
FBase:
The next evolution of mod-
ularised code execution

M.J.G. Olsthoorn

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

FBase:
The next evolution of modularised code

execution
by

M.J.G. Olsthoorn
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday December 1, 2019 at 10:00 AM.

Student number: 4294882
Project duration: March 1, 2018 – December 1, 2019
Thesis committee: Dr. ir. J.A. Pouwelse, TU Delft, supervisor

Dr. J.S. Rellermeyer, TU Delft
Dr. A. Katsifodimos, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I started this thesis work with the Distributed Systems department after having previously done my bachelor
thesis there. My bachelor thesis was on the concept of decentralized general asset markets that allowed clear-
ance in the order of seconds. I became interested in how decentralized systems can distribute the control and
burden of a system to the users of that system.

In my master’s, I have specialized in the security of networks and systems. I wanted to use this new knowl-
edge together with my previous experience from my bachelor to do research into topics that solve practical
problems.

The origin of this current master thesis work stems from a project within the distributed systems research
group called Tribler. The Tribler team focuses on creating disruptive technology that takes the control from
central authorities and brings it back to the users. They have created a privacy-focused torrent client using
a Tor inspired onion protocol that operates completely without any central control. This system relies on
many different components that became tightly integrated and hard to maintain. This led to a more general
problem within software engineering which sparked the idea of this thesis.

I want to thank my supervisor, Johan Pouwelse, for his guidance during my thesis. He provided me with
helpful feedback during this time to help me improve my work. I would also like to thank the members of
the Tribler team for their help and support during the development of the work and understanding the tools
created by the lab. In particular, I would like to thank Martijn de Vos, with whom I got the chance to work on
a paper during my thesis to test the feasibility of a concept used in this work.

M.J.G. Olsthoorn
Delft, November 2019

iii

Abstract

The abstract should contain a brief overview of the research and the most important results

v

Contents

1 Introduction 1
1.1 Code Evolution . 1

1.2 Code Re-use . 2

1.2.1 Re-usability vs Usability . 3

1.3 Component Terminology . 4

1.4 Research Goal . 4

1.4.1 Research Aim . 5

1.4.2 Research Scope . 5

1.4.3 Research Structure . 5

2 Requirements 7
2.1 Principles . 7

2.2 Trustworthy Code . 7

2.3 Runtime Support . 8

3 FBase Design 11
3.1 Overview . 11

3.2 Generic Modules . 12

3.3 Module Discovery and Distribution . 13

3.3.1 Identifier and Versioning. 13

3.3.2 Discovery Protocol . 13

3.3.3 Distribution . 15

3.3.4 System Strategies . 16

3.4 Blockchain Organizational Principles . 16

3.5 Trust . 17

3.5.1 Verifiable Modules . 17

3.5.2 Identity Profiles . 17

3.5.3 Verified Identities . 17

3.6 Runtime Support . 18

3.6.1 Module Interconnect Mechanisms . 18

3.6.2 Isolated Execution . 18

4 Implementation 19
4.1 Overview . 19

4.2 IPv8 - Overlay Library . 20

4.3 Framework Structure . 21

4.4 Community . 21

4.5 Event Bus . 21

4.6 Interface . 21

4.6.1 CLI . 22

4.6.2 Web Interface . 23

4.7 REST Endpoints. 23

4.8 Module Structure . 23

4.9 Module Distribution . 24

4.10 Discovery and Voting . 24

4.11 Blockchain . 24

vii

viii Contents

5 Evaluation 25
5.1 Testing the Viability of the Concept . 25

5.1.1 Tribler . 25
5.1.2 Trust Experiment . 26
5.1.3 Mobile App Experiment . 26
5.1.4 Result Interpretation . 26

5.2 Effectiveness of the Discovery Protocol . 27
5.2.1 Existing Methods. 27
5.2.2 Sensitivity Analysis. 28
5.2.3 Result Interpretation . 30

6 Conclusion 31
6.1 Conclusion . 31
6.2 Discussion . 32

References 33

1
Introduction

For decades the idea of re-usable software has been seen as the holy grail of software development. Even in
the eighties, papers were already written about this topic [37]. Throughout the years, more and more research
has been done on the benefit of re-usable software [19]. Studies have also been performed on how to re-use
software in practice [35]. But up until recently, there was more discussion about software re-use than actual
software re-use. Even though most software uses the same blocks of code over and over again, almost all
software is built from the ground up [17]. Today, this situation is completely different. Nowadays, almost
every application re-uses software in the form of software dependencies. However, this re-use pattern is
starting to become unchecked. The shift to re-usable software has happened so quickly, the risks associated
with choosing the right dependencies are often overlooked [10].

1.1. Code Evolution
Over the years, the way we use code has evolved with the changing need of the users and society as a whole [34].
This evolution started with specific applications written for each use case and each platform it had to run on.
These so called monolithic applications took extensive amounts of time to develop and could not be re-used.

ApplicationApp 1 App 2

Kernel OS

Library Shared

(a) Shared Library.

Plugin 1 Plugin 2

Base Application

Plugin 3 User
Contribution

Application

(b) Plugin Architecture.

ApplicationApp 1

Kernel OS

Library Shared

Kernel

App 2 App 3 App 4

(c) Cross-platform Application.

UI

Service 1

Service 2 Service 3 Service 4 Service 5

Application

Microservices

(d) Microservice Architecture.

Figure 1.1: Architectures in the evolution of software.

1

2 1. Introduction

To reduce this time, system libraries were built to make it possible to run these applications on similar
platforms. A visualization of this architecture can be seen in Figure 1.1a. This abstraction layer, however, was
still limited to broader types of platforms e.g. Linux, Unix, Windows. These shared system libraries could
now be maintained and distributed separately. This led to easier development and applications that could be
used on more systems.

A good example of this evolution is the Debian package system. It made it possible for code that was
meant to be used as a library to be packaged separately for both system and user code. This allowed appli-
cations to indicate which library would be required for that application and the system would make sure it is
available to the application. This possibility allowed these applications to be developed faster. [41]

These new shared code libraries provided numerous benefits and speed to application developers, but to
improve the ecosystem further a new step had to be made. At this point when applications were distributed
they were static. There was no option to adapt the application to include features that the user would like to
see. Also, users that wanted to add their own functionality had to go through the developers to accomplish
this. To solve this, the larger applications began to include plug-in systems. A visualization of this archi-
tecture can be seen in Figure 1.1b. A plug-in system allows specific functionality to be added to an existing
computer program. This enabled customization of applications, making it possible to reduce the size of the
core application or separating source code because of incompatible licenses. This paradigm allowed the rapid
development of extra features by both developers and the users of the application.

A well-known example of a program with a plugin system is Winamp. The Winamp developers used a
plug-in system to provide users with a customizable package that could serve each user’s preference [28]. A
large community formed around the application with different plug-ins for every imaginable feature [7]. This
community-building gave an incentive for other applications to implement similar plug-in systems.

Eventually, programming languages were created that allowed the development of cross-platform appli-
cations that could be run on all common platforms. This eliminated the need to create separate binaries for
each individual platform. These applications were either written in an interpreted language, e.g. Python, or in
a pre-compiled portable byte-code format for which interpreters exist on all platforms, e.g. Java. A visualiza-
tion of this architecture can be seen in Figure 1.1c. In the last decade, a major part of these cross-platform ap-
plications has moved towards the web. These new web applications make use of existing cross-compatibility
of web technologies, that were designed when the web became universal, that run on all platforms.

With the development of cross-platform applications, there was also a rise in the availability of code
frameworks. A code framework provides particular functionality as part of a larger software platform to fa-
cilitate the development of software applications. Software with common use-cases could make use of the
abstraction provided by these code frameworks to create application-specific software with only limited ad-
ditional user-written code. These code frameworks can be seen everywhere nowadays. Some examples of
code frameworks are Spring, WordPress, and the Android platform. Spring is a popular code framework for
developing applications in Java. WordPress is a web framework that runs more than 25% of the websites on
the internet [15]. The Android platform is the underlying framework that allows apps to be created for the
Android mobile operating system.

A more recent concept in the development of software applications is the microservice architecture. This
architecture breaks an application up into a collection of loosely coupled services. These services are nor-
mally small in size and have one use-case that they were specifically designed for [38]. The microservice
architecture facilitates code re-use on a big scale with platforms like NPM (Node Package Manager) storing
over 750.000 JavaScript packages [4]. A visualization of this architecture can be seen in Figure 1.1d.

1.2. Code Re-use
The constant factor during this code evolution is code re-use. The ability to make development easier and
faster by making use of existing solutions already created by a different party.

Re-use is software development’s unattainable goal. The ability to put together systems from re-usable
elements has long been the ultimate dream. Almost all major software design patterns resolve around ex-
tensibility and re-use. Even the majority of architectural trends aim for this concept. Despite many attempts
in almost every community, projects using this approach often fail [6]. This is attributed to one big problem:
usability. The more reusable we try to make a software component, the more difficult it becomes to work with
said component. This is a critical balance that needs to be worked on.

1.2. Code Re-use 3

1.2.1. Re-usability vs Usability
The challenge we face when creating a highly re-usable component is to find this balance between re-usability
and usability.

