Chapter 4

Statistics-Based Approach

In a complex system, statistics of different metrics are sometimes not independent.
For instance, according to the U.S. Department of Transportation ', the vehicle
miles of travel (VMT) and gross domestic product (GDP) from year 1936 to 2011
are strongly correlated, although they exhibit information in two different areas
(transportation and economics).

This motivates us to think about a new approach: rather than collecting statistics
of a property directly, we could resort to collecting statistics of other properties
that are easier to measure. As long as the correlation between the properties can be
established, we could then estimate one property from another.

4.1 Explore the statistics

The goal of this experiment is to show the feasibility of this approach. We also
want to know which of the metrics is the most useful for guesstimation.

A simple tool is created to help us obtain statistics of BitTorrent swarms. It has
two basic functionalities:

e Download a piece of file and then quit

e Record statistics of our interest when quitting

We are only interested in the statistics when downloading a first piece instead of
more pieces, otherwise it would be too expensive (in terms of bandwidth usage) to
check the swarm size in this way.

In order to do this, we make use of an open-source library called libtorrent, 2
which is a C++ implementation of BitTorrent. 3

One of its useful feature is that its internal statistics is accessible from outside,
which is helpful for performance tuning and troubleshooting. It also provides some

"https://www.fhwa.dot .gov/policy/otps/pubs/vmt_gdp/
’http://libtorrent.org/
3The code can be found here: https://github.com/arvidn/libtorrent

15

Add more explan-

ation about these
messages

bindings to other languages (including Python, Java, Go, and Node.js), making it
easier to use.

The input to our tool are magnet links or torrents, each representing a unique
swarm. For each swarm, our tool will generate a JSON file storing the statistics for
later analysis.

The statistics include the following:

e Number of currently connected peers
e Download time of the first piece
o Total number of bytes sent and received by the session

e bittorrent message counters (These counters are incremented every time a
message of the corresponding type is received from or sent to a bittorrent

peer.)

The messages include:

The HANDSHAKE message

The CHOKE message

The INTERESTED message

The HAVE message

The BITFIELD message

e The CANCEL message

Some test swarms are chosen as the input for the experiment: Ubuntu # and
Fedora > images.

We choose them because these Linux distribution images are actively down-
loaded by users and different versions have different popularity. This ensures the
variety of the input. In addition, they are all free software so one does not need to
worry about legal issues when reproducing the experiment.

4.1.1 Graphs of obtained data

Figure 4.1 shows the swarm sizes of 147 torrents. The data is collected repeatedly
for 10 times. We present the data using box plot and further sort the values in
ascending order, according to the mean value of each measurement.

From this figure we have these observations:

*http://torrent.ubuntu.com: 6969/
Shttps://torrent.fedoraproject.org/

Distribution of swarm sizes of different torrents

R
. B : R Tt I ol Lo

147 torrents

Figure 4.1: Swarm sizes of 147 torrents (measured 10 times for each)

e In general, the swarm sizes of the torrents follows a power law distribution.
Most of the torrents have a small swarm size while few of them are quite
large.

e When the swarm size is small, the deviation of each measurement is also
small. In other words, small swarms tend to remain their sizes. However,
large swarms change their size drastically in different measurements.

The first metric we look into the number of connected peers by the time a first
piece is downloaded.

We plot the raw data in the same figure, as shown in Figure 4.2a. It can be
observed that the connected peers (in blue) is only a small fraction of the entire
set of peers (in red). However, the correlation of the two metrics are not clearly
visualized due to their different order of magnitude. Thus, we scale the number of
connected peers up in Figure 4.2b.

Unfortunately the relationship is still not visually clear. Therefore, we further
sort the swarm size in ascending order, and the corresponding number of currently
connected peers is rearranged accordingly. The sorted graphs are Figure 4.3a and
Figure 4.3b.

Figure 4.3a simply exhibits the same conclusion as found in Figure 4.2a but in
a clearer way. Figure 4.3b now clearly shows us the correlation between the two
datasets. The swarm size of the sampled torrents goes up exponentially, while
the number of currently connected peers has a similar pattern but with a strong
fluctuation when the number of torrents goes up.

