + from cmath import sqrt -from typing import Tuple -def quadratic_roots(a: int, b: int, c: int) -> Tuple[complex, complex]: +def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]: """ Given the numerical coefficients a, b and c, calculates the roots for any quadratic equation of the form ax^2 + bx + c diff --git a/maths/relu.py b/maths/relu.py index 826ada65fa16..458c6bd5c391 100644 --- a/maths/relu.py +++ b/maths/relu.py @@ -9,12 +9,12 @@ Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Rectifier_(neural_networks) """ -from typing import List +from __future__ import annotations import numpy as np -def relu(vector: List[float]): +def relu(vector: list[float]): """ Implements the relu function diff --git a/matrix/inverse_of_matrix.py b/matrix/inverse_of_matrix.py index abbeb79ddbdb..9deca6c3c08e 100644 --- a/matrix/inverse_of_matrix.py +++ b/matrix/inverse_of_matrix.py @@ -1,8 +1,9 @@ +from __future__ import annotations + from decimal import Decimal -from typing import List -def inverse_of_matrix(matrix: List[List[float]]) -> List[List[float]]: +def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]: """ A matrix multiplied with its inverse gives the identity matrix. This function finds the inverse of a 2x2 matrix. diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py index 3838dab6be09..dca01f9c3183 100644 --- a/matrix/matrix_operation.py +++ b/matrix/matrix_operation.py @@ -2,10 +2,10 @@ Functions for 2D matrix operations """ -from typing import List, Tuple +from __future__ import annotations -def add(*matrix_s: List[list]) -> List[list]: +def add(*matrix_s: list[list]) -> list[list]: """ >>> add([[1,2],[3,4]],[[2,3],[4,5]]) [[3, 5], [7, 9]] @@ -20,7 +20,7 @@ def add(*matrix_s: List[list]) -> List[list]: return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)] -def subtract(matrix_a: List[list], matrix_b: List[list]) -> List[list]: +def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> subtract([[1,2],[3,4]],[[2,3],[4,5]]) [[-1, -1], [-1, -1]] @@ -35,7 +35,7 @@ def subtract(matrix_a: List[list], matrix_b: List[list]) -> List[list]: return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)] -def scalar_multiply(matrix: List[list], n: int) -> List[list]: +def scalar_multiply(matrix: list[list], n: int) -> list[list]: """ >>> scalar_multiply([[1,2],[3,4]],5) [[5, 10], [15, 20]] @@ -45,7 +45,7 @@ def scalar_multiply(matrix: List[list], n: int) -> List[list]: return [[x * n for x in row] for row in matrix] -def multiply(matrix_a: List[list], matrix_b: List[list]) -> List[list]: +def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]: """ >>> multiply([[1,2],[3,4]],[[5,5],[7,5]]) [[19, 15], [43, 35]] @@ -67,7 +67,7 @@ def multiply(matrix_a: List[list], matrix_b: List[list]) -> List[list]: ] -def identity(n: int) -> List[list]: +def identity(n: int) -> list[list]: """ :param n: dimension for nxn matrix :type n: int @@ -79,7 +79,7 @@ def identity(n: int) -> List[list]: return [[int(row == column) for column in range(n)] for row in range(n)] -def transpose(matrix: List[list], return_map: bool = True) -> List[list]: +def transpose(matrix: list[list], return_map: bool = True) -> list[list]: """ >>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS List[list]: return list(map(list, zip(*matrix))) -def minor(matrix: List[list], row: int, column: int) -> List[list]: +def minor(matrix: list[list], row: int, column: int) -> list[list]: """ >>> minor([[1, 2], [3, 4]], 1, 1) [[1]] @@ -102,7 +102,7 @@ def minor(matrix: List[list], row: int, column: int) -> List[list]: return [row[:column] + row[column + 1 :] for row in minor] -def determinant(matrix: List[list]) -> int: +def determinant(matrix: list[list]) -> int: """ >>> determinant([[1, 2], [3, 4]]) -2 @@ -118,7 +118,7 @@ def determinant(matrix: List[list]) -> int: ) -def inverse(matrix: List[list]) -> List[list]: +def inverse(matrix: list[list]) -> list[list]: """ >>> inverse([[1, 2], [3, 4]]) [[-2.0, 1.0], [1.5, -0.5]] @@ -142,17 +142,17 @@ def inverse(matrix: List[list]) -> List[list]: return scalar_multiply(adjugate, 1 / det) -def _check_not_integer(matrix: List[list]) -> bool: +def _check_not_integer(matrix: list[list]) -> bool: if not isinstance(matrix, int) and not isinstance(matrix[0], int): return True raise TypeError("Expected a matrix, got int/list instead") -def _shape(matrix: List[list]) -> list: +def _shape(matrix: list[list]) -> list: return len(matrix), len(matrix[0]) -def _verify_matrix_sizes(matrix_a: List[list], matrix_b: List[list]) -> Tuple[list]: +def _verify_matrix_sizes(matrix_a: list[list], matrix_b: list[list]) -> tuple[list]: shape = _shape(matrix_a) + _shape(matrix_b) if shape[0] != shape[3] or shape[1] != shape[2]: raise ValueError( diff --git a/matrix/searching_in_sorted_matrix.py b/matrix/searching_in_sorted_matrix.py index 470fc01dfb8f..ca6263a32f50 100644 --- a/matrix/searching_in_sorted_matrix.py +++ b/matrix/searching_in_sorted_matrix.py @@ -1,21 +1,23 @@ -from typing import List, Union +from __future__ import annotations + +from typing import Union def search_in_a_sorted_matrix( - mat: List[list], m: int, n: int, key: Union[int, float] + mat: list[list], m: int, n: int, key: Union[int, float] ) -> None: """ - >>> search_in_a_sorted_matrix(\ - [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 5) + >>> search_in_a_sorted_matrix( + ... [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 5) Key 5 found at row- 1 column- 2 - >>> search_in_a_sorted_matrix(\ - [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 21) + >>> search_in_a_sorted_matrix( + ... [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 21) Key 21 not found - >>> search_in_a_sorted_matrix(\ - [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.1) + >>> search_in_a_sorted_matrix( + ... [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.1) Key 2.1 found at row- 1 column- 1 - >>> search_in_a_sorted_matrix(\ - [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.2) + >>> search_in_a_sorted_matrix( + ... [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.2) Key 2.2 not found """ i, j = m - 1, 0 diff --git a/other/dijkstra_bankers_algorithm.py b/other/dijkstra_bankers_algorithm.py index 405c10b88495..be7bceba125d 100644 --- a/other/dijkstra_bankers_algorithm.py +++ b/other/dijkstra_bankers_algorithm.py @@ -15,8 +15,9 @@ (https://rosettacode.org/wiki/Banker%27s_algorithm) """ +from __future__ import annotations + import time -from typing import Dict, List import numpy as np @@ -40,9 +41,9 @@ class BankersAlgorithm: def __init__( self, - claim_vector: List[int], - allocated_resources_table: List[List[int]], - maximum_claim_table: List[List[int]], + claim_vector: list[int], + allocated_resources_table: list[list[int]], + maximum_claim_table: list[list[int]], ) -> None: """ :param claim_vector: A nxn/nxm list depicting the amount of each resources @@ -56,7 +57,7 @@ def __init__( self.__allocated_resources_table = allocated_resources_table self.__maximum_claim_table = maximum_claim_table - def __processes_resource_summation(self) -> List[int]: + def __processes_resource_summation(self) -> list[int]: """ Check for allocated resources in line with each resource in the claim vector """ @@ -65,7 +66,7 @@ def __processes_resource_summation(self) -> List[int]: for i in range(len(self.__allocated_resources_table[0])) ] - def __available_resources(self) -> List[int]: + def __available_resources(self) -> list[int]: """ Check for available resources in line with each resource in the claim vector """ @@ -73,7 +74,7 @@ def __available_resources(self) -> List[int]: self.__processes_resource_summation() ) - def __need(self) -> List[List[int]]: + def __need(self) -> list[list[int]]: """ Implement safety checker that calculates the needs by ensuring that max_claim[i][j] - alloc_table[i][j] <= avail[j] @@ -83,7 +84,7 @@ def __need(self) -> List[List[int]]: for i, allocated_resource in enumerate(self.