To make a component more re-usable it needs to be broken down in smaller parts, that each handles
only one task. Components with multiple tasks are harder to re-use since each application has different use
cases and therefore has to modify and maintain their own version of that component. Smaller components
that handle only one task can be used as building blocks for bigger components making them easier to re-
use, saving developers the need for maintaining their own version. However, to create complex application
hundreds of small re-usable components would have to be used creating a problem of its own. How are all
these components going to be managed? The largest part of this problem has to do with dependencies [6], an
additional piece of code a programmer wants to call. Some aspects to consider are:

• Is the API (Application Programming Interface) going to stay constant?

• How do we deal with breaking changes?

• How do we prevent dependency conflicts?

Some of these aspects are already partly being addressed through Semantic Versioning [31], but most of these
are still unsolved today.

The context dependability of a component also greatly affects the balance between re-usability and us-
ability. When a component depends on the context it is running in, it makes it impossible to move it to an
different environment that does not have this context. For components to be more re-usable, this context has
to be moved from code to configuration. However, if each small component has to be configured each time
it is used, the application would become less usable.

Both the granularity and the degree of dependability on the context can improve the re-usability at the
cost of usability. The key is to find a balance (Figure 1.2).

Re-usability Usability

Granularity

Degree of
Dependability

Trustworthy

Figure 1.2: Balancing Re-usability and Usability

4 1. Introduction

1.3. Component Terminology
Two different kinds of reusable components that are often integrated into applications are modules and plug-
ins. Since these terms can have a different meaning depending on the application, the interpretation that this
work will use is defined below:

• Modules are main functionality components that are used to break up the application into smaller
subsystems that can more easily be worked on with different/larger teams. Modules can either by re-
usable components or tied to the specific application, and should be able to operate independently

• Plug-ins are components used to extend the main functionality of the application without having to
make changes to it. They are often created by the community of the application. The functionality in
these plug-ins are often too small or too unique to integrate into the core application. Plug-ins depend
on the services provided by the application, they do not operate independently. They are also tied to a
specific application and can not be re-used for other applications.

The function of both kinds of components is, however, not different. They both provide extra functionality to
the application. It would therefore also make sense to both make them first-class citizens of the application
instead of making plug-ins a secondary operator.

This distinction is often made to differentiate between the code of the original authors and code created
by third-parties. Plug-ins are most of the time also not reviewed by the original authors of the project.

1.4. Research Goal
Over the last couple decades, extensive research has been performed into the field of software re-use. In this
period, several survey studies have been done to see what different approaches were used in research liter-
ature for creating re-usable software [20] [17]. The surveys tried to make generalizations about the methods
used to research if there is a common pattern among them. The approaches mostly centered around re-using
code for common use-cases like code frameworks.

Other studies have worked on designing metrics and models for measuring progress in software re-use
to identify the most effective strategies [16]. Morisio et al looked at success and failure factors in software
re-use to identify key factors in its adoption [26]. The main cause of failures that they discovered was a lack
of commitment by companies and projects.

A more recent study, attempted to build a framework for highly modular and extendable software systems,
called Normalized System theory. This theory is based on a theoretical concept called system theory. This
theory, however, takes the abstraction of modules to a level that makes it inefficient beyond usage. It takes
this approach to make the system more agile. However, without simplicity all agility is lost. [11]

Lehman’s laws of software evolution is a law describing the evolution of software. The law describes a
balance between forces driving new developments on one hand, and forces that slow down progress on the
other hand [21] [22] [18]. One of the forces that slows down the progress of new developments is the ability of
developers using the development to understand and easily use the functionality of the development.

Studies have been done into the practical issues that the microservice architecture creates when used in
a software application [14]. Examples of these issues are the manageability of packages on NPM, no explicit
dependencies, interfaces that are not well defined. The architecture makes use of completely decoupled
services that communicate through REST APIs. This interface, however, limits the type of communication
that can be send between the nodes. Newman et al concludes in a different study that the microservice
architecture was specifically designed for maximizing re-usability without taking into account usability [27].

Smart contracts, in particular Ethereum, is another software practice used today to solve the problem
of code re-usability. However, since Ethereum is based on a proof-of-work principle, it requires payment so
execute actions on the system. This will make applications build on top of Ethereum subject to these charges.
In many cases these charges will have the consequence that the application would be to expensive to use in
practice. The Ethereum model is not long-term sustainable

1.4. Research Goal 5

1.4.1. Research Aim
In the current research there exits a gap in balance between re-usability and usability. This works tries to fill
that gap. People have tried solving the problem of software re-use, but it has proven to be a hard problem.
There needs to be a trade-off between re-usability and usability.

This thesis focuses its work on developing a framework that continues the progression in the development
of re-usable code. It tries to find a balance between the software practices of Today and the impractical
concepts of the future.

There have already been many attempts to solve the goal of practical code re-usability. However, these
attempts still left some problems open, that this thesis tries to solve. These problems include:

• How to find a trade-off between re-usability and usability?

• Can we use social trust and crowdsourcing to improve security of libraries?

• How to ensure dependency availability efficiently and securely?

1.4.2. Research Scope
In the field of software engineering the concept of reusable software is a big topic. Tackling and solving a
substantial problem like the trade-off between re-usability and usability is not feasible within a Master thesis
project. Therefore this work limits the scope of the project to a subset of this problem. This subset consists
out of the re-usability of applications that can be broken down into generalized modules defined by this work
(which can be found in Chapter 3). This thesis will not provide a solution for every possible application type
or applications with extreme complexity.

Within this subset, this work will propose one concept in the form of a framework to tackle the remaining
research aims of trustworthiness and dependability on external components. The theoretical and practical
properties of the framework are examined on the effectiveness of the discovery protocol and the module
communication. Furthermore, one non-trivial use-case is used to determine that the concept works and is
viable.

1.4.3. Research Structure
Figure 1.3 shows how the research is structured. The background and related work (Chapter 1) form the re-
quirements which are specified in Chapter 2. These requirements are used as the underlying principles of the
proposed concept, called FBase, explained in Chapter 3. A proof-of-concept implementation will be created
to support the evaluation of the concept. The details of the implementation will be discussed in Chapter 4.
Chapter 5 will analyze the concept with a non-trivial use-case. Based on the evaluation a conclusion will be
given in Chapter 6.

6 1. Introduction

Background (Ch. 1) Related Work (Ch. 1)

Requirements (Ch. 2)

FBase
Design (Ch. 3)

Conclusion (Ch. 6)

Implementation (Ch. 4)

Analyse (Ch. 5)

Evaluation (Ch. 5)

Use Case

Figure 1.3: Research structure.

2
Requirements

This work sets out to create a framework for the next evolution of modularized code execution to find a bal-
ance between software re-usability and usability. This chapter specifies the requirements that were identified
from the background and related work in Chapter 1. The key property is permission-less code execution at
near-zero cost.

The requirements are subdivided into three different categories namely Principle, Trustworthy Code, and
Runtime Support.

2.1. Principles
These principles form the foundation of the framework and are necessary to achieve the research aim.

Decentralized
For the framework to be financially sustainable it needs to be decentralized. In centralized systems, the oper-
ating costs of a network are the responsibility of the entity in control of the system. This entity would need to
have continued incentive to keep operating the network. In decentralized systems, the operating cost is split
across all users of the network. The number of users will scale together with the cost of the network.

Decentralization also increases the reliability of the system as there can be no central infrastructural point
of failure that could bring the network down. The system should have no central servers except for bootstrap-
ping.

Self-governing
The system must be able to run by itself without supervision as there is no parent governing entity. The system
should be able to handle all the tasks needed for operating the network.

To be free of external influence, no central entity or central governance can be in control of the network.
The network should be owned by everybody and nobody and therefore self-governing.

Since self-governing systems are run by the system itself and its users’ input, there is no single owner
of the network. If the original author disappears or is mandated to hand over control to another party, the
overall system is not affected and can continue to function regardless.

An example of a platform that was taken down by external pressure from lawsuits is Napster, a peer-to-
peer music sharing service[25]. Although Napster used decentralization for file sharing it was still controlled
by a central company. This allowed lawsuits to be filed against this company to take down the service.

2.2. Trustworthy Code
Since this work is proposing a framework that is highly dependent on re-usable code, it is important that
the user running the application can trust all its parts. This trust aspect is very important for a code exe-
cution ecosystem. There are countless examples of applications being compromised by running untrusted
code [5][2].

7

8 2. Requirements

Open Ecosystem
For a user to trust the application they want to run, they also need to trust the framework running it. That is
why every part of the code execution ecosystem must be open for inspection. Making the source code public
allows users or external parties to verify the behavior of the system.

Next to opening up the framework for inspection, it is also of vital importance that each re-usable com-
ponent used within the framework can be inspected to increase the trustworthiness of the code.

Crowdsourcing
DevID is a previous work of the authors of this thesis. It evaluates the possibility of using social trust as a way
to increase the trustworthiness of code by using crowdsourced peer-review [12].

Cargo Crev is a cryptographically verifiable code review system for the cargo (Rust) package manager [1].
It lets users cryptographically sign packages when they have deemed them to be safe.