Such a pattern can not only be observed on the number of currently connected
peers, but also other metrics. We select some of them to exhibit here:

The next metric we look into is the download time of the first piece.

num_peers

num_peers

1000

1000 70

Total number of peers
num_peers

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of torrents Number of torrents

(a) unscaled (b) rescaled

1000

800

200

Figure 4.2: Number of currently connected peers and swarm size (unsorted)

1000

1000 70
60
800
B 50
@
g
600 2
5 § 40
I o0
5 30
a0 2 2
B
= 20
200
10
= W 0
WM 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of torrents Number of torrents
(a) unscaled (b) rescaled

Figure 4.3: Number of currently connected peers and swarm size (sorted)

1000

400

Total number of peers

Total number of peers

1000

35000

30000 | a0
25000 n
@
o -600 o
2 20000 5
o [=
d—ll V]
| = 0
g E
115000 A -400 2
@ —_
c T
=
o
10000 - =

- 200

5000 -
0 R T T T T T T T | O
0 50 100 150 200 250 300

Number of torrents

Figure 4.4: Total sent bytes and the swarm size

We can see from Figure 4.6 that in general the download time of the first piece
has no evident relationship with swarm size except for some noticeable peaks cor-
responding to small swarm sizes.

4.1.2 Quantitative Analysis

The graphs has given us an intuition of how the statistics are correlated. We could
also presume that Figure 4.4 shows a better correlation that Figure 4.5 because of
less fluctuation. In order to prove this we need a quantitative way of describing the
correlation.

Three types of correlations are commonly measured for statistical analysis. They
are Pearson correlation, Kendall correlation, and Spearman correlation.

Pearson correlation

Suppose we have two datasets {1, 2, ..., Z,} and {y1,y2, ..., yn}, each of them
containing n values.

The Pearson’s correlation coefficient, conventionally denoted as r, can be calcu-
lated by the following formula:

1000
20 A
- 800

=]
< i
£ 15 1 :
-Ql re00 o
m N
£ -
: @
S 10 g
¢ ” 400 3
E —
; | l 5
CI g
g [
noo5 4 l H l Hu 200

0 h.:ll.llu. s lllml ll y

i T

T T T T T
0 50 100 150 200 250 300
Number of torrents

Figure 4.5: Number of incoming bitfield messages and the swarm size

D v SUC ()
V@ DT i 0

where:

e x; and y; are the single values in the two datasets with index ¢

o I = % >, x; is the mean of the dataset {x1, x2, ..., p }; the same applies
toy

The value of r is always between —1 and +1. The sign of the value denotes
whether the two datasets are positively or negatively correlated, while the absolute
value of it represents the extent to which they are correlated.

Spearman correlation

The Spearman correlation coefficient, denoted as rg, is defined as the Pearson cor-
relation coefficient between the rank of the variables.

cov(rgx,rgy)

Orgx Orgy

T's = Prgx,rgy =

where:

1000

40 -
35 -
- 800

30 -

E\

i

25 - - 600 o

- B

£ 20- &

= E

9 -400 3

15 =

L

=]

'_
10

- 200
5 -
0 - -0
T T T T T T T
0 50 100 150 200 250 300

Number of torrents

Figure 4.6: Download time of a first piece and the swarm size

e pis the Pearson correlation coefficient of the ranked variables
e cov(rgx,rgy) is the covariance of the rank variables

® 0.4y and o4, are the standard deviations of the rank variables

Kendall correlation

Any pair of observations (z;,y;) and (z,y;) (i # j) are said to be concordant if
x; > xjand y; > yj;, or if x; < x; and y; < y;. They are said to be discordant
when z; > z; and y; < y;, orif x; < x; and y; > y;. If x; = x; or y; = yj;, they
are neither concordant nor discordant.

The Kendall 7 is defined by the following equation:

(numbero fconcordantpairs) — (numbero f discordantpairs)
n(n—1)/2

We calculate these correlation coefficients between different metrics and swarm
size. We also plot the data of Table 4.1 in Figure 4.7.

