CS4160 Blockchain Engineering
Report

Project H: Build your own Storagecoin
Dereck Bridie
David Goémez de Segura
Paul van der Knaap
Roelof Sol
Mitchell Olsthoorn

February 2, 2018

Chapter 1

Progress report

1.1 Initial project description

The title of the project was “Build your own storagecoin”. This concept is based
on a state-of-the-art project named Filecoin [1], which aims to make people host
files using their unused storage in exchange for ”filecoins”. This currency would
then be traded on a number of exchanges (US Dollars, Bitcoin) and supported
by multiple cryptocurrency wallets.

Tribler is a technology developed at the TU Delft. One of its upcoming
features is that it can mine reputation by means of uploading and downloading
content. Also, there is an Android application that implements the TU Delft
style blockchain called TrustChain.The goal of the project was to change Tribler
and the app to add these new features:

1. Use QR codes for offline one-way communication and transfers.
2. Transfer tokens from Pc-To-Android
3. Transfer tokens from Android-To-Android

Additional challenges included cooperating with other groups that concur-
rently worked on new features of the application. Working on a single applica-
tion that included all the features the different groups was the ultimate goal.
Therefore, this project also included maintaining proper communication with
other groups to determine and detect possible conflicts and to align development
plans to ensure that no unfixable conflicts would arise.

1.2 Project development

From the very first meeting, it is set clear that the main work will be developed
around a native TU Delft android app called ” TrustChain Android” [2]. This
app was built as part of the Blockchain Engineering course and implements

Trustchain. The project is also highly related to Tribler [3], an open source de-
centralised BitTorrent client which allows anonymous peer-to-peer connections.

During the discovery phase of the project the first step was to generate QR
codes containing Tribler’s TrustChain identity. The first steps towards finishing
this sprint was generating QR codes in Python and experimenting how much
data could fit in them, before scanning them did not work reliable anymore.
Other time-consuming work included setting up the build environments for Tri-
bler and the Android app and figuring out the structure of Tribler and under-
standing how the components were linked together, as the blockchain technology
in Tribler is tightly coupled.

Before our first sprint, we familiarized ourselves with Tribler’s GUI imple-
mentation and implemented a simple button that displays a QR code. Also, we
created very simple Android application that could read a QR code and showed
its contents.

This first sprint led to a lot of valuable insights into bottlenecks and next
issues to solve during the project. The three main discoveries and their solutions
were:

1. Character encoding is very important in QR codes. There are different
QR code reader implementations that expect different encoding character
sets. In our first sprint we directly put the private key binary data in the
QR code but this led to a various of flaws with different phones and readers
that led to random (incorrect) behavior. The foolproof solution that was
eventually chosen is to encode all fields that have non-ascii characters
as base64 so that there would be no conversion issues between different
character sets.

2. The cryptographic library in Tribler was incompatible with the library
used in the Android application. The Android application used the Boun-
cycastle [4] crypto library whereas the TrustChain in Tribler uses the state
of the art Libsodium [5]. As Libsodium is future proof and the first pick
for new projects, the decision was made to replace Bouncycastle with Lib-
sodium. Fortunately there were bindings available for Java. The Java JNI
bindings [6] made using Libsodium in and Android environment possible.
However, it was not easy: the dependency to the existing Bouncycastle
library was both tightly coupled and partly invisible: keys were quickly
pulled out of their container into a byte array, which made it difficult to
track the usage of the keys throughout the application.

3. Currently the identities from Tribler were transferred to the phone. After
a discussion with the blockchain department, it was decided that this
situation was not preferable as it would not be in line with the intuition
of the user about the persistence of identity. The agreed solution was to
make use of a temporary transfer identity to ensure that both the original
identities in Tribler and the identity in the Android application would not

be replaced. So the idea went from transferring the identity to empting
funds.

Afterward, we agreed upon a common transaction format that would be
used to transfer the tokens. This took many iterations to reduce the size of a
QR code down to an acceptable size and to find the minimal data that must be
transferred in order to reconstruct a block.

At this stage we were able to split up the work.