Both of these systems make use of crowdsourcing to minimize the risk of users running undesired mali-
cious code. This is a very important property since manually inspecting all code running in an application
can take a lot of time. By crowdsourcing this task to other individuals, the trustworthiness might be lower
compared to reviewing it yourself. However, because the code review is crowdsourced to many different in-
dividuals, the eventual trustworthiness of the code will be higher.

Dependencies
The current dependency trend is risky, developers trust more code with less justification for doing so. Since
the recent explosion of code re-use systems, applications started shifting to using more and more existing
libraries in the form of dependencies. This rapid shift, however, has caused developers to take along their
perspective on code trustworthiness of classical dependencies like OS system libraries. The trust-ability of
these new libraries is not as obvious as most developers believe.

H2020 FASTEN is a project that strives to minimize the risk associated with using dependencies [3]. Its
solution to this problem is performing static analysis of the code and creating a dependency graph. With
this dependency graph, changes to the dependency can be detected. This allows inspection of the code that
would be affected by this change.

When using dependencies without inspection, applications risk running code that contains bugs or has
security exploits. Next to this, when the author of the dependency decides to change the purpose of their
dependency or remove it entirely, the depending application becomes broken and useless. A study done by
Xavier et al has looked into the impact of breaking changes in dependencies [40]. They determined it poses a
great risk to an application, since the frequency of breaking changes and the impact are high in many cases.

Although Semantic Versioning is a system designed to indicate to developers when breaking changes have
been made to the dependency, the system is not being used properly according to recent studies [32] [33].
Raemaekers et al found that backward-incompatible changes are widespread in software libraries.

Trust Function
Trustworthy code is a cornerstone of software development. However, how is trust defined? Trust is a social
notion. One person might need more or less information to trust a particular piece of code than another
person. This is highly dependent on the social constructs of the user. Therefore, trust shouldn’t be a fixed
concept. Each user should be able to define a trust function that is used to determine if a dependency should
be used or not.

2.3. Runtime Support
A key bottleneck for re-usability and usability is the lack of runtime support within the execution environ-
ment.

Integrated Autonomous Dissemination
Centralized systems store all code libraries in one or multiple central locations. These locations require a lot
of technical infrastructure which is not free. Besides this, they also have several downsides. One downside is
that these locations are susceptible to the influence of governments. They can be blocked or shut down when
the government feels like the platform is not complying with its laws. Decentralized systems do not have this
disadvantage. Another disadvantage of centralized library storage is that any library made by revoked at any
time.

2.3. Runtime Support 9

A system that has integrated autonomous dissemination of code libraries through decentralized methods,
can not be controlled from outside the system. It also allows everything to be done from inside the framework
making it easier to use.

Dynamic Loading
For the code execution framework to be easy to use, the user should not have to restart the application or load
applications into the framework. This should be done automatically on-demand by the framework. Dynamic
loading would also make sure that only the application that should be running are loaded into the system so
that unused applications will not waste computer resources.

Seamless Upgrading
Updating of dependencies is very important. Outdated dependencies that contain security exploits can seri-
ously harm the system it is running on. So when a new version of a dependency is available on the network, it
should automatically be distributed to all nodes that run applications depending on that dependency. There
should be no user action required for updating to happen. Once the dependency is available on the host
computer, it should do an in-place replacement of the dependency in the framework.

A similar system has been proposed by Rellermeyer et al for Java OSGi modules [36]. In this paper, they
devise a mechanism to extend the default functionality of OSGi modules to make it possible to upgrade them
when used in a distributed method.

Module Interconnect
For applications to be built up out of modules, there has to be a way for modules to find each other and to
communicate with each other. The way this connection is constructed is very important since the code exe-
cution architecture defines the maximum complexity of the code that can be produced. The type of module
and the connection between them determine the Maximum Complexity of Applications (MCA) which a sin-
gle company, a global consortium, or open-source community can create. We devised the first architecture
to take the MCA as the cardinal design optimisation.

To optimize the MCA some properties of the interconnection fabric have to hold:

• Strong encapsulation: hide implementation details inside components, leading to a low coupling be-
tween different parts. Teams can work in isolation on decoupled parts of the system.

• Well-defined interfaces: you can’t hide everything (or else your system won’t do anything meaningful),
so well-defined and stable APIs between components is a must. A component can be replaced by any
implementation that conforms to the interface specification. Rest is not ideal for this, native code is
better Interfaces can’t be fixed since application could be anything

• Explicit dependencies: having a modular system means distinct components must work together. You’d
better have a good way of expressing (and verifying) their relationships.

Currently, there are some attempts at creating a universal module. One of these attempts is UMD. Univer-
sal Module Definition (UMD) strives to create a module that can run on all platforms, e.g. browser, nodeJS,
that run JavaScript. UMD, however, doesn’t have to deal with a lot of complexities since the interface on all
platforms is almost identical and JavaScript has a common pattern for interconnection modules. Another
platform that is trying to create a universal module is Java’s OSGi. This platform allows modules conforming
to the standard to be used interchangeably with other modules.

Module Definition
There should be no difference between modules and plug-ins. Each user can also choose which functionality
and therefore module they want to run on their instance of the application. This allows users to compose
their own desired version of the application. The user can compose larger modules out of smaller ones or
fork modules to represent their view on how it should be done. This should create a community around each
module that could spark an ecosystem.

3
FBase Design

This chapter will discuss the design of the proposed framework, called FBase. FBase is a framework designed
to create a usable ecosystem for the development, distribution, and execution of applications. This chapter
will elaborate on the high-level structures within the framework. The implementation considerations and
details will be discussed in Chapter 4. The evaluation of the framework is performed through an experiment
(Chapter 5).

3.1. Overview
An overview of the architecture of FBase can be found in Figure 3.1. It shows the three different layers that
make up the framework.

View Layer (Web-based)

Ev
en

t B
us

Logic Layer

Infrastructure Layer

Module 2Module 1 Module 3 Module 4

Blockchain Fabric

Overlay Network

Figure 3.1: The architecture of the FBase framework

• View Layer: The view layer is responsible for the interaction between the user and the logic layer. This
layer contains the view components for both the FBase framework and the user applications.

• Logic Layer: The logic layer is responsible for the execution of the user applications. It provides runtime
support through the FBase runtime engine.

• Infrastructure Layer: The infrastructure layer is responsible for providing services to the FBase frame-
work. These services include database storage, encryption primitives, and network capability. This
layer contains the module distribution and overlay network.

These layers are connected by a system-wide Event Bus that is used for connecting different parts of
the user application. Connecting these components to form the user application can quickly become un-
manageable. To prevent this from happening, the FBase framework is built according to the event-driven

11

12 3. FBase Design

architecture style. In this style of framework, actions are taken according to events happening in the system.
Every component in the framework can trigger events. Creating simple and maintainable logic. Input such as
human interaction, network packets, creation of components, and system notifications, trigger these events
and cause corresponding actions in other parts of the system. An example of this would be the downloading
of a module when a new one is discovered. The event bus is the main method for communications between
different layers.

These layers together create the components needed to run and distribute modularized code in a decen-
tralized fashion. The next sections will expand on the components that make up these layers.

3.2. Generic Modules
The FBase framework aims to support as many different use cases of modules as possible. However, to create
a single module type that can support any type of interaction and behavior would be infeasible. That would
require an interface between modules so generic and complex that it would not satisfy our requirement of a
usable system. If such an interface would even be possible to create, it would have a substantial performance
penalty because of the abstractions and complexities needed to support such as system.

The method that FBase uses to find a balance between this flexibility and feasibility is a system of four
generic modules:

• View Module: The view module type contains the components that deal with human interaction. This
module type is not required for a user application to be functional. The module represents a Graphical
User Interface (GUI).

To meet our goal of having a re-usable ecosystem, these GUIs have to be cross-platform compatible.
This cross-platform compatibility enables the view module to be used on any major platform in use
today e.g. Windows, macOS, Linux, Android, iOS. To accomplish this, view modules will be created
using web technologies. Web technologies were chosen for the FBase user interfaces, as they are one
of the only GUI technologies that allow for uniformly looking cross-platform user interfaces. They are
becoming the current standard for these kinds of GUIs.

Web technologies also allow for easy decoupling between the view layer and the logic behind it. A
view module component consists out of a HTML, CSS, and JavaScript website. This website is run as
a standalone component and connects to its logic counterpart through an Application Programming
Interface (API). This decouples the user interface part of the user application and allows it to be inter-
changed. Multiple different GUIs could be offered for the same user application. It also allows GUIs
to be created with different purposes that could be run simultaneously. An example of this would be a
music visualization plugin.

• Application Module: The application module type is the main module type in the FBase framework.
This module type contains the main logic and it is the entry point into the user application. User appli-
cations can be either an isolated application on each user’s system or a decentralized application that
spans across the FBase network overlay.

The logic in the application module type acts as the controller in the Model-View-Controller (MVC)
architectural software pattern. Controllers act as an interface between the View module and the Service
Module to process all the incoming requests, manipulate data, and interact with the GUI to render the
final output.

• Service Module: The service module type provides services to the application module that have com-
mon use-cases. These re-usable services should contain the bulk of the code in a user application. Most
applications share a significant portion of their functionality with other applications. The service mod-
ule encapsulates those functionalities to make them more re-usable. A good example of such a service
is authentication. Almost every user application needs a form of authentication. Writing a secure and
well-structured authentication service is not trivial. When applications can re-use well build services it
adds to the usability of the application and ecosystem.

