Dollynator

Final Report for TU Delft’s Software Project
CSE2000

Giorgio Acquati, Tommaso Tofacchi, Roberta Gismondi,
Giacomo Mazzola, Daan Goossens

EEMCS
TU Delft
April 2020

Preface

This report was written by a group of five students at Technische Universiteit
Delft (TU Delft), each of them completing the second year of their Bachelor
of Science in Computer Science and Engineering. The report aims to present
and describe the development and work done by the team on Dollynator, an
autonomous self-replicating botnet of Tribler exit nodes. The work was part
of the Software Project (CSE2000), iteration of 2020, in collaboration with TU
Delft Blockchain Lab.

This report was written assuming the reader has a basic understanding of
the difference between centralised and decentralised distributed system, along
with basic knowledge on the principles of Reinforcement Learning (in particular
Q-Learning). An overview of the previous efforts made on the project and its
past development might also help the reader to have a clearer understanding
of the subject presented. A more conceptual and high level description of the
system is provided in Chapter 5, while Chapter 6 contains detailed descriptions
of the system implementation. Readers who are interested in the ethical con-
sequences of our work may consult Chapter 8 for further information regarding
the aforementioned implications.

We would like to thank our TU Delft Coach, T.A.R. (Thomas) Overklift
Vaupel Klein, and our Teacher Assistant Julian Van Dijk for their advice and
feedback during the development. We would also thank our Technical Writing
teacher, drs. M. (Mariétte) Bliekendaal for her thorough supervision during
the writing process. Finally, we would like to express our gratitude to M.A.
(Martijn) de Vos, MSc and Dr. Ir. J. A. (Johan) Pouwelse for granting us the
opportunity to contribute to the project.

Delft, 10 June 2020

Gliorgio Acquati
Roberta Gismondi
Daan Goossens
Giacomo Mazzola
Tommaso Tofacchi

iii

Summary

Tribler is an open source Peer-to-Peer file sharing client for the BitTorrent pro-
tocol, created as a research project of Delft University of Technology. Tribler
includes its own overlay to BitTorrent, to provide a Tor-like onion routing net-
work and aims to provide its users with anonymity and security with end-to-end
encryption.

Among other projects carried on by the Tribler team, there’s Dollynator,
which aims to create a Darwinian reinforcement learning system based on self-
replication. Dollynator is a system composed of several autonomous agents
which run Tribler exit nodes. Each node can earn reputation in the form of
megabyte tokens, which are sold on a decentralized Tribler market in exchange
for Bitcoin currency. Each agent then replicates itself and buys VPS! instances
to host the replicated nodes, effectively creating a self-replicating botnet. In
order to automatically buy VPS instances, Dollynator makes use of Cloudomate,
an unpermissioned open computer API developed as part of the Tribler project.
Thanks to Cloudomate, Dollynator is able to automatically buy hosting services
and expand itself on the internet.

1Virtual Private Server: virtual machine sold as a service by a cloud hosting service.

iv

Contents

Preface iii
Summary iv
1 Introduction 1

2 Designing a botnet of self-replicating nodes 3
2.1 Make competing agents collaborate 3
2.2 Evolutionary based reinforcement learning approach 4
2.3 Feasibility study 5
2.4 Riskanalysis 6

3 Requirements 8
3.1 Functional requirements 8
3.1.1 MoSCoW o 8

312 Musthave oo 9

3.1.3 Shouldhave o 9

3.14 Couldhave 10

3.1.5 Won'thave 10

3.2 Non-functional requirements 11

4 Preliminary work 12
4.1 Updating to latest version of Tribler 12
4.2 Fixing Cloudomate L L. 12
4.3 Upgrading to Python 3.6. 13

5 Product design 14
5.1 Choosing a VPS provider for replication 14
5.2 Communication between nodes 15

6 Implementation 16
6.1 Reinforcement learning for VPS choice 16
6.2 Gossip algorithm L oo 17

7 Extras: a new market strategy 19
7.1 Crossovers and moving averages« 19
7.2 Moving average implementationo 0L 19

8 Discussion on ethical implications 21
9 Conclusion 23
References 24
Appendix A - Product Feedback 26

Appendix B - System’s Component Diagram
Appendix C - Original Project Discription

Appendix D - Project Skills
Roberta Gismondi
Giacomo Mazzola e
Daan GoOSSENns e e
Giorgio Acquati
Tommaso Tofacchi