From Figure 4.7 we can clearly see the correlation coefficients of different met-
rics with the swarm size varies a lot. Thus, we divide them into the following
categories:

What is the reason
of dividing them to
categories?

W pearsonr
W spearmanr

kendalltau

Figure 4.7: Visualization of the correlation coefficients

4.2 Leverage correlation for estimation

We divide the swarms into three categories: small, medium, and large.
6

4.2.1 Guess from individual metrics

If two variables X and Y are strongly correlated, they are likely to share common
characteristics. For example, a large X will probably corresponds to a large Y,
and vice versa.

In our case, we can infer the sizes of swarms from the observed metrics.

We sample a list of metrics {my, ma,...,m,} and rescale them to the range
[0, 100].

If the rescaled value is less than 25, we think that the corresponding swarm to be
small; If the rescaled value is between 25 and 75, we think that the corresponding
swarm to be of medium size; It the rescaled value is more than 75, we think that
the corresponding swarm to be large.

In order to evaluate how well this algorithm works, the rescaling algorithms is
applied to the measured swarm sizes. We the count how many estimation results
are correct using this as the baseline.

We repeat the experiment for 10 times, and each time we use 11 different metrics
to infer the swarm size. A random guess is also generated to compare against the

®The concept of large, medium, and small are relative. A swarm size of 100 is a large one
compared to 10, but a small one compared to 1000.

Algorithm 1 The swarm size estimation algorithm

procedure ESTIMATE_SWARM_SIZE(rescaled_statistics)
if rescaled_statistics < 25 then
return Small
else
if rescaled_statistics < 75 then
return Medium
else
return Large

real swarm size.

Accuracy of estimation by different metrics (data source: 1st experiment)

1 B accuracy of estimation

accuracy of estimation

Figure 4.8: Accuracy of estimation by different metrics

Figure 4.8 is the result of one experiment. It shows that:

e Most metrics will have an accuracy of more than 80%

e If we apply this algorithm to a set of random values, the accuracy is around
25%.

The result of all experiments is shown in Figure 4.9.
We see that even in the worst case (Experiment 5) the algorithm works much

better than random guess.
7

"Practical issues: In order to deploy this method, we need a large number of sample torrents to
know the inference from raw data to swarm sizes. Calibration may also be required.

Accuracy of estimation by different metrics

! B num_peers

B retsent_bytes

B ses_num_outgoing_ext_handshake
B ses_num_outgoing_bitfield

B ses_num_outgoing_cancel

B ses_num_outgoing_have_none

W ses_num_outgoing_dht_port

W ses_num_outgoing_interested

B ses_num_outgoing_have

B ses_num_incoming_ext_handshake

W ses_num_incoming_dht_port

B random

Accuracy

4 6 8 10

Experiment

Figure 4.9: Accuracy of estimation by different metrics (10 experiments)

4.2.2 Voting-based approach

We have some voters and each of them have an opinion (i.e. their own estimation)
on the size of the swarm. The opinion of the majority is thought of as the swarm
size.

The voters are chosen based on their correlation to swarm size. Initially, we
choose the metrics that have a strong correlation (See table XX) to swarm size to
be the voters.

If voters cannot decide what is the size of a certain swarm because of a tie in the
voting result, the least significant voter is removed from the list of voters and the
remaining voters vote again. This process continues until a final decision has been
made.

Algorithm 2 The voting based swarm size estimation algorithm

procedure VOTE(voters)
for voter € voters do
list.append(voter.estimate_swarm_size)
if mode(list) then
return mode(list)
else
return vote(voters.remove_last)

We compare the accuracy of estimation with a varying number of voters.
We can see from this chart that:

Accuracy of the voting-based swarm size estimation

095

1 2 3 4 5 6 7 8 9 10

Experiment

B Number of voters: 11
B Number of voters: 6

B Number of voters: 1

Accuracy
=)
o o o
@ & @

o
=
@

o
=)

o

o

Figure 4.10: Accuracy of voting-based estimation

e More voters will slightly improve the accuracy of estimation by a single
metric (we chose num_peers here)