Service modules should be standalone services. They should provide functionality that is not depen-
dent on other parts of the user application. Service modules also maintain their state. This makes sure
the complexity of the functionality is encapsulated by the service.

3.3. Module Discovery and Distribution 13

Application modules can also be used as service modules. This can be achieved by marking the module
with both types. An example of such a module is a zip code lookup system. Such a system can be used
as either a standalone application with a GUI or as a service to another application.

Service modules can also be used to emulate plugin behavior where certain functionality is exchanged
by a different one. This is done by changing the service module used in the user application. This ability
would be similar to the Strategy software pattern. A use case of this would be changing the algorithm
used to calculate trust in a network on runtime. It also allows service to be replaced when security
vulnerabilities have been found that are not being fixed.

• Package Module: The package module type is added to make it possible to remove dependencies on
existing code repository infrastructure. Many programming languages have a native package manager
to house common use code libraries to make it possible to re-use code already used by others. However,
these package managers almost all use centralized infrastructure and have many problems of their own
e.g. revocability. FBase uses the package module to provide an alternative for these code repositories
or act as a back-up.

The Package module contains downloadable code libraries that are made available to the other mod-
ules in the system. Examples of use-cases for the package module are validation libraries and database
abstraction libraries.

3.3. Module Discovery and Distribution
FBase makes use of a decentralized discovery and distribution network for its modules. Current networks for
software distribution are often centralized and controlled by a company entity. By making use of a decentral-
ized network, the possibility of the network being brought down by the company behind it, the government,
or the law, can be eliminated. It also allows users to make the FBase network completely self-governing, so
the system would be owned by everybody.

3.3.1. Identifier and Versioning
To distinguish different modules from each other, FBase makes use of an identifier. Each module has such an
identifier, which is unique in the network. To guarantee this uniqueness a cryptographic asymmetrical key
pair is used. An asymmetrical key pair consists out of two keys. One key is the public key to identify the object
it represents, in this module. The other key is the private key which can be used to prove the ownership of the
represented object. This private key acts as the credential for the author of the module to manage it.

The module identifier consists out of two parts. One part is the previously described public key. The
other part is the versioning code. This versioning code is a hash of the entire module code. A hash is a short
representation of a piece of data that is calculated in a one-way function. This method is chosen over more
conventional versioning code like Semantic Versioning as it makes it significantly harder for malicious actors
to spoof the module code corresponding to a version number. Since the hash represents the code.

The complete module identifier format is:

<public_key>.<module_hash>

New versions of the module have a different module hash and would be a separate entity in the network.
Each module also has a timestamp of when the module was created. Together with the module identifier, this
allows nodes to pick the most recent version of the module.

When a module wants to introduce breaking changes to the API, a different approach has to be used.
Using the current approach for updates with breaking changes could cause dependent modules to break
and stop functioning. In FBase when an update includes breaking changes a completely new module has to
be created. This means it has a different public key than the previous versions. This approach was chosen
because breaking changes are often accompanied by a change in the functionality of the module. FBase
represents this change as a new module.

3.3.2. Discovery Protocol
The discovery protocol of FBase relies heavily on crowd-sourcing. It accomplishes this through voting. It
is very similar to how code repositories on GitHub gain popularity. The way the discovery protocol works
depends on the state of the network. Below different scenarios will be discussed depending on the state of
the network. Figure 3.2 shows the message flow.

14 3. FBase Design

Neighbor A Neighbor B

Neighbor C

Module Creator

create module

<<module vote>>

Connected with
Neighbor A

Connected with
Module Creator,
Neighbor B, and
Neighbor C

Connected with
Neighbor A
and Neighbor C

Connected with
Neighbor A
and Neighbor B

<<crawl modules>>

<<sent modules>>

[votes]

<<module vote>>

ref seed
discovery

<<module vote>>

<<module auto vote>>

ref seed
discovery

vote on module

ref seed
discovery

update module

ref seed
discovery

<<module auto vote>>

opt

Figure 3.2: Sequence diagram of discovery protocol.

Scenario 1: NewModule
When a new module is created the network is not aware of this. To make it possible for other nodes to discover
this new module, the author will automatically cast its vote. This vote is stored on a blockchain and includes
the public key of the voting node, a voting timestamp, and a module manifest. The module manifest contains
the module identifier, module timestamp, and a description. The block representing this vote is sent to all
connected neighbors in the FBase overlay network of the current node.

To give modules a better chance at discovery, FBase makes use of a mechanism called Seed Discovery
(as shown in Figure 3.3). In this mechanism, 10 seed messages will each be sent through 10 intermediate
nodes to reach their Seed Point. At each hop, these nodes select one of its connected neighbors at random,
excluding the neighbor where the message originated from. The Seed Point will discover the module and
make a simulated vote, called Seed Vote, that also informs its connected neighbors. This approach creates
multiple different starting points from which modules can be discovered. This increases the possibility of a
module to be discovered on a larger scale.

At the end of this scenario, the author and the 10 Seed Points, and their connected neighboring nodes
know about the new module.

3.3. Module Discovery and Distribution 15

Initiator Intermediate A Intermediate J Seed Point

<<module seed>>

Neighbour A

<<seed vote>>

...

<<module seed>>

<<module seed>>

Connected with
Intermediate A

Connected with
Initiator and
Intermediate B

Connected with
Intermediate I
and Seed Point

Connected with
Intermediate J
and Neighbor A

Connected with
Seed Point

Figure 3.3: Seed discovery mechanism.

Scenario 2: Upvoting
When users discover new modules they can inspect the module and determine if they want to upvote it.
When the user determines they do not want to vote on the module, the spreading is terminated at the current
node. When they do want to vote on the module, the module information is distributed in the same way as in
Scenario 1. This is done to promote the spreading of quality modules and hinder the spreading of bad quality
ones.

Scenario 3: Updated Module
When a module is updated a new version has to be discovered by the network. To make sure critical updates
are discovered as fast as possible, nodes automatically vote on updated nodes when they have voted on the
previous versions. This fast updating is critical to prevent security vulnerabilities from persisting in code
bases longer than necessary. In a framework designed around re-usable code, security vulnerabilities are a
significant problem since many different applications rely on the same pieces of code. One vulnerability can
affect many different applications.

Scenario 4: New Node
The previous scenarios do not solve the bootstrapping problem, where nodes that are new in the network do
not have any information about modules before the node joined the network. The node will only discover
modules voted on by its connected neighbors after it joined the network.

To bootstrap new users, the node crawls the blockchain of its connected neighbors. During this crawling,
it fetches the modules that have been discovered by these neighbors and stores them in its own blockchain.

Performance
The performance of the discovery protocol is determined by multiple factors.

One of these factors is the number of connected nodes each node has. This controls the speed at which
modules can spread through the network. Making this value too low creates a scenario where modules have
a difficult time being discovered when just created. Making this value too big could flood the network with
(malicious) modules and create a Distributed Denial Of Service (DDOS) attack.

Another of these factors is the active involvement of users of the system. When users don’t actively partici-
pate in the voting process, it makes it considerably harder for modules to be discovered by the entire network.

A third factor is how capable users are in determining the quality of modules. When users vote on almost
every item, it would flood the network. Since each user would send a message to all its connected neighbors
for every module it knows about.

By making use of an event-driven discovery protocol, FBase tries to find a balance between the speed at
which modules can spread through the network and preventing a flood.

3.3.3. Distribution
When nodes have discovered modules, the module code has to be distributed to them. To meet the require-
ments that where determined in Chapter 2, the distribution mechanism has to be decentralized.

16 3. FBase Design

By making the distribution mechanism decentralized it allows the network to operate without a central
point of failure. Another benefit of this approach is that the load of storing and distributing the module code
is spread across the users of the network. When nodes download a module it increases the availability of that
module within the network. This means that modules that are more popular and will be downloaded more
often, have a higher availability to scale with this. Modules that are less popular will have a lower availability
to correspond with the demand.

Each module must have a minimum availability to make sure that every module that is discovered is also
available to download. To make sure this happens the author of the module always keeps a local copy of
the module. Besides this copy, the Random Discovery mechanism will make sure that a minimum number
of other nodes also have a copy to prevent a problem when the original author is offline. When a Random
Discovery message is received that node automatically downloads the module to increase the availability of
it temporarily.

If a node has a copy of a module that it has not used for a while this module is deleted from that node to
keep the network lean and fit.

3.3.4. System Strategies
Since the framework deals with untrusted executable user code, the framework provides different strategies
that the user can select from to protect their system against possible threats from running this code.

The framework allows the user to configure and replace the download and retention strategy. This strat-
egy is responsible for choosing which components get downloaded and how long they are kept on the system.
For the distribution of components, it is necessary to download packages that might not be used by the host
system itself but are solely for the intent of distributing. Some users might want to take a different approach
to accomplish this. The framework addresses this by allowing parts of its code to be replaced by other com-
ponents written by a third-party or by the user itself.