Appendix E - Info-sheet

vi

26

28

29
29
31
33
35
37

39

1 Introduction

In today’s digital world, we rely on the internet as a primary source of informa-
tion. Moreover, all sorts of complex systems are connected together, constituting
what can be considered one of the largest projects in the history of humankind.
However, it is often forgotten that Internet providers and government agencies
are in control of this service and are able to restrict access to the network to its
users at any moment. Therefore, the necessity for secure, anonymous commu-
nication on the internet has arisen over the past years. Tribler aims to create
a decentralized system for exchange of data, and provides an anonymous and
secure connection to a network of more than 2 million users [1|[2]. In order to
achieve this goal the system provides the community with multiple entry-points,
that is Tribler exit nodes. For this reason Tribler developed Dollynator: a self-
replicating exit-node that aims to create a botnet in autonomous expansion.
Nonetheless, as per now, Dollynator offers poor decision-making when it comes
to replicate itself and decide which Virtual Private Servers (VPSs) to buy for
its offspring. Currently, Dollynator uses a Q-Learning reinforcement algorithm
that quickly converges to a single, optimal VPS provider: albeit it may seem the
most obvious and effective approach, it exposes the entire network to a critical
single point of failure situation, as all of the nodes may end their lives if the sin-
gle VPS provider on which they are all installed suddenly becomes unavailable.
Moreover, information of VPSs are simply passed from each Tribler node to its
replicated offspring, which brings an important loss of knowledge of the whole
network on what the optimal VPS-choice strategy might be.

To solve the outlined issues, we will be following a two-step approach. First
we will focus on improving the current VPS-selection algorithm, such that it
takes into account variables about the entirety of the network. We will build on
the implemented Q-Learning algorithm by exploiting the concepts of Evolution-
ary Game Theory and Swarm Intelligences, allowing every node in the network
to bring its own contribution into finding the most effective global replication
strategy and avoid pitfalls caused by greedy approaches. In order to do so, nodes
should be able to communicate with each other, thus leading to our second goal.
To obtain agents collaboration, we will implement a Gossip Algorithm, which
effectively exploit the distributed nature of Tribler’s nodes and implements in-
formation exchange (“gossiping”) amongst agents.

The report will present a more detailed analysis of the problem, including
previous efforts to tackle it, in depth research on its nature and feasibility study,
in Chapter 2. Chapter 3 will be reserved to list and explain the requirements
gathered in agreement with the client. An overview of the preliminary work to be
done in order tackle the core problem can be found in Chapter 4, while Chapter
5 and 6 explain the design of the solution we presented and the technical details
of its implementation. Chapter 7 gives an overview of some extra work done
with regards to Dollynator’s market strategies. Eventually, a reflection about
the ethical implications of our work is included in Chapter 8. Conclusions are

drawn in Chapter 9.

2 Designing a botnet of self-replicating nodes

During our collaboration with Delft Blockchain Lab we will focus our efforts on
two main aspects of the project, namely the chance to exchange information
through a decentralised communication protocol and the support for collective
learning during the process of buying a VPS for replication purposes.

2.1 Make competing agents collaborate

Our botnet, just as any other example of peer-to-peer system, is a massively
distributed service. As stated by McKenzie Alexander, such a shift in scale
does not come without the necessity to analyse important characteristics of
large-scale distributed systems and changes in computing paradigms [3].

For example, centralised management is an unfeasible solution for large DSs.

The presence of a central node which is able to localise data and monitor the sys-
tem, maintaining a consistent and global view of it, would become a bottleneck
for the system performance and a threat to its fault tolerance. Furthermore,
systems of such scale are highly dynamic, either due to nodes leaving, joining
or failing. In order to address the need of a new paradigm to deal with this
premises, a gossip-based communication is introduced in [3|. Gossiping (or
epidemic) protocols have been around for decades now and they have shown
to have many desirable properties for data dissemination, fast convergence, load
sharing, robustness and resilience to failures. As stated in the paper, both tra-
ditional and not protocols adhere to the same basic gossiping framework.
Each node of the system maintains a partial view of the environment. Interac-
tions between peers are periodic and pair wise exchange of data among peers
that is organised as follows: every node selects a partner to gossip with among
all its acquaintances in the network and it selects the information to be ex-
changed. The partner proceeds to the same steps, resulting in a bidirectional
exchange between partner nodes.