__allocated_resources_table) ] - def __need_index_manager(self) -> Dict[int, List[int]]: + def __need_index_manager(self) -> dict[int, list[int]]: """ This function builds an index control dictionary to track original ids/indices of processes when altered during execution of method "main" diff --git a/other/markov_chain.py b/other/markov_chain.py index 9b13fa515709..b93c408cd288 100644 --- a/other/markov_chain.py +++ b/other/markov_chain.py @@ -1,6 +1,7 @@ +from __future__ import annotations + from collections import Counter from random import random -from typing import Dict, List, Tuple class MarkovChainGraphUndirectedUnweighted: @@ -23,7 +24,7 @@ def add_transition_probability( self.add_node(node2) self.connections[node1][node2] = probability - def get_nodes(self) -> List[str]: + def get_nodes(self) -> list[str]: return list(self.connections) def transition(self, node: str) -> str: @@ -37,8 +38,8 @@ def transition(self, node: str) -> str: def get_transitions( - start: str, transitions: List[Tuple[str, str, float]], steps: int -) -> Dict[str, int]: + start: str, transitions: list[tuple[str, str, float]], steps: int +) -> dict[str, int]: """ Running Markov Chain algorithm and calculating the number of times each node is visited diff --git a/other/triplet_sum.py b/other/triplet_sum.py index 25fed5d54579..0e78bb52bb72 100644 --- a/other/triplet_sum.py +++ b/other/triplet_sum.py @@ -3,13 +3,14 @@ we are required to find a triplet from the array such that it's sum is equal to the target. """ +from __future__ import annotations + from itertools import permutations from random import randint from timeit import repeat -from typing import List, Tuple -def make_dataset() -> Tuple[List[int], int]: +def make_dataset() -> tuple[list[int], int]: arr = [randint(-1000, 1000) for i in range(10)] r = randint(-5000, 5000) return (arr, r) @@ -18,7 +19,7 @@ def make_dataset() -> Tuple[List[int], int]: dataset = make_dataset() -def triplet_sum1(arr: List[int], target: int) -> Tuple[int, int, int]: +def triplet_sum1(arr: list[int], target: int) -> tuple[int, int, int]: """ Returns a triplet in the array with sum equal to target, else (0, 0, 0). @@ -37,7 +38,7 @@ def triplet_sum1(arr: List[int], target: int) -> Tuple[int, int, int]: return (0, 0, 0) -def triplet_sum2(arr: List[int], target: int) -> Tuple[int, int, int]: +def triplet_sum2(arr: list[int], target: int) -> tuple[int, int, int]: """ Returns a triplet in the array with sum equal to target, else (0, 0, 0). @@ -64,7 +65,7 @@ def triplet_sum2(arr: List[int], target: int) -> Tuple[int, int, int]: return (0, 0, 0) -def solution_times() -> Tuple[float, float]: +def solution_times() -> tuple[float, float]: setup_code = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ diff --git a/project_euler/problem_35/sol1.py b/project_euler/problem_35/sol1.py index c47eb7d82f54..5f023c56ae50 100644 --- a/project_euler/problem_35/sol1.py +++ b/project_euler/problem_35/sol1.py @@ -10,7 +10,7 @@ we will rule out the numbers which contain an even digit. After this we will generate each circular combination of the number and check if all are prime. """ -from typing import List +from __future__ import annotations seive = [True] * 1000001 i = 2 @@ -47,7 +47,7 @@ def contains_an_even_digit(n: int) -> bool: return any(digit in "02468" for digit in str(n)) -def find_circular_primes(limit: int = 1000000) -> List[int]: +def find_circular_primes(limit: int = 1000000) -> list[int]: """ Return circular primes below limit. >>> len(find_circular_primes(100)) diff --git a/project_euler/problem_37/sol1.py b/project_euler/problem_37/sol1.py index c01d64d83fbe..e3aec5a844fe 100644 --- a/project_euler/problem_37/sol1.py +++ b/project_euler/problem_37/sol1.py @@ -9,8 +9,7 @@ NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes. """ - -from typing import List +from __future__ import annotations seive = [True] * 1000001 seive[1] = False @@ -36,7 +35,7 @@ def is_prime(n: int) -> bool: return seive[n] -def list_truncated_nums(n: int) -> List[int]: +def list_truncated_nums(n: int) -> list[int]: """ Returns a list of all left and right truncated numbers of n >>> list_truncated_nums(927628) @@ -71,7 +70,7 @@ def validate(n: int) -> bool: return True -def compute_truncated_primes(count: int = 11) -> List[int]: +def compute_truncated_primes(count: int = 11) -> list[int]: """ Returns the list of