3.4. Blockchain Organizational Principles
FBase requires a blockchain that can store tamper-proof and accurate data records. We now explore three
common blockchain structures, displayed in Figure 3.4.

(a) Linear ledger (Ethereum). (b) DAG ledger (IOTA). (c) Pairwise ledger (Nano).

Figure 3.4: Three different structures of distributed blockchain ledgers. Each arrow points to the subsequent block in the chain.

Linear ledger:
Figure 3.4a shows the linear blockchain ledger used by Ethereum. The fundamental property of this ledger is
that at least a majority of users agree on the exact sequence of transactions. A global consensus mechanism
like Proof-of-Work or Proof-of-Stake prevents the double-spend attack where a malicious user intentionally
creates a fork of their chain [39]. While providing a high level of consistency, the transaction throughput of
these ledgers is often not high enough to facilitate record creation and modification by millions of users. This
motivates us to consider different blockchain structures for FBase.

DAG ledger:
Another blockchain structure is the Directed Acyclic Graph (DAG) ledger, where each block can be referenced
by multiple other blocks. This ledger structure, shown in Figure 3.4b, is adopted by blockchain platforms
like IOTA and Dagcoin [30] [24]. IOTA is optimized for micro-payments within Internet-of-Things, and Dag-
coin advertises itself as data storage for arbitrary data (e.g., documents or ownership records). Since these
ledgers allow for different consensus mechanisms, transaction throughput is often superior compared to
that of linear ledgers. However, they usually do not have the same consistency guarantees. While these ledger
structures are more suitable for data storage, we consider current implementations unfit for the storage of

3.5. Trust 17

votes. The reason is that they either rely on a centralized coordinator (IOTA) or a fixed group of witness nodes
(Dagcoin). Instead, our goal is to devise an infrastructure without any authority with leveraged permission.

Pairwise Ledger:
A third blockchain structure we consider is the pairwise distributed ledger. The key property of this ledger,
given in Figure 3.4c, is that each user maintains and grows their individual chain with transactions. Each
block holds exactly one transaction and optionally contains a (hash) pointer to a transaction in the individual
chain of another user. Blockchain fabrics like R3 Corda, Nano, and TrustChain, use pairwise ledgers as their
underlying data structure [29] [23] [9]. These platforms address the double-spending attack either by a trusted
notary (Corda), a weighted voting system (Nano) or by guaranteed eventual consistency (TrustChain). In
general, they provide superior scalability compared to linear ledgers as used by Bitcoin and Ethereum but
lack global consensus.

We strongly believe that the pairwise distributed ledger is a suitable data structure to store voting records
as transactions. Compared to linear and DAG ledgers, only data that the user is interested in is stored on
that user’s host. Pairwise distributed ledgers enable selective queries of data stored on the chains of other
members, without the need for full data replication across the network. In FBase, each individual ledger
stores all data associated with the actions taken by the user of that node, in a tamper-proof manner, and
without global agreement.

3.5. Trust
Since this framework that is highly dependent on re-usable code, it is important that the user running the
application can trust all its parts.

3.5.1. Verifiable Modules
To determine if a module can be trusted, the user should know what the module is supposed to do and what
the module is actually doing. This is an important part of the voting protocol. Therefore, all modules should
be verifiable. This means that the code in the module should be identical to the one the author controls and
be open for inspection.

To accomplish this, every module should be cryptographically signed by the author. This digital signature
can be verified by using the public key in the module identifier. This makes it impossible for malicious users
to distribute a different version of the module. Only users who have access to the cryptographic key pair of
the module can distribute new versions of the module.

The code base of a module must also be publicly available for all users of the network to inspect. This is
achieved by distributing the code base openly through the network.

3.5.2. Identity Profiles
In peer-to-peer systems, each peer in an overlay has to have an identity. This identity determines the trust and
association within and across overlays. This identity can be shared between different overlays or each overlay
can use its own identity. If two overlays use the same identity, one overlay can benefit from the built-up trust
and reputation of another overlay. However, actions performed by one overlay can also have a negative trust
impact on the other overlay. To allow applications to choose between having a shared identity, having its own
identity, or having a pseudo-random identity, the framework provides a configuration option in the module
configuration file to select what kind of identity profile is preferred.

3.5.3. Verified Identities
To further improve the trustworthiness of modules, users can optionally verify their digital identity. A verified
identity is uniquely linked to a real-world entity. Software built on FBase can give preferential treatment to
module authors that have verified their identity.

Identity verification can be done with an attestation given by a trusted third party like the government or
a notary. Enforcing strong, long-lived identities in FBase is comparable with account validation that many
centralized platforms use (e.g., the verification of a phone number). The requirement for verified identities
addresses the Sybil Attack, where an adversary assumes multiple fake identities to influence or subvert the
network [13].

Two solutions are proposed to achieve trustworthy importation of data: challenges and TLS auditing.

18 3. FBase Design

The first solution is to pose a challenge where the user importing the data, proves that they have control
over this data. For example, when importing data from GitHub, we can require a public identifier (e.g., a
public key) of the developer to be part of the “bio” profile field. This information can then be verified for
correctness by other users who query the public GitHub API. Users who verify data are called witnesses. While
this is a basic mechanism to ensure the accuracy of imported data, it heavily depends on the availability of a
public API.

The second solution is TLS auditing [8]. The key idea is to proxy a TLS connection through a random
witness, which then verifies and signs the data after the TLS connection terminates. When the TLS session
finishes, the client gives the witness the private key used to decrypt HTTPS responses from the web service.
Note that this way the witness is not able to decrypt the request made to the web service, which likely includes
credentials or access tokens. The role of a witness can either be fulfilled by other entities in the network, or
by a trusted notary service. Depending on the significance of data being imported, multiple witnesses can be
used for this. Compared to challenges, TLS auditing works when access to a public API is absent but is more
advanced.

3.6. Runtime Support
Once modules are discovered and distributed to the nodes in the network, they will be used to run in appli-
cations on the system. To accommodate this runtime support is necessary.

3.6.1. Module Interconnect Mechanisms
To combine the different modules into the user application the module interconnect mechanism is used.
This mechanism uses a top-down search approach. When a module searches for a dependency, it sends a
message on the event bus specifying the module type and name.

View modules can load Application modules. Application modules can load Service Modules and Package
modules. Service modules can load Package modules. Package modules can load other package modules.

When the lower module receives the event for itself, it registers itself with the higher module.

View Module
When a new view component is added to the system, it needs to know how to connect to the logic component
of the application. It does this by triggering an event on the event bus, specific for the type of application it
belongs to, indicating it is requesting an endpoint address. The logic component is subscribed to this event.
Its registered handler will return the REST API endpoint address to the view component through the event
bus.

To define a view component, a special file has to be created: manifest.json. This definition file stores the
attributes and the settings of the view component. Attributes of the file include name, version, and app-tag
(Application tag used for hooking on to the logic component). Each view component also needs to have a
directory named public which contains the index.html file.

3.6.2. Isolated Execution
Since all distributed components have to be executed on the host system for them to function, it can pose a
security risk by running untrusted user code. To minimize the risk that this poses, the framework allows com-
ponents to be run inside of an isolated execution environment using Docker. When this method is used an
execution environment is set up inside of the docker engine and the code will be mounted inside of this con-
tainer. This container will then be able to run the code in isolation. This method, however, will prevent other
applications running on the system from communication to it. It does allow the view layer to communicate
with the isolated components since this makes use of network sockets.

4
Implementation

This chapter discusses the implementation details of the system described in the previous chapter. The thesis
work aimed to create a proof-of-concept implementation to demonstrate the proposed concepts.

4.1. Overview
This work took a prototyping approach to get to a functioning prototype rapidly and improve from there. All
major concepts that were discussed in Chapter 3 were implemented in the proof-of-concept code base. The
code was developed alongside the research and served as an evaluation of the principles being worked on.

As the main purpose of the implementation is a proof-of-concept, this codebase is not optimized for a
production environment. Various different performance and quality optimizations can be done to improve
the quality of the implemented product. Examples of these optimizations include:

• Implement caching for module database

• Remove verbose validations found all over the code

• Making the implementation more crash-resistant

• Better integrate the torrent library by hooking into its event system for notifications

• Improve the user-friendliness

The final codebase can be found publicly on GitHub 1. The readme for the project can be found in Fig-
ure 4.1. The programming language that was used for the prototype is Python. Python was chosen because
it allows for rapid development and has access to a large collection of existing libraries. Since Python is dy-
namically typed and allows a lot of flexibility when it comes to security, it also made it easier to implement
the proposed concepts in this programming language. The codebase consists out of 5000+ lines of code.

During the development of the implementation, several improvements were made and contributed to
the overlay library used. This overlay library was only available on GitHub and needed to be used through Git
Submodules. By working with the developers of the library we made changes to the library that allowed it to
be distributed through the Python Pip package manager. This allows the library to be more easily integrated
and used by other developers. Another improvement that was made to the library was a problem discovered
in the REpresentational State Transfer (REST) protocol used for communicating with the library backend.
This bug made it impossible for HTTP clients that implemented CQRS security to communicate with the
library. We proposed a new base endpoint for the REST service that implemented this security protocol that
all other endpoints extend from. This rewritten REST service was eventually merged into the main code base
of the library. The pull requests for these changes can be found on the library’s GitHub repository 2.