To date, gossip learning (decentralised peer-to-peer machine learning pro-
tocols based on gossiping) is considered to be the state-of-the-art approach when
it comes to train models across wide DSs. This machine learning protocol has
been proved to be both scalable and efficient; yet no remarkable application in
the industrial field is known. In [4] many questions on its performances in real
world scenarios are answered. The goal of the study, as stated in the paper, is
to validate the protocols in real-world conditions. To do that, three of the as-
sumptions on the system that are likely to be violated in realistic environments
are lifted, namely:

e a fully distributed data model
e unrestricted network topology
e homogeneous processing and communication speed

Nonetheless, the protocol is shown to possibly be extended to handle not
fully distributed data and that its performance is not affected by the sample

size distribution across the nodes.

The results also proved that it can be used in networks with restricted topolo-
gies, however convergence could be extremely slow. Lastly, the protocol can
also handle different communication speeds across nodes, as long as their speed
distribution is independent from the data stored in the node.

[5] investigate a distributed multi-agent reinforcement setup in a distributed
system, where agents follow a distributed Q-Learning technique (@QD-Learning)
and collaborate by means of a local processing and mutual information exchange
to converge to the overall system-like optimal solution. The proved success of
this solution suggests, once again, the validity of a gossip protocol application
to the learning process of the algorithm responsible for the VPS selection in our
botnet replication task.

2.2 Evolutionary based reinforcement learning approach

Evolutionary Game Theory is an application of traditional, mathematical
theory of games to evolutionary prone, biological contexts, proposed as a conse-
quence of how strategic aspects of evolution are affected by frequency dependent
fitness functions. According to [6], there are two main approaches to EGT. The
first one, derived by the work of Smith and Price, identifies as its principal
analysis tool the concept of evolutionary stable strategy (ESS). The second ap-
proach constructs a dynamic model by which the frequency of the strategies
changes in the population and aims to analyse the evolutionary dynamics that
ensue that assumption. As it is easily inferred by the problem description, the
latter approach is more of interest to us. While evolutionary Game Theory has
been used to give insight with regards to multiple aspects of human behaviour,
it has become of increased interest to computer scientists as well, due to the
many possible applications of its principles and concepts to computationally
intelligent models for optimisation purposes.

As stated in [7], an Evolutionary Game Theory approach can be taken to-
wards five main research agendas of multi-agent learning, including algo-
rithms describing how agents learn in the context of other learners and how
they should cooperate in order to achieve distributed control of dynamic sys-
tems. In particular, the properties mentioned in [8] of multi-agent systems
(MAS), such as our botnet, seem to correspond well with EGT properties for
two main reasons. First, MASs consist of independent agents, each trying to ac-
complish a certain goal while not being aware of other agents’ intentions nor the
exact global state of the environment (in other words, with limited viewpoint).
Secondly, MASs are dynamic systems where agents change their behaviour over
time as a consequence of other agents’ behaviours. EGT provides a framework
in which consequences of these assumptions can be easily analysed.

Therefore, an evolutionary game theory approach to PSO (particle swarm
optimisation) was proposed in [9]. PSO is a swarm intelligence algorithm
that can be used to depict the sociological behaviour of a group of people. The
algorithm variant presented in the paper aims to introduce evolutionary game
theory in the traditional PSO formulation, proposing an evolutionary game

based particle swarm optimisation algorithm (EGPSO) that uses replicator dy-
namics to analyse the learning of the agents in the model. Simulations proved
the algorithm efficiency, suggesting once more that an EGT integration could
be of wide benefit to our purpose.

Nonetheless, the assumption of a unique, global best option to aim to is,
in the case of our botnet, a possible pitfall of the model. In fact, due to fault
tolerance requirements, it is of great importance that some variety in the VPS
provider is taken into account while choosing the best trade-off option. An
algorithm that converges to the choice of the same single VPS offer for every
node in the system could lead to inauspicious consequences if a server provider
shutdown occurs for whatever reason. As far as multiple optima are concerned,
[10] presents a way to handle multi-objective optimisation problems using
multi-swarm cooperative particle optimisers (MC-MOPSO). The algorithm or-
ganises the set of particles in a master-slave swarm architecture. Fach slave
swarm is designed to find all the non-dominated optima of the multi-objective
problem, then the master swarm generates a set of non-dominated solutions
starting from the results of the slaves, in order to eventually find the optimal
solution to a multi-objective problem; this and other shrewdness presented in
[10] produce a PSO option which turns out to be highly competitive to solving
multi-objective optimisation problems.

2.3 Feasibility study

The need for an autonomous, self-replicating botnet comes from Tribler’s in-
tention to protect its users’ privacy. To access the Tribler network you need
a Tribler exit-node. As stated in [11], an exit-node is a publicly visible en-
tryway into the anonymous network; being the connection between anonymity,
notoriety leaves this entity vulnerable.