1. A funds screen was created that could show transactions in your chain.
This shows the transactions that are on your chain. It was requested that
the interface looked polished.

2. The Android export functionality was created, exporting your current
private key into a QR code

However, when we were about to merge these changes into the main app, it
was discovered that the keys were not able to be used for signing and verifying
blocks. This was due to a misunderstanding in how Tribler saved its keys: it
used the DualSecret (key contains two cryptographic seeds, one for encryption
and another for signing) specification to export its keys, instead of a private and
public keypair as we had thought. Therefore, we had to recreate Libsodium’s
DualSecret implementation as this was not exposed in the bindings.

Another discussion on implementation was about how much tokens you could
export, as theoretically it would be possible to have a negative balance by down-
loading more than uploading. For clarity and to prevent confusion, it was de-
cided that the maximum amount of transferable tokens would be max(0, total
uploaded - total downloaded). In this way, you could not get a negative balance
and make no exports before uploading more than downloading.

Finally, in the last steps of the process, we ensured that the export in Tribler
was made “idiot proof”. Exporting the tokens first requires to go through a
warning pop-up. The export tab also contains an explanation on what the
export functionality does and what the risks are. —— To merge the code we
had to confirm to Triblers code style , and its policy on user interface naming
and design.

We worked together with the Overlay group to get each others final and
major changes merged into the master of the Android Application. No major
merge conflicts or issues were found to be blocking. The last steps included
improving the documentation, polishing the in-code comments and ensure that
the naming conventions from Tribler are maintained in the Android codebase.

1.3 Final implementation

The final implementation consists of two parts: the Tribler modifications and
the Android TrustChain application. The total chain of events that shows all
the implemented features is as follows:

e Export QR Code with funds in Tribler

e In the app go to “Import Tokens” in the menu
e Scan the QR code generated by Tribler: your tokens are now transferred!

e On the funds page you can see your transaction history as well as your
current token balance.

e You can transfer your tokens to another android device by pressing “Ex-
port Tokens” in the menu. A QR code is generated which can be scanned
again by another phone.

The full implementation details can be reviewed in the technical documenta-
tion. As a summary, exported tokens are stored in a temporary transfer identity,
of which the key and the transaction are stored in the QR code. While import-
ing the QR code the temporary transfer identity and the transaction blocks are
reconstructed using the data in the QR code. The keys are then used to sign a
transaction to transfer the funds to the receiving party.

Chapter 2

Technical Documentation

2.1 Crypto

The app maintains cryptographic compatibility with [Tribler, using Libsodium.
To achieve this, Java JNT bindings has been used to allow the Trustchain An-
droid app to use native libsodium method invocations.

Libsodium has been chosen due to the fact that it is used by Tribler, and
because it provides all of the core operations needed to build high-level crypto-
graphic tools. It is a portable, cross-compilable, installable, packageable fork of
NaCL|with a compatible extended API. Libsodium supports a variety of compil-
ers and operating systems, including Windows (with MinGW or Visual Studio,
x86 and x64), i0S, Android, as well as Javascript and Web Assembly.

Libsodium supports the notion of[Dual Secrets, an object that supports both
encryption and signing. The key formats used in the app match the keys used
in Triber, using xsalsa20poly1305 for identity management and ed25519 for
signing.

2.1.1 (De)serialization

During transmission and storage, keys are serialized and deserialized in the
following manner:

e Public key pair: "LibNaCLPk:" + public key bytes + verify key bytes
e Private key pair: "LibNaCLSk:" + encryption seed -+ signing seed

The signing key is then generated using the signing seed. The private key
can be generated from the encryption seed.

2.2 Tokens

We are compatible with the current Tribler transaction content. A transaction
holds the values up , down , total_up , and total.down. When receiving the

https://www.tribler.org
https://download.libsodium.org/doc/
https://github.com/joshjdevl/libsodium\protect \discretionary {\char \hyphenchar \font }{}{}jni
http://nacl.cr.yp.to
http://libnacl.readthedocs.io/en/latest/topics/dual.html

first half of a block , the receiver flips up and down , and sets the total_up and
total_down for itselfs (adjusted with the transaction content).