1https://github.com/mitchellolsthoorn/ipv8-module-loader
2https://github.com/Tribler/py-ipv8/pulls?q=is%3Apr+is%3Aclosed+author%3Amitchellolsthoorn

19

20 4. Implementation

Figure 4.1: Readme of the IPv8 module loader project.

4.2. IPv8 - Overlay Library
IPv8 is the underlying network overlay library used in the implementation. It is responsible for providing
authenticated and encrypted communication between different peers (computer nodes) in the system. The
framework abstracts the notion of physical addresses (IP addresses) in favor of public keys. This removes the
need for applications that use this library to keep track of where different peers in the system are and how to
move data between them. IPv8 simplifies the design of distributed overlay systems.

Some other important aspects of the framework are its focus on:

• Privacy: where it is possible to choose if messages should be identifiable to all peers in the network or
only to the peers absolutely needed for the network connection (doesn’t include the receiver).

• No infrastructure dependency: allowing the network to function on its own run by the peers using the
system. This is a very important aspect of the framework as it allows the framework to support itself,
without needing external financing for server capacity.

• NAT traversal: making it possible to operate the network without static servers needed for overcoming
the NAT issues that most peer-to-peer networks face.

• Trust: one of the most important aspects of peer-to-peer systems, as it is needed to mitigate free-riding
issues in the network. In IPv8 trust is gained by recording a pattern of previous actions and storing

4.3. Framework Structure 21

these on a blockchain structure called TrustChain.

The last main aspect of the framework is extensibility. IPv8 makes use of a concept called overlays. Where
a virtual network is created in the system related to one specific application domain or topic where different
peers can subscribe to. This is a very powerful mechanism to allow extendability and modularization of an
specific application. This makes it possible for user applications to be run alongside the FBase framework.

4.3. Framework Structure
This section will go over the major components of the code and explain the folder structure used in the im-
plementation. The root directory of the project consists out of two folders:

• module_loader: The module loader directory serves as a python package for the entire code base of
the prototype. All the major components of the framework are located in this directory.

• twisted/plugins: The twisted plugins directory is a mandatory location for the storage of the frame-
work’s main application files. This requirement comes from the library Twisted which IPv8 is built on.
This library provides pseudo-multi-threading by implementing an event-based scheduler.

Inside the module loader python package, the following structure is used:

• CLI: The CLI package contains all classes and logic related to the command-line user interface of the
framework. This is the primary way to manage the network.

• community: The community package contains the overlay code. This includes the majority of all logic
related to the FBase functionality.

• event: The event package contains all classes and functionality related to the main event bus of the
FBase framework.

• REST: The REST package contains all REST endpoints needed to communicate with the FBase backend
from other applications and services. This interface also allows user applications to communicate with
their frontend

• web: The web directory contains the web frontend for the FBase framework. This is an alternative way
of managing the framework next to the CLI.

4.4. Community
The community class is the main overlay class that manages all parts of the FBase module network. This class
acts as the controller for all inputs and outputs of the system.

Figure 4.2 shows snippets of the community code base as the central part of the application logic.

4.5. Event Bus
The event bus that is implemented in the FBase prototype is built according to a PubSub design pattern. In
this design pattern, modules can register themselves to receive messages when an event has been fired with a
certain event type. These registered modules, also called subscribers, are stored in an array in memory. They
only receive a call when that event is fired. Modules that publish events, called publishers, call the event bus
with the message and the type of the message.

In the prototype, the event bus is implemented in code. For production use, however, it might be a good
improvement to run the event bus as a separate process to speed up the performance when many events are
being fired at a time. It would also allow multiple processes to be used to handle the actions performed by
the subscribers.

4.6. Interface
There are two interfaces through which the FBase framework can be managed. Originally only the CLI inter-
face was used. Later in development, the web interface was added to allow the framework to be controlled
from any platform the framework runs. This decision was made since the framework itself could be run
cross-platform, but it could only be controlled from platforms that support a CLI.

22 4. Implementation

Figure 4.2

4.6.1. CLI
The CLI interface operates through a command-line menu interface. This menu allows the user of the frame-
work to run sets of actions. The general actions are

• List all modules: This action provides a list with context actions. Each of these context actions is per-
formed on the module that is selected by the user.

• Create test module: Create an empty test module that can be used for testing the distribution of mod-
ules through the network.

• Create module: Create a module from a module definition that exists on the file system. The mod-
ule should already be created. This action only processes the module and prepares the metadata for
publishing it on the network.

The context menu for each module shows information about the module. It includes the name of the
module, the description, the identifier and the number of votes in the network for the module. Next to this
information, there are also context actions that are displayed and can be called. The context actions include:

• Vote: This context actions instructs the backend of the framework to sign the corresponding vote block
that will be created. This vote block will then be distributed through the network.

• Download: The download context action retrieves the identifier of the module and starts the download
of the module through the transport engine.

4.7. REST Endpoints 23

• Run: The run context action loads the module package namespace into the Python path of the frame-
work. Afterward, it starts the application based on the instructions provided in the module.

Figure 4.3 shows a screenshot of the CLI interface showing the list of discovered modules.

Figure 4.3: CLI interface of the FBase framework proof-of-concept.

4.6.2. Web Interface
The web interface is a website built with HTML, CSS, and JavaScript that runs as a standalone service that
communicates with the FBase backend through the REST API. This interface allows to view all discovered
modules, download them and run them. This interface does not allow a module to be created.

4.7. REST Endpoints
The FBase framework provides several REST endpoints on its API for the web interface to operate. These API
endpoints can also be used by other applications to perform actions on the overlay network.

• Catalog: The catalog endpoint is responsible for all actions related to the discovered modules on the
network. This endpoint is mostly used for retrieving information about the modules available.

• Downloads: The downloads endpoint is responsible for managing modules that need to be down-
loaded or are already downloaded. Its actions include the downloading of modules, the deletion of
modules from the host, and to retrieve the status of the downloaded modules.

• Library: The library endpoint is used to manage all modules that are currently being used by user
applications on the framework.

• Run: The run endpoint provides actions to load and run the module that is specified.

• Votes: The votes endpoint is responsible for all actions related to voting and managing votes that have
been performed.

4.8. Module Structure
This section will expand on the structure used for modules in the framework. Each module in the framework
has to be a valid Python package. This is done to make it easier to import the module on runtime. This
requires the module to have an __init__.py file in its root directory. Besides this, each module must also have
a manifest.json file. This manifest file specifies the type of module and its information. Without this file, the
module will not be detected and can not be run.

This manifest file contains a JSON dictionary. This dictionary contains key-value pairs for all the informa-
tion required.

• Name: Specifies the name of the module used for displaying in the user interface

24 4. Implementation

• Description: Specifies the description of the module used for determining if a user wants to download
and use the module

• Version: Specifies the version of the module to determine if this is the most current version of the
module

• Type: Specifies the type of the module, determining how it needs to be run and what kind of modules
can require it.

• Dependencies: Specifies the other modules this module relies on.

4.9. Module Distribution
The module distribution method was chosen based on the ability to set up an integrated content distribution
network that would work efficiently and scale. Since this is not the first time this is done and there already
exist excellent solutions out there that could accomplish this.

Web protocols
Web protocols like HyperText Transfer Protocol (HTTP) and its secure variant HTTPS are a very common
transfer protocol in the current day internet. It is used by all major Linux distribution to distribute the system
packages, by websites for downloading content and watching videos. This protocol supports file transfer
resumes, encryption. It, however, doesn’t scale well when the same content has to be uploaded to multiple
users and doesn’t natively provide content verification.

BitTorrent
BitTorrent is the protocol used by all BitTorrent clients. It provides encryption, content verification, file trans-
fer resumes, and scales efficiently when large amounts of the same content have to be distributed thanks to
its mesh architecture. That is why this protocol was selected as the basis of the module distribution of this
work.

BitTorrent also has the advantage of having a Distributed Hash Table (DHT). This DHT stores all informa-
tion about who has a copy of the content and the metadata needed to download it in a distributed fashion.
This removes the need for FBase to implement its own mechanism for this.

BitTorrent is the protocol used in the proof-of-concept.

4.10. Discovery and Voting
When a suitable transfer protocol is chosen, the next step was to make it possible for modules to be discover-
able by all nodes in the system. Since we were already building our framework on top of the IPv8 peer-to-peer
communication library. We decided it would be a good fit to use this to accomplish our goal since it was very
suited for bulk small size data gossiping. So this became our chosen method of module discovery.

Since IPv8 also provides a block-chain storage back-end it was an perfect opportunity to also implement
voting on the IPv8 library.

When a vote is done a block is created to represent this vote. This block is then stored on a blockchain. The
reason we store the votes on the blockchain is to make votes irrefutable. Voting is unidirectional. Permission
should not be needed from the other side. This is represented in the blockchain by only one party signing the
vote. Storing votes on the blockchain also prevents malicious use of votes to promote one’s module.

4.11. Blockchain
The FBase prototype is built on the TrustChain ledger introduced by Otte et al. We identified two advantages
of TrustChain over other pairwise distributed ledgers like R3 Corda and Nano.