Dollynator and Cloudomate cooperate in order to provide Tribler users with
a fortified and decentralized network of exit-nodes.

Tribler community counts roughly 231k unique users. This information alone
already represents a solid reason for our team to contribute to an overall im-
provement of Dollynator, the software which is responsible for the network reach
and entry-point provision.

The changes that we aim to apply to the existing code base consist of the in-
tegration of new protocols (namely Gossiping protocols for distributed learning)
and the modification of existing algorithms (such as a revision of the computa-
tional intelligence responsible for the replication dynamics). The first point of
improvement, namely the introduction to the network of a form of communica-
tion following the gossiping paradigm, is reasonable to undertake as it satisfies
the need for a way to reliably and consistently share information across the
nodes, both for fault tolerance and decision-making purposes. The protocol is
shown to have good performances on distributed systems with characteristics
that are similar to those of our botnet [4], thus making the choice of gossiping
a feasible solution. The second operation in our agenda has multiple possible
implementation options. On one hand, we evaluated the possibility of improv-

ing the existing Q-Learning algorithm. On the other hand, we researched more
suitable options, such as Swarm Intelligence models. Either way, being the two
alternatives both solid and reliable solutions for decision-making tasks [5] [9],
they both represent suitable approaches to our core problem.

More generically, every aspect of our go-to strategy has been validated by
thorough research and past industrial employment. Moreover, it does not com-
port further financial investment in hardware technology or infrastructure.

As per now, software maintenance and preliminary work on the present-day
system are in order before we can start tackling the core problem; still, taken
into account the current state of the software and the full time commitment of
each member of the development team, we can conclude that the time span of
ten weeks is appropriate for the estimated workload.

2.4 Risk analysis

Due to the nature of Tribler and Dollynator, our plan of development of the
project is exposed to risks on different levels, summarized and further explained
as follows:

e cxternal risks, which affect the project directly, but are eventually involv-
ing issues occurring outside of Dollynator’s scope.

e implementation risks, that may arise when progressing on one or more
multiple requirements.

e team-related risks, concerning our basis of knowledge on what we are going
to develop.

First of all, issues may arise as a result of failures in Cloudomate. With
Cloudomate being the only viable option to buy VPS services for the exit-nodes,
its incorrect operation would prevent us from examining any improvement to
Dollynator in a real-life scenario. At the current state, Cloudomate is not guar-
anteed to function with the previously implemented VPS providers, thus our
need to check — and eventually fix — its correct behaviour. Due to time con-
straints, our goal is to fully re-implement just one provider; however, as stated
in the requirements section, one of the Must Haves concerns the refinement of
the VPS selection algorithm. In order to deploy the software out of the test-
ing scope and check its behaviour when choosing the optimal VPS plan in a
production environment, access to multiple VPS providers is required. Such a
feature could not be granted even if all of the currently supported providers
were to be fixed: the aforementioned providers may, for instance, change their
registration web pages and nullify the efforts. To prevent such a risk, we will
set up a testing environment which will enable us to verify the correctness of
our algorithm’s implementation independently of similar situations.

A second pitfall of the project could emerge during the Gossip learning im-
plementation. Although we have found a variety of sources about the topic

which would grant feasibility in applying this model under each single Dollyna-
tor’s constraint, we have not encountered any reading proposing an application
of Gossip learning while all of said constraints are enforced at the same time.
Albeit unlikely, the possibility of failing to deliver a correct implementation of
the technique due to the current organization of Tribler and Dollynator — ei-
ther because of technical-related issues or security-related concerns — is to be
considered.

Lastly, a factor of risk is given by the lack of general programming experience
in the field of distributed systems. No member of the team has previously
coded focusing on this aspect of the project, although we are all acquainted
with the concepts related to it. Due to this and to the ease of access to highly
informative sources on the matter, we are confident in stating that such a risk
will be minimized throughout the project development. A similar argument
could be raised for other specific topics as well — laws of finance when dealing
with implementing new market strategies, for instance -, but in all of these cases
the same consideration can be applied.

3 Requirements

After a thorough analysis of the pre-existing code-base and the previous ef-
forts on the Dollynator project, taking into account the recommendations and
remarks of our predecessors and consulting the client we established a set of
requirements to be fulfilled as part of our contribution to the project and by
the end of our experience. The requirements consist of both functional and
non-functional specification for our system. The functional requirements are
presented in MoSCoW style first and further explained in a later sub-section,
the non-functional requirement are listed in the last sub-section of this chapter.