A large number of voters does not necessarily guarantee a better estimation
result

Table 4.1: The correlation coefficient between different metrics and swarm size

name of metrics pearsonr spearmanr kendalltau
net_recv_bytes 0.4526328216 0.6332575134 0.4578871802
ses_num_outgoing_dht_port 0.6986236937 0.8802570577 0.7253182979
ses_num_outgoing_extended 0.2626744685 0.3307728886 0.2397359438
ses_num-incoming_metadata -0.1771631949 -0.1798132502 | -0.1251643986
ses_num_outgoing_pex 0.3964393394 0.3857711987 0.2997454364
net_recv_redundant_bytes 0.132350704 0.09770901602 | 0.07510976366
ses_num_incoming_dht_port 0.6808422574 0.8678267889 0.711184031
net_sent_ip_overhead_bytes 0.591005004 0.7657741852 0.5798834732
num-_peers 0.7166492826 0.9023807213 0.7549144866
ses_num_outgoing_interested 0.6911713704 0.8735221765 0.7177388341
ses_num_incoming_extended 0.6273128646 0.6854177252 0.5187845719
dl_time -0.003028659706 | 0.008031282346 | 0.005800854425
ses_num_incoming_have 0.5527842663 0.7407580796 0.560537692
net_sent_bytes 0.6403528497 0.8311260689 0.6491815874
ses_num_incoming_piece 0.4473741514 0.6237682895 0.4518311691
net_recv_ip_overhead_bytes 0.5184513827 0.7040147508 0.5193734675
ses_num_outgoing_have_none 0.7113675823 0.9016118762 0.7553611303
ses_num_incoming_bitfield 0.5892387847 0.6727475351 0.5108201316
ses_num_incoming_pex 0.6446127691 0.7388309133 0.592987013
ses_num_piece_passed -0.02930296135 | 0.03271200907 | 0.02698558043
ses_num_incoming_unchoke 0.5840626368 0.7874070614 0.6170817143
net_sent_tracker_bytes 0.1081686955 -0.1837134923 -0.1267368397
ses_num_outgoing_request 0.5047942801 0.7032072207 0.5217074923
ses_num_outgoing_cancel 0.6233354535 0.8152422867 0.6583026061
ses_num_-outgoing_metadata -0.1648271538 -0.1707369191 -0.1186882375
ses_num-incoming_choke 0.2171426974 0.3481792088 0.2838047977
ses_num_outgoing_bitfield 0.6799232645 0.8584115588 0.7090649408
ses_num_incoming_ext_handshake | 0.6912972726 0.8732157467 0.717362905
ses_num_outgoing_have 0.5103046396 0.8359766119 0.6776197444
ses_num_outgoing_ext_handshake | 0.7000594065 0.8791635098 0.7242431541
net_recv_payload_bytes 0.4554698315 0.6300260259 0.4524761851
net_recv_tracker_bytes 0.411920382 0.480568137 0.39332504

Table 4.2: Category of correlation with swarm size

Name of metrics

Correlation with swarm size

nume-peers

ses_num_outgoing_have_none

ses_num_outgoing_dht_port

ses_num_outgoing_ext_handshake

ses_num_outgoing_interested

ses_num_incoming_ext_handshake

ses_num_incoming_dht_port

ses_num_outgoing_bitfield

ses_num-outgoing_have

net_sent_bytes

ses_num_outgoing_cancel

Strong

ses_num_incoming_unchoke

net_sent_ip_overhead_bytes

ses_num_incoming_have

ses_num_incoming_pex

net_recv_ip_overhead_bytes

ses_num_outgoing_request

ses_num_incoming_extended

ses_num_incoming_bitfield

net_recv_bytes

Medium

ses_num_outgoing_extended

ses_num_outgoing_pex

ses_num_incoming_choke

net_recv_tracker_bytes

net_recv_payload_bytes

ses_num_incoming_piece

net_recv_redundant_bytes

Low

ses_num_piece_passed

dl_time

None

ses_num_outgoing_metadata

ses_num_incoming_metadata

Negative

net_sent_tracker_bytes

Uncategorized