First, TrustChain focuses on fraud detection instead of prevention and as a result, does not require network-
wide consensus. This makes TrustChain a lightweight and simple data structure.

Second, TrustChain is already used as transaction fabric within a self-sovereign, decentralized identity
system, described in the work of Stokkink et al. Availability of a self-sovereign identity system aligns with our
requirement for strong, long-lived identities.

5
Evaluation

This chapter will evaluate the proposed framework, FBase, described in Section 3. The evaluation consists of
two parts, which will show if FBase, satisfies the requirements determined in Chapter 2:

• Testing if the concept works and is viable.
• Examining the effectiveness of the discovery protocol

5.1. Testing the Viability of the Concept
To determine if the concept works and is viable, this thesis uses one non-trivial use-case. This use-case comes
from a project called Tribler.

5.1.1. Tribler
Tribler is an open-source community-driven decentralized BitTorrent client being developed and researched
at the Delft University of Technology. Its main feature is that it allows anonymous peer-to-peer communica-
tion by default. It is built on the underlying network library IPv8, also being worked on by the same group.

Besides handling the tasks of a standard BitTorrent client, Tribler also makes it possible to:

• Search for content: allowing the program to operate independently of external content search providers
that could be blocked and made it immune to limiting external actions such as legal constraints. Which
is happening more frequently nowadays.

• Torrent anonymously: routing torrent traffic through anonymized tunnels that operate using the
same principle as the TOR stack. Providing pseudo-anonymity for the two end and other observing
parties.

• Accumulate trust: all torrenting metadata is stored in a way that is not linked to an physical identity or
an IP address. This data is then translated into a trust score by calculating the ratio between the amount
of traffic communicated across the network. A positive seed ratio (the ratio between uploading content
and downloading content) indicated a positive trust value.

• Trade trust: With this trust system it is possible to prioritize or refuse services for particular users.
To increase the incentive for having a large seeder network and therefore a high trust value, Tribler
allows users with a large amount of uploaded content to exchange this gathered trust for currency on
the built-in marketplace inside the Tribler application.

This trust value, expressed as reputation inside the Tribler application, can be described as an up- and
download currency in a reputation-based peer-to-peer network. When a peer uploads more than it down-
loads, the reputation of that peer increases, and the peer can download more effectively.

25

26 5. Evaluation

5.1.2. Trust Experiment
The experiment consists of conducting a use-case study, by creating a fully functioning example that demon-
strates the composition and construction of an application with interchangeable trust models. This applica-
tion will consist of 6 components:

• Test application GUI (view layer)

• Test application (logic layer)

• Trust algorithm 1 (logic layer)

• Trust algorithm 2 (logic layer)

• Execution engine (infrastructure layer)

• Transport engine (infrastructure layer)

The domain of trust was chosen since this is a very interesting use-case that has not been explored yet in
other works. It allows users of a system to define their own notion of the concept of trust and apply this to their
system without requiring extensive knowledge about each application they are using. For this experiment,
this work makes use of two different trust algorithms: Netflow and PimRank. These two algorithms act as an
example for this experiment.

5.1.3. Mobile App Experiment
To test the robustness and flexibility of the framework, an experiment was performed to try to create a proof-
of-concept prototype of an Android application that could run the same stack of code to extend the ecosystem
to mobile platforms. Since the two major mobile platforms (Android, iOS) only run applications custom made
for these platforms, different methods had to be explored. Because iOS has a very restricted development
environment and strict security policies, this route was not further explored.

The Android platform allows app developers to run Java, Kotlin (Java-based), and C. The desired frame-
work language (Python) does not natively run on this platform. Converting the project code and dependen-
cies is not a simple or maintainable method. This approach, however, also would not work. To improve
security, the Android platform makes use of app scanning to verify that the executables haven’t been tam-
pered with. This security method severely hinders the working of the framework, since more functionality is
added by the distribution of applications through its peer-to-peer network. These new code inclusions would
trigger warnings in the Android security system and would block the app.

To circumvent this, a un-official method was used to package all the necessary code, dependencies, and
executables as a single file and execute this as a C service on the Android platform. To accomplish this, a
project called Python-for-Android was used. Python-for-Android is a build script that compiles the desired
Python system version and Python dependencies for the ARM platform and creates a directory structure that
can be used to run on Android. In Figure 5.1 and overview of the Android app structure can be seen.

Since the Android app is needed to interact with the C service in the background, a part of the app had to
be written in either Java or Kotlin. To keep this amount of code to a minimum, a decision was made to create
all GUIs in web technologies, so the view layer can be shared between mobile and desktop platforms. This
decision made it possible to include a web browser as the only component written for the mobile platform.
This web browser can then interact with the webserver and REST API running on the C service.

To package the executable code in a way that would not trigger the Android security system, the code had
to be bundled in a single file, disguised as an MP3. This format does not get checked by the Android security
system and therefore can be used for this work. Underneath the extension, the code is packaged as a GZIP
Tar-archive. Upon running the Android application, this MP3 file is unpacked in the application space of the
app and the C service is started with the right configuration to run the code.

Development was stopped after reaching the proof-of-concept stage as it is not the main goal of this work
and the development cycle is very tedious and slow. Each time a change or addition is made to the Framework
the entire app structure has to be rebuild. This process can take up to 20 minutes.

5.1.4. Result Interpretation
One part of evaluating FBase is testing if the concept works and is viable. Through the use of a non-trivial
use-case, it was demonstrated that real-world practical problems can be solved using this framework.

5.2. Effectiveness of the Discovery Protocol 27

Figure 5.1: Android app architecture.

The main advantage that the framework provided in the use-case was the introduction of modularity. On
one hand, it has the benefit of flexibility and variety in use. On the other hand, modularization improves the
manageability of maintenance for complex software like Tribler.

One of the disadvantages that followed from the use-case was the increased time that modules on FBase
took to develop the application compared to implementing it in a monolithic architecture. A second more
general disadvantage is that the module interconnect limits the complexity of the interaction between mod-
ules. This disadvantage did not limit the development of this use-case but changes the way applications need
to be developed.

5.2. Effectiveness of the Discovery Protocol
One of the most important components of FBase is the module discovery protocol. To make this platform
usable, this mechanism has to perform sufficiently effective without crippling the network with its overhead.
The discovery protocol is compared to existing methods and the effectiveness is evaluated based on a theo-
retical sensitivity analysis.

5.2.1. Existing Methods
One of the simplest and easiest approaches that can be taken to discover new modules is flooding information
packets throughout the network. This is the fastest approach for discovering modules, however, it will create
a big strain on the network when then network becomes larger. It also allows malicious nodes to DDOS the
network with relative ease.

Another approach is crawling. When crawling, nodes ask their neighboring nodes for the modules they
have discovered. This approach is much less intensive on the global network as it works on a localized view.
This method will eventually create a global coverage for module discovery, however, this method is very slow.
Each module has to be propagated through each local view. This method is not suitable for large scale module
discovery.

28 5. Evaluation

5.2.2. Sensitivity Analysis
FBase makes use of a discovery protocol based on a voting mechanism to prevent DDOSing while still being
able to effectively discover new modules. It uses selective flooding on a local scale. Flooding is a effective way
to reach a large number of nodes connected in a graph as can been seen in Figure 5.2. Even when there is a
significant overlap in the neighbors of the nodes, thousands of nodes can be reached in very few steps.

Figure 5.2: Effectiveness of module discovery (flooding).

5.2. Effectiveness of the Discovery Protocol 29

However, If the same analysis is run with the voting mechanism the results are not as effective. The reason
behind this behavior is that only a small fraction of all users will vote on a specific module. For this analysis,
this percentage is set at 1% of all nodes. Even in the most optimistic scenario where there is no neighbor
overlap, the discovery stops after two steps with 24 nodes being aware of the module.

To circumvent this problem FBase uses the concept of Seed Discovery where multiple seed points are used
for discovery when the author creates a module. This increases the chance for one of these starting points
to overcome this barrier. This effect can be seen in Figure 5.3. However, when applying Seed Discovery only
when a module is created the discovery process still halts after 6 steps with 101 starting points.

Figure 5.3: Effectiveness of module discovery (FBase without Seed Discovery on every vote, 1% vote and 0% neighbor overlap)

In a more realistic scenario where there would be a 25% overlap between the neighbors of nodes, the
result would be even less effective as can be seen in Figure 5.4.

Figure 5.4: Effectiveness of module discovery (FBase without Seed Discovery on every vote, 1% vote and 25% neighbor overlap)

30 5. Evaluation

When the Seed Discovery is applied on every vote, a continuous discovery can be found with 11 starting
points as can be seen in Figure 5.5.

Figure 5.5: Effectiveness of module discovery (FBase without Seed Discovery on every vote, 1% vote and 25% neighbor overlap)

This approach results in an effective discovery without flooding the network and preventing malicious
attempts.

5.2.3. Result Interpretation
The effectiveness of the discovery protocol is the second part that was analyzed in this evaluation. The sen-
sitivity analysis indicated that a degree of flooding is necessary to accomplish effective network coverage
without putting excessive strain on the network. When comparing different situations of selective flooding
by introducing voting, it was shown that seed discovery is necessary on every vote for the discovery to reach
global coverage.