3.1 Functional requirements

The process of requirement analysis, carried out along with the client and super-
vised by both the TA and TU Coach, resulted in the following list of functional
requirements.

An overview of the specifications for our system is given below as a MoSCow
list; the requirements are divided into Must Have, Should Have, Could Have and
Won’t Have. Further explanation of each of the requirement in this list can be
found in later sub-sections.

3.1.1 MoSCoW
e Must Have:

— Cloudomate must support at least one VPS service.
— Nodes must be able to share information through gossiping.

— Nodes must be able to perform reinforcement learning on the infor-
mation gathered from the network, and exploit such information for
VPS provider choice.

— Dollynator must have support for the latest version of Tribler.

— Dollynator must be upgraded from Python 2.7 to 3.6.
e Should Have:

— Agents should be able to transfer Bitcoins before dying.

— The agents’ network should be resilient to permanent nodes failures.
e Could Have:

— Cloudomate could support multiple VPS providers.

— Agents could have access to new market strategies (moving average
/ deep learning).

— Agents could apply a Q-learning algorithm for choosing VPS, based
on multiple service features.

— Agents could apply a Q-learning algorithm for choosing the market
strategy.

— Dollynator could have a visualisation tool for the botnet.
Won’t Have:

— Cloudomate will not implement new features.

— Dollynator won’t have an algorithm to choose what VPN service to
purchase.

3.1.2 Must have

Cloudomate must support at least one VPS service: Since Cloudo-
mate has not been updated in a while, all of the VPS providers are not
compatible with it anymore. Therefore, we need to update Cloudomate
to restore compatibility with VPS providers. Our goal is to get Cloudo-
mate to support at least one VPS providers, which will enable us to run
Dollynator in a real-world scenario.

Nodes must be able to share information through gossiping: In
order to reach better cooperation between agents, we want to implement
a gossip algorithm to share important information between agents. This
will enable the agents to make a more informed decisions throughout their
life cycle (e.g. VPS service choice for replication).

Nodes must be able to perform reinforcement learning on the
information gathered from the network, and exploit such infor-
mation for VPS provider choice: as stated in the previous require-
ment, we want to create a network of collaborating agents. Once the nodes
are able to communicate and share information, we want to exploit such
information by applying reinforcement learning on VPS service choice.

Dollynator must have support for the latest version of Tribler:
in the current state, Dollynator uses an old version of the Tribler protocol,
which is not compatible with the current release. Therefore, we need to
update Dollynator in order to have the botnet run Tribler exit nodes.

Dollynator must be upgraded from Python 2.7 to 3.6: Since
Python 2.7 reached its EOL? deadline, we want to upgrade Dollynator
to Python 3.6 in order to make it more maintainable in the future.

3.1.3 Should have

Agents should be able to transfer Bitcoins before dying: When a
node’s life cycle comes to an end, all of the Bitcoin currency that it has
earned needs to be transferred to other nodes in order to prevent its lost.

2End Of Life

The agents’ network should be resilient to permanent node fail-
ures: since an agent could be permanently shut down at any time by its
VPS provider, agents should share the private key to their Bitcoin wallet
in order to prevent loosing access to it.

3.1.4 Could have

Cloudomate could support multiple VPS providers: adding sup-
port for multiple VPS services would make Dollynator less dependent on
any of the providers, resulting in a more resilient botnet. Having multiple
VPS services to choose from would also enable us to test the VPS choosing
algorithm in a real world scenario.

Agents could have access to new market strategies (moving av-
erage / deep learning): Currently, the market strategies applied by
the nodes for selling reputation tokens are very basic and are not very
efficient when establishing the price for said tokens. We would like to im-
prove these strategies by implementing different approaches which could
increase the revenue generated by the nodes and therefore increase their
chance of reproduction.

Agents could apply a Q-learning algorithm for choosing VPS,
based on multiple service features: Currently, each node reproduces
using the cheapest VPS option available, but not taking into account
the different features(CPU cores/memory /bandwidth) offered by different
VPS services, which could potentially make a node perform better. We
would like to implement a Q-Learning algorithm that takes these features
into account as well.

Agents could apply a reinforcement learning algorithm for choos-
ing the market strategy: If market strategies are added, there are more
options for the agents to choose from, so reinforcement learning can be
used to learn to use the optimal market strategy.