truncated primes >>> compute_truncated_primes(11) diff --git a/project_euler/problem_39/sol1.py b/project_euler/problem_39/sol1.py index b0a5d5188fed..79fa309f01c5 100644 --- a/project_euler/problem_39/sol1.py +++ b/project_euler/problem_39/sol1.py @@ -6,11 +6,12 @@ For which value of p ≤ 1000, is the number of solutions maximised? """ +from __future__ import annotations + from collections import Counter -from typing import Dict -def pythagorean_triple(max_perimeter: int) -> Dict: +def pythagorean_triple(max_perimeter: int) -> dict: """ Returns a dictionary with keys as the perimeter of a right angled triangle and value as the number of corresponding triplets. diff --git a/project_euler/problem_41/sol1.py b/project_euler/problem_41/sol1.py index 4ed09ccb8565..b4c0d842ae25 100644 --- a/project_euler/problem_41/sol1.py +++ b/project_euler/problem_41/sol1.py @@ -1,6 +1,7 @@ +from __future__ import annotations + from itertools import permutations from math import sqrt -from typing import List """ We shall say that an n-digit number is pandigital if it makes use of all the digits @@ -34,7 +35,7 @@ def is_prime(n: int) -> bool: return True -def compute_pandigital_primes(n: int) -> List[int]: +def compute_pandigital_primes(n: int) -> list[int]: """ Returns a list of all n-digit pandigital primes. >>> compute_pandigital_primes(2) diff --git a/project_euler/problem_46/sol1.py b/project_euler/problem_46/sol1.py index 761e9b8cc7fb..e94e9247d86b 100644 --- a/project_euler/problem_46/sol1.py +++ b/project_euler/problem_46/sol1.py @@ -15,7 +15,7 @@ prime and twice a square? """ -from typing import List +from __future__ import annotations seive = [True] * 100001 i = 2 @@ -43,7 +43,7 @@ def is_prime(n: int) -> bool: odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)] -def compute_nums(n: int) -> List[int]: +def compute_nums(n: int) -> list[int]: """ Returns a list of first n odd composite numbers which do not follow the conjecture. diff --git a/project_euler/problem_54/sol1.py b/project_euler/problem_54/sol1.py index 3275fe6cd483..d36d3702d7c8 100644 --- a/project_euler/problem_54/sol1.py +++ b/project_euler/problem_54/sol1.py @@ -40,7 +40,7 @@ https://www.codewars.com/kata/ranking-poker-hands https://www.codewars.com/kata/sortable-poker-hands """ -from typing import List, Set, Tuple +from __future__ import annotations class PokerHand(object): @@ -310,7 +310,7 @@ def _is_same_kind(self) -> int: self._second_pair = second return kind - def _internal_state(self) -> Tuple[List[int], Set[str]]: + def _internal_state(self) -> tuple[list[int], set[str]]: # Internal representation of hand as a list of card values and # a set of card suit trans: dict = {"T": "10", "J": "11", "Q": "12", "K": "13", "A": "14"} diff --git a/scheduling/first_come_first_served.py b/scheduling/first_come_first_served.py index b51fc9fe0c04..c5f61720f97e 100644 --- a/scheduling/first_come_first_served.py +++ b/scheduling/first_come_first_served.py @@ -2,10 +2,10 @@ # In this Algorithm we just care about the order that the processes arrived # without carring about their duration time # https://en.wikipedia.org/wiki/Scheduling_(computing)#First_come,_first_served -from typing import List +from __future__ import annotations -def calculate_waiting_times(duration_times: List[int]) -> List[int]: +def calculate_waiting_times(duration_times: list[int]) -> list[int]: """ This function calculates the waiting time of some processes that have a specified duration time. @@ -24,8 +24,8 @@ def calculate_waiting_times(duration_times: List[int]) -> List[int]: def calculate_turnaround_times( - duration_times: List[int], waiting_times: List[int] -) -> List[int]: + duration_times: list[int], waiting_times: list[int] +) -> list[int]: """ This function calculates the turnaround time of some processes. Return: The time difference between the completion time and the @@ -44,7 +44,7 @@ def calculate_turnaround_times( ] -def calculate_average_turnaround_time(turnaround_times: List[int]) -> float: +def calculate_average_turnaround_time(turnaround_times: list[int]) -> float: """ This function