2.3 Wallet

The wallet management works with a new [Tribler| concept, called the reputa-
tion of each user. This reputation is based on the amount of data uploaded
and downloaded, and the simple subtraction of these two quantities provides a
number representing it. This number gives a positive value when the user is
uploading more content than downloading, therefore contributing positively to
the overall system. It will be referred in terms of tokens, that account for the
reputation of the user, and can be transferred.

2.3.1 Import of tokens from PC

This feature is done by generating a throw-away identity in the PC, to which a
chosen amount of Tribler tokens are transferred. Then, this identity is exported
to the phone by printing a QR code with the necessary information in the
screen, and scanning it with the TrustChain Android app. To this mean, an
option called “Import tokens” is implemented in the app’s menu. Once both
identities are settled in the phone, the final transfer is performed and only the
phone identity outlasts. Once this process has been completed, the phone has
successfully received the tokens from Tribler and they can be checked in the
“Funds” menu option. However it must be clarified that, as it is an offline
process, there are no guarantees for preventing the double-spending problem.

2.3.2 Import/Export of tokens between phones

The functioning is exactly the same as the import of tokens PC-phone, only
that now it is performed between two phones using the Trustchain Android
app. In order to go through with it, the sender uses the menu option “Export
tokens”, which displays in the screen a QR code with all the necessary data to
export the total amount of tokens. Then, the receiver should make use of the
“Import tokens” option to scan it and complete the transaction. As it is an
offline process, same security concerns as before apply here.

https://www.tribler.org

2.3.3 QR code

The QR code has to be able to transfer the throw-away identity, while having
a total size small enough to make it readable. To that effect, only the essential
information is included in it:

e Private key of the throw-away identity, which includes the private key
special crypto format.

e Transaction object, with the up and down quantities.

e Block hash and sequence number belonging to the half block of the trans-
action between the sender identity and the throw away one.

This information is encoded in a JSON string before being put into the QR
code.

Once the QR code has been read, the receiver uses this information to re-
construct the transaction and throw-away identity. The QR code used is the
version 13, which has a capacity between 1440-3424 data bits depending on the
ECC level.

2.3.4 Example
An example of the data in the QR code is the following;:

{

"private_key": "TGliTmFDTFNLOvHyazzyYvbOOcdAIb+
xmDUzf1F0snzYTm3vbFcRVOFfuxWh827LrDLxY1jG5+ga\n/
mOSUkDYcDiHRnuf 5BQ1HAI=\n",

"transaction": {"down": O, "up": 11114175918},

"block": {"block_hash": "7Jh0+S93fbtoqWwKQ1lYmsPMjC8eU7Bz0o91NaKy/0
dOw=\n", "sequence_number": 1}

}
Which will result in the following QR code:

http://www.qrcode.com/en/about/version.html

Bibliography

[1] “Filecoin: A descentralized storage network,” Protocol Labs, Tech. Rep.,
August 2017.

[2] (2018, January). [Online]. Available: http://trustchain-android.
readthedocs.io/en/latest/

[3] (2018, January). [Online]. Available: https://github.com/tribler/tribler
f
)
6

2018, January). [Online]. Available: https://www.bouncycastle.org

[5]
[6]

(
(
(2018, January). [Online]. Available: https://download.libsodium.org/doc/
(

2018, January). [Online]. Available: |https://github.com/joshjdevl/
libsodium-jni

[7] (2018, January). [Online]. Available: |https://en.wikipedia.org/wiki/
PDF417

http://trustchain-android.readthedocs.io/en/latest/
http://trustchain-android.readthedocs.io/en/latest/
https://github.com/tribler/tribler
https://www.bouncycastle.org
https://download.libsodium.org/doc/
https://github.com/joshjdevl/libsodium-jni
https://github.com/joshjdevl/libsodium-jni
https://en.wikipedia.org/wiki/PDF417
https://en.wikipedia.org/wiki/PDF417

	Progress report
	Initial project description
	Project development
	Final implementation

	Technical Documentation
	Crypto
	(De)serialization

	Tokens
	Wallet
	Import of tokens from PC
	Import/Export of tokens between phones
	QR code
	Example