Dollynator could have a visualisation tool for the botnet: We
would like to implement a tool that creates visual representation of the
state of the network or parts of it. This tool would be useful to gain
insights about the network for both development and marketing purposes.

3.1.5 Won’t have

Cloudomate will not implement new features: Our goal is to bring
Cloudomate to a functioning state, but not to implement new features.
The focus of our project is Dollynator, which determines what improve-
ments we need to make to Cloudomate.

Dollynator won’t have an algorithm to choose what VPN service
to purchase: Different VPN services offer different benefits and imple-
menting an algorithm to establish which one would be the best option

10

3.2

would be beneficial. However, we are not going to focus on this aspect
of the project which could make for a good starting point for future im-
provements.

Non-functional requirements

The requirements analysis produced a list of non-functional specifications for
our system. The following list contains both system-related features and norms
regarding the development process.

The agents will run on VPS running Ubuntu.
Dollynator shall have at least 70% line test coverage.
The team should apply "pull based development".

Pull requests need at least two approvals, excluding the contributors of
the code under review.

Code needs to be commented: each method needs a comment that explain
the behaviour of the method

11

4 Preliminary work

Dollynator received its last GitHub contribution in January 2019. Before further
developing any other aspect of it, the project needs to be reviewed in order to
function in nowadays world: dependencies to other libraries/projects (Cloudo-
mate, for instance) need to be updated and, more in general, the entire codebase
requires fixes according to the changes in the environment occurred in the past
year.

4.1 Updating to latest version of Tribler

The purpose of our network is to run a botnet of Tribler exit nodes. In order
to allow the agents of the network to be used as exit-nodes, Dollynator strictly
relies on the Triber submodule. Compared to older releases of the software,
Tribler latest version was subjected to heavy refactoring operations. For this
reason, both the software dependency and its submodules import were to be
adjusted.

In particular, Tribler reference in PlebNet was updated to point to the devel
branch of its repository. Furthermore, to allow PlebNet to effectively import
and exploit Tribler modules, the respective paths to those submodules were
included in the PYTHONPATH variable through the install script. Also the
PYTHONPATH environment in the twisted module, that is accountable for
running Tribler in the background, was updated.

4.2 Fixing Cloudomate

Another relevant dependency of the Dollynator system is Cloudomate. Cloudo-
mate is the software responsible for smooth and automated VPS purchases. Its
services are consumed by Dollynator both during the decision process (to re-
trieve VPS providers and options) and during the replication process (the VPS
to replicate onto is bought using Cloudomate). Due to this essential role in the
economy of our system, part of our contribution to the project was to make sure
that Cloudomate successfully integrates at least one VPS provider.

The first step to achieve this goal was to run the Cloudomate test suite
provided by our predecessors. Tests regarding the process of VPS purchasing
were of two types, according to their testing purposes. Part of them aimed to
check whether the option regarding the providers’ offers and services could have
been retrieved using the software, while the rest was responsible to test that the
system was indeed able to successfully buy one of these options in an automated
fashion.

As it turned out, only one of the VPS providers integrated by the previous
group was still able to successfully pass all these tests, namely QHoster.

Nonetheless, to optimise the efforts, the Linevast provider was the first
provider whose integration was analysed and fixed as it is the one whose in-
terface changed the least over time (changes were estimated using waybackma-
chine to retrieve the state of the website by the time Cloudomate was lastly

12

developed). As Linevast’s gateway for bit-coin payments changed from BitPay
to Coinbase a new way of conducting automated payments was needed. To this
purpose, Selenium was employed. Selenium is a tool that allows automated
browsing; in the case of Cloudomate it was used to develop an automated Fire-
fox browser. The browser was used to proceed to the payment process and to
retrieve payment details.

In order to test that Cloudomate was able to successfully run in a real-
world scenario we used part of our budget to conduct outer-world experiments.
Unfortunately, the tests suggested that Linevast wasn’t a dependable service to
rely on. QHoster, on the other side, was integrated to Cloudomate. Although
the system is able to successfully buy a QHoster VPS instance, the available
purchase options for the provider all present kernel incompatibilities with the
latest version of Tribler, for this reason, it is currently impossible to run an exit
nodes on the purchased server.

4.3 Upgrading to Python 3.6

The preexisting code-base for Dollynator was developed in Python 2.7. As
Python 2 approaches its EOL?, the need for an upgrade to a later version of the
language was in order. For this reason, part of our contribution to the project
was to modify the code baseline to support Python 3.6.