6
Conclusion

6.1. Conclusion
Re-usability has always been a property software developers have tried to achieve. However, the complexity
of applications increases when software is more re-usable. Since this complexity decreases the usability of
the software, multiple concepts have failed to successfully implement the re-usable aspect in their software
designs.

As software re-use has the potential of high development efficiency, it is still worth pursuing this goal. The
proposed concept strives to find a balance between these two contradicting principles. The problem analysis
led to the following research aims in developing the conceptual framework FBase:

• How to find a trade-off between re-usability and usability?

• Can we use social trust and crowdsourcing to improve security of libraries?

• How to ensure dependency availability efficiently and securely?

The main aim of this research is to find a trade-off between re-usability and usability. This work sets out to
achieve this balance by limiting the granularity of re-usable modules to a distinct set of four component types.
To further enhance usability, an ecosystem was proposed to mask the negative effects that are associated with
re-usability. Previous attempts at solving the re-usability problem have mostly focused on an architectural
level in contrast to FBase. By integrating sub-systems into one ecosystem it improves the usability of the
framework.

The secondary aim of the research is to address the corresponding security problems that re-usability
creates. The approach, to use social trust and crowdsourcing to improve the security of libraries, was selected
as a platform with external dependencies that requires the notion of trusting people. Since trust is a social
construct, which can not fully be solved by automated systems, it needs to be gathered from other users. The
way to achieve this is by letting the combined expertise of all users in the system determine if a module can
be trusted.

The third and last aim of this research is to ensure dependency availability efficiently and securely. An
important aspect of dependency management is preventing code alteration in re-usable code during distri-
bution. Another aspect is ensuring that new versions do not introduce security vulnerability to applications
using them. Finally, dependencies always need to be available despite changing possible author intentions.
Current popular approaches lack the previously mentioned aspects. FBase addresses these aspects by imple-
menting an integrated autonomous discovery and distribution mechanism.

FBase uses the aforementioned approaches to satisfy the research aim but needs to work and be viable to
be considered successful. An evaluation showed that FBase can be used in a non-trivial use-case to increase
the flexibility and variety of its use, and improve the manageability of maintenance. The disadvantage, the
limitation on the complexity of the interaction between modules, did not limit the development of this use-
case but changes the way applications need to be developed.

31

32 6. Conclusion

6.2. Discussion
The research aims for this project have no singular answer. They form a guideline to approach a problem
that has not been solved, despite numerous attempts. This work is making yet another attempt to solve that
problem. It has taken into account the successes and failures of previous attempts to improve the current
state of the field.

References

[1] Cargo crev. URL https://github.com/crev-dev/cargo-crev.

[2] Backdoor in docker image. URL https://arstechnica.com/information-technology/2018/06/
backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/.

[3] H2020 fasten project. URL https://www.fasten-project.eu/.

[4] This year in javascript: 2018 in review and npm’s predictions for 2019. URL https://medium.com/
npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef.

[5] Malicious code in purescript. URL https://harry.garrood.me/blog/
malicious-code-in-purescript-npm-installer/.

[6] Reuse: Is the dream dead? URL https://dzone.com/articles/reuse-dream-dead.

[7] Winamp plugin community. URL https://web.archive.org/web/19981205123334/http://
winamp.com/plugins/index.html.

[8] Tlsnotary - a mechanism for independently audited https sessions. URL
https://tlsnotary.org/TLSNotary.pdf, 2014.

[9] Richard Gendal Brown. Introducing r3 corda: A distributed ledger designed for finanial services, 2016,
2017.

[10] Russ Cox. Surviving software dependencies. Communications of the ACM, 62(9):36–43, 2019.

[11] Peter De Bruyn, Herwig Mannaert, Jan Verelst, and Philip Huysmans. Enabling normalized systems
in practice–exploring a modeling approach. Business & Information Systems Engineering, 60(1):55–67,
2018.

[12] Martijn de Vos, Mitchell Olsthoorn, and Johan Pouwelse. Devid: Blockchain-based portfolios for soft-
ware developers. In 2019 IEEE International Conference on Decentralized Applications and Infrastruc-
tures (DAPPCON), pages 158–163. IEEE, 2019.

[13] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems, pages 251–260.
Springer, 2002.

[14] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan
Mustafin, and Larisa Safina. Microservices: yesterday, today, and tomorrow. In Present and ulterior
software engineering, pages 195–216. Springer, 2017.

[15] Tom Ewer. 14 surprising statistics about wordpress usage. ManageWP. Np, 7, 2014.

[16] William Frakes and Carol Terry. Software reuse: metrics and models. ACM Computing Surveys (CSUR),
28(2):415–435, 1996.

[17] William B Frakes and Kyo Kang. Software reuse research: Status and future. IEEE transactions on Soft-
ware Engineering, 31(7):529–536, 2005.

[18] Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M Gonzalez-Barahona. The evolution of
the laws of software evolution: A discussion based on a systematic literature review. ACM Computing
Surveys (CSUR), 46(2):28, 2013.

[19] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software reuse: architecture process and organization
for business success, volume 285. acm Press New York, 1997.

33

https://github.com/crev-dev/cargo-crev
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://www.fasten-project.eu/
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://dzone.com/articles/reuse-dream-dead
https://web.archive.org/web/19981205123334/http://winamp.com/plugins/index.html
https://web.archive.org/web/19981205123334/http://winamp.com/plugins/index.html

34 References

[20] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR), 24(2):131–183, 1992.

[21] Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE, 68(9):
1060–1076, 1980.

[22] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M Turski. Metrics
and laws of software evolution-the nineties view. In Proceedings Fourth International Software Metrics
Symposium, pages 20–32. IEEE, 1997.

[23] Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. URL
https://nano.org/en/whitepaper, 2017.

[24] Sergio Demian Lerner. Dagcoin: a cryptocurrency without blocks, 2015.

[25] Tom McCourt and Patrick Burkart. When creators, corporations and consumers collide: Napster and the
development of on-line music distribution. Media, Culture & Society, 25(3):333–350, 2003.

[26] Maurizio Morisio, Michel Ezran, and Colin Tully. Success and failure factors in software reuse. IEEE
Transactions on software engineering, 28(4):340–357, 2002.

[27] Sam Newman. Building microservices: designing fine-grained systems. " O’Reilly Media, Inc.", 2015.

[28] INC NULLSOFT. The winamp mp3 player, 1999.

[29] Pim Otte, Martijn de Vos, and Johan Pouwelse. Trustchain: A sybil-resistant scalable blockchain. Future
Generation Computer Systems, 2017.

[30] S Popov. The tangle, iota whitepaper, 2018.

[31] Tom Preston-Werner. Semantic versioning 2.0. 0. URL: https://semver. org, 2013.

[32] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Semantic versioning versus breaking changes:
A study of the maven repository. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation, pages 215–224. IEEE, 2014.

[33] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning and impact of breaking
changes in the maven repository. Journal of Systems and Software, 129:140–158, 2017.

[34] Václav Rajlich. Software evolution and maintenance. In Proceedings of the on Future of Software Engi-
neering, pages 133–144. ACM, 2014.

[35] Donald J Reifer. Practical software reuse. John Wiley & Sons, Inc., 1997.

[36] Jan S Rellermeyer, Michael Duller, and Gustavo Alonso. Consistently applying updates to compositions
of distributed osgi modules. In Proceedings of the 1st International Workshop on Hot Topics in Software
Upgrades, page 9. ACM, 2008.

[37] Thomas A Standish. An essay on software reuse. IEEE Transactions on Software Engineering, (5):494–497,
1984.

[38] Johannes Thönes. Microservices. IEEE software, 32(1):116–116, 2015.

[39] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In iNetSec,
pages 112–125. Springer, 2015.

[40] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Historical and impact analysis of api
breaking changes: A large-scale study. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 138–147. IEEE, 2017.

[41] Stefano Zacchiroli. Debian: 18 years of free software, do-ocracy, and democracy. In Proceedings of the
2011 Workshop on Open Source and Design of Communication; New York, NY, USA: ACM, pages 87–87,
2011.

	Introduction
	Code Evolution
	Code Re-use
	Re-usability vs Usability

	Component Terminology
	Research Goal
	Research Aim
	Research Scope
	Research Structure

	Requirements
	Principles
	Trustworthy Code
	Runtime Support

	FBase Design
	Overview
	Generic Modules
	Module Discovery and Distribution
	Identifier and Versioning
	Discovery Protocol
	Distribution
	System Strategies

	Blockchain Organizational Principles
	Trust
	Verifiable Modules
	Identity Profiles
	Verified Identities

	Runtime Support
	Module Interconnect Mechanisms
	Isolated Execution

	Implementation
	Overview
	IPv8 - Overlay Library
	Framework Structure
	Community
	Event Bus
	Interface
	CLI
	Web Interface

	REST Endpoints
	Module Structure
	Module Distribution
	Discovery and Voting
	Blockchain

	Evaluation
	Testing the Viability of the Concept
	Tribler
	Trust Experiment
	Mobile App Experiment
	Result Interpretation

	Effectiveness of the Discovery Protocol
	Existing Methods
	Sensitivity Analysis
	Result Interpretation

	Conclusion
	Conclusion
	Discussion

	References