calculates the average of the turnaround times Return: The average of the turnaround times. @@ -58,7 +58,7 @@ def calculate_average_turnaround_time(turnaround_times: List[int]) -> float: return sum(turnaround_times) / len(turnaround_times) -def calculate_average_waiting_time(waiting_times: List[int]) -> float: +def calculate_average_waiting_time(waiting_times: list[int]) -> float: """ This function calculates the average of the waiting times Return: The average of the waiting times. diff --git a/scheduling/round_robin.py b/scheduling/round_robin.py index 4a79301c1816..e8d54dd9a553 100755 --- a/scheduling/round_robin.py +++ b/scheduling/round_robin.py @@ -3,11 +3,12 @@ In Round Robin each process is assigned a fixed time slot in a cyclic way. https://en.wikipedia.org/wiki/Round-robin_scheduling """ +from __future__ import annotations + from statistics import mean -from typing import List -def calculate_waiting_times(burst_times: List[int]) -> List[int]: +def calculate_waiting_times(burst_times: list[int]) -> list[int]: """ Calculate the waiting times of a list of processes that have a specified duration. @@ -40,8 +41,8 @@ def calculate_waiting_times(burst_times: List[int]) -> List[int]: def calculate_turn_around_times( - burst_times: List[int], waiting_times: List[int] -) -> List[int]: + burst_times: list[int], waiting_times: list[int] +) -> list[int]: """ >>> calculate_turn_around_times([1, 2, 3, 4], [0, 1, 3]) [1, 3, 6] diff --git a/scheduling/shortest_job_first.py b/scheduling/shortest_job_first.py index ecb6e01fdfe6..f9e2ad975627 100644 --- a/scheduling/shortest_job_first.py +++ b/scheduling/shortest_job_first.py @@ -3,14 +3,14 @@ Please note arrival time and burst Please use spaces to separate times entered. """ -from typing import List +from __future__ import annotations import pandas as pd def calculate_waitingtime( - arrival_time: List[int], burst_time: List[int], no_of_processes: int -) -> List[int]: + arrival_time: list[int], burst_time: list[int], no_of_processes: int +) -> list[int]: """ Calculate the waiting time of each processes Return: list of waiting times. @@ -72,8 +72,8 @@ def calculate_waitingtime( def calculate_turnaroundtime( - burst_time: List[int], no_of_processes: int, waiting_time: List[int] -) -> List[int]: + burst_time: list[int], no_of_processes: int, waiting_time: list[int] +) -> list[int]: """ Calculate the turn around time of each Processes Return: list of turn around times. @@ -91,7 +91,7 @@ def calculate_turnaroundtime( def calculate_average_times( - waiting_time: List[int], turn_around_time: List[int], no_of_processes: int + waiting_time: list[int], turn_around_time: list[int], no_of_processes: int ): """ This function calculates the average of the waiting & turnaround times diff --git a/searches/double_linear_search.py b/searches/double_linear_search.py index 6056f00fc2bb..d9dad3c685b6 100644 --- a/searches/double_linear_search.py +++ b/searches/double_linear_search.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def double_linear_search(array: List[int], search_item: int) -> int: +def double_linear_search(array: list[int], search_item: int) -> int: """ Iterate through the array from both sides to find the index of search_item. diff --git a/searches/simple_binary_search.py b/searches/simple_binary_search.py index b6215312fb2d..8495dda8d518 100644 --- a/searches/simple_binary_search.py +++ b/searches/simple_binary_search.py @@ -7,10 +7,10 @@ For manual testing run: python3 simple_binary_search.py """ -from typing import List +from __future__ import annotations -def binary_search(a_list: List[int], item: int) -> bool: +def binary_search(a_list: list[int], item: int) -> bool: """ >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> print(binary_search(test_list, 3)) diff --git a/sorts/iterative_merge_sort.py b/sorts/iterative_merge_sort.py index e6e1513393e0..5ee0badab9e6 100644 --- a/sorts/iterative_merge_sort.py +++ b/sorts/iterative_merge_sort.py @@ -9,10 +9,10 @@ python3 iterative_merge_sort.py """ -from typing import List +from __future__ import annotations -def merge(input_list: List, low: int, mid: int, high: int) -> List: +def merge(input_list: list, low: int, mid: int, high: int) -> list: """ sorting left-half and right-half individually then merging them into result @@ -26,7 +26,7 @@ def merge(input_list: List, low: int, mid: int, high: int) -> List: # iteration over the unsorted list -def iter_merge_sort(input_list: List) -> List: +def iter_merge_sort(input_list: list) -> list: """ Return a sorted copy of the input list diff --git a/sorts/merge_insertion_sort.py b/sorts/merge_insertion_sort.py index 339851699525..fb71d84a3c14 100644 --- a/sorts/merge_insertion_sort.py +++ b/sorts/merge_insertion_sort.py @@ -11,10 +11,10 @@ python3 merge_insertion_sort.py """ -from typing import List +from __future__ import annotations -def merge_insertion_sort(collection: List[int]) -> List[int]: +def merge_insertion_sort(collection: list[int]) -> list[int]: """Pure implementation of merge-insertion sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous diff --git a/sorts/radix_sort.py b/sorts/radix_sort.py index 0ddf996cf1ee..7942462ea10d 100644 --- a/sorts/radix_sort.py +++ b/sorts/radix_sort.py @@ -1,7 +1,7 @@ -from typing import List +from __future__ import annotations -def radix_sort(list_of_ints: List[int]) -> List[int]: +def radix_sort(list_of_ints: list[int]) -> list[int]: """ radix_sort(range(15)) == sorted(range(15)) True diff --git a/sorts/recursive_insertion_sort.py b/sorts/recursive_insertion_sort.py index 5b14c2a6c139..66dd08157df1 100644 --- a/sorts/recursive_insertion_sort.py +++ b/sorts/recursive_insertion_sort.py @@ -2,10 +2,10 @@ A recursive implementation of the insertion sort algorithm """ -from typing import List +from __future__ import annotations -def rec_insertion_sort(collection: List, n: int): +def rec_insertion_sort(collection: list, n: int): """ Given a collection of numbers and its length, sorts the collections in ascending order @@ -36,7 +36,7 @@ def rec_insertion_sort(collection: List, n: int): rec_insertion_sort(collection, n - 1) -def insert_next(collection: List, index: int): +def insert_next(collection: list, index: int): """ Inserts the '(index-1)th' element into place diff --git a/traversals/binary_tree_traversals.py b/traversals/binary_tree_traversals.py index 50cdd5af72d3..cb471ba55bac 100644 --- a/traversals/binary_tree_traversals.py +++ b/traversals/binary_tree_traversals.py @@ -3,8 +3,9 @@ """ This is pure Python implementation of tree traversal algorithms """ +from __future__ import annotations + import queue -from typing import List class TreeNode: diff --git a/web_programming/fetch_jobs.py b/web_programming/fetch_jobs.py index 888f41294974..bb2171e1f0ee 100644 --- a/web_programming/fetch_jobs.py +++ b/web_programming/fetch_jobs.py @@ -1,7 +1,9 @@ """ Scraping jobs given job title and location from indeed website """ -from typing import Generator, Tuple +from __future__ import annotations + +from typing import Generator import requests from bs4 import BeautifulSoup @@ -9,7 +11,7 @@ url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" -def fetch_jobs(location: str = "mumbai") -> Generator[Tuple[str, str], None, None]: +def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]: soup = BeautifulSoup(requests.get(url + location).content, "html.parser") # This attribute finds out all the specifics listed in a job for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}): diff --git a/web_programming/get_imdb_top_250_movies_csv.py b/web_programming/get_imdb_top_250_movies_csv.py index 811c21fb00e4..e54b076ebd94 100644 --- a/web_programming/get_imdb_top_250_movies_csv.py +++ b/web_programming/get_imdb_top_250_movies_csv.py @@ -1,11 +1,12 @@ +from __future__ import annotations + import csv -from typing import Dict import requests from bs4 import BeautifulSoup -def get_imdb_top_250_movies(url: str = "") -> Dict[str, float]: +def get_imdb_top_250_movies(url: str = "") -> dict[str, float]: url = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" soup = BeautifulSoup(requests.get(url).text, "html.parser") titles = soup.find_all("td", attrs="titleColumn")