In order to adapt the existing Python 2 code to be compatible with a Python
3 interpreter, the futurize script from python-future package was run.
The futurize script passes Python 2 code through all the appropriate fixers to
turn it into Python 3 code. The script is advised to be run in two stages: stage
one is for “safe” changes that modernise the code but do not break Python 2
compatibility while stage 2 is to complete the process [12]. Only stage one was
run on our project, while many adjustments were made manually.

In order to guarantee completely functional Python 3 support changes were
made both to the Python code of the project itself and its dependency-management
related components. The scripts responsible for dependency installation and
requirements fulfilment were updated to fetch the latest (and thus Python 3
compatible) version of the packets.

The preliminary work made to upgrade the code-base to Python 3 allowed
us to safely proceed developing the software using a reliable and stable version
of the programming language.

3End Of Life

13

5 Product design

Our goal is to provide Dollynator with a renewed and better algorithm for
decision making purposes, based on a collective learning model where each and
every node in the botnet is able to fetch and exploit information from the entire
network. It order to achieve this goal, we designed the product in two main
components: a protocol, based on gossip learning, that aims to conveniently
share information between agents and a new, distributed, reinforcement learning
algorithm, which is able to consume the aforementioned information and result
in an effective decision-making process.

5.1 Choosing a VPS provider for replication

One of the core components of our system is the algorithm responsible for pur-
chasing the Virtual Private Server where a node will replicate itself onto. The
process of choosing a service provider is conducted using Reinforcement Learn-
ing techniques. Before our contribution to the project, a node would base its
decisions on information and previous experience regarding the node’s life cycle
only, without any contribution from external agents or botnet components. Our
main goal was to modify the current algorithm to include the ability of learning
in a “collective” fashion, i.e to gather relevant information from other nodes in
the botnet and exploit it to pick a VPS to purchase.

In order to do so, we employed a collective variant of Q-Learning, namely
QD-Learning. QD-Learning is a distributed version of Q-Learning, in which
agents of a network collaborate by means of local processing and mutual ex-
change over a communication network to achieve a shared goal. Q-Tables are
updated, by the time of a new purchase, both locally and by means of a merging
process of tables from the network. The new, updated value is a weighted sum
of the local and remote information, where the weights of the two components
change over time to give increasingly higher relevance to the former source of
knowledge.

Remote Q-Tables are retrieved through gossiping and exploiting the communi-
cation protocol described in the next section.

The update processes of Q-values and environment tables were also slightly
modified. By the time of a purchase, the entire column regarding the action of
the purchased VPS is updated: regardless of the current provider, the action of
buying a VPS is either penalised - therefore discouraged - if the purchase fails,
or rewarded if the purchase is successful. This approach is to a certain extent
different from the one which was previously adopted. The former version of the
Q-Learning technique only penalized the transition from a specific current-state
to the failing action. The algorithm was also modified to positively reward the
current VPS at the end of every life cycle. The positive update value in the
environment table is computed as a function of MB Tokens and the cost of the
option that it is relying on.

14

5.2 Communication between nodes

The communication between nodes is one of the most relevant aspects of our
contribution to Dollynator. The baseline for our design was a communication
system based on the Internet Relay Chat (IRC) protocol. The IRC protocol
is for use with text based conferencing. An IRC network is defined by a group
of servers connected to each other and the only configuration allowed is that
of a spanning tree where each server acts as a central node for the rest of the
network it sees. The protocol provides no mean for two clients to directly ex-
change information and the communication between clients is relayed by the
server(s) [13]. Our intention was to substitute such a centralised system with a
peer-to-peer network where every node is dynamically provided with the neces-
sary information to directly communicate with every other node in the botnet,
thus resulting in a fully connected network topology. The complete network
allows every node to easily exchange information with the rest of the botnet
and constitutes a basis for the gossiping protocol.

The information about the other nodes of the network (including their IP and
their current state) is gathered from the network itself. When a node replicates
it passes to its child all the knowledge it has about the botnet. This knowledge
is shared in the form of a contact-list, where a “contact” contains all the neces-
sary information to directly reach a specific node. The parent contact-list will,
therefore, contain the contacts relative to all the nodes inside the botnet it is
aware of. Moreover, at the moment of replication the parent also takes care of
informing its acquaintances about the new born node and share with them its
contact. When the latter is received, the nodes proceed informing the elements
of their contact-list about the new contact received, and so on. When a message
to one of the contacts is not delivered, the receiver is detected as potentially
down. This failure triggers a ping procedure: the sender systematically tries to
contact the failing server; after a customizable time span, if none of the com-
munication attempts succeeded, the receiver is considered down and its contact
is deleted.

The communication between nodes is encrypted and every message exchanged

(both regarding network awareness and collective learning) is signed and authen-
ticated.

15

6 Implementation

The technical details of the product implementation are listed below. The rein-
forcement learning algorithm was modified and updated to include support for
Q@D-Learning (distributed Q-Learning) whilst the communication protocol was
implemented based on Berkeley Socket API and it exploits the basic principles
of gossiping for information sharing across the network.

6.1 Reinforcement learning for VPS choice

The process of VPS selection is conducted exploiting information coming from
the network in the form of Reinforcement Learning. Reinforcement Learn-
ing was also the go to strategy before our contribution to Dollynator. The RL
technique used was @Q-Learning and the information necessary to efficiently buy
a new and convenient VPS were only passed from parents to children. The al-
gorithm that was developed during this iteration of the Software Project aimed
to exploit information from every other node of the botnet and thus learn how
to make decisions in a collective fashion. Thus, the changes made to the preex-
isting code-base can be classified in two categories: changes that affect the way
the Environment and the Q-Tables are locally updated and changes that aim
to allow support for collective learning.

The first significant change to the algorithm regards the initialisation value
of the Environment components. In the previous version of the software, the
value was not constant and derived based on the price of a purchase option and
its bandwidth. This detail was modified to initialise every value in the environ-
ment to the same, constant, quantity.

The second change regards positive and negative reward after an attempt of
purchasing. In the past, when a node managed to successfully buy and replicate,
all the transitions leading to the current state were updated positively; while
in case of failure, only the transition between the current state and the chosen
failed state was penalised. This was changed to reward and penalise all the
transitions leading to respectively a successful or failing state, and to benefit
all the transitions leading to the current state in case of fortunate replication.
The update value of the latter is computed as a function of the number of MB
tokens that the agent was able to produce per cost of the current VPS option;
this value is normalised using data on past exit-node performance gathered from
previous reports|[11].

The changes made in order to support collective learning in our algorithm aimed
to exploit a gossiping protocol to exchange information across the network in
form of Q-Tables. This distributed alternative to the traditional learning was
implemented in the form of QD-Learning [5]. By the time of a replication
process a node exchange information about its current knowledge with a number
of other nodes. The in going Q-Tables (coming from the rest of the botnet) are
then merged to the local one by means of a weighted sum. The weights of the

16

sum (that are initially set to 0.8 for the local information and 0.2 for the outside
knowledge) are repeatedly updated to reflect the relevance of the two sources
of information as a function of the botnet size. For this reason, the local value
() is systematically decreased and the remote value (8) is increased instead.
This process continues up until o and 5 are swapped (they are now 0.2 and 0.8
respectively), this equilibrium guarantees that the local information will always
be relevant in the decision process of a node.

6.2 Gossip algorithm

A socket is one end-point of a two-way inter-process communication link and
thus the basis of the communication protocol responsible for inter-node messag-
ing in the botnet. Python’s socket module provides an interface to the Berkeley
Sockets API.

The core objects of the implemented design are, in fact, a MessageSender
and a MessageReceiver which are responsible to manage the end-to-end socket
communication between two nodes. The two objects respectively send encrypted
information to a specific node and receive and decrypt messages, with the Mes-
sageReceiver also responsible to function as a simple message-broker.

In fact, an observer design pattern is implemented to notify parts of the system
with different prerogatives about incoming messages of their specific interest.
The messaging service implements channel based messaging, which allows mul-
tiple components of the system to subscribe to different virtual channels. Upon
receiving a message, the MessageReceiver is responsible for notifying the con-
sumers registered to the channel to which the message belongs. This architecture
allows great flexibility, since any new set of components can allocate new com-
munication channels on which communicating, without affecting any other part
of the system in any way. As per now, a node’s MessageReceiver has two main
consumers, namely the AddressBook and the LearningConsumer.

The role of the latter is to fetch information for learning purposes and consume
it performing reinforcement learning in a collective fashion.

The AddressBook’s role, instead, is to keep track of other nodes’ state and
contact information. The AddressBook main task is, therefore, to make sure
to store a complete and reliable list of contacts. A node’s contact contains a
unique ID, its host name and the port on which the MessageReceiver runs. The
contact also contains the RSA public key used to encrypt messages sent to the
node.

In order to update its contact-list the AddressBook exchanges messages con-
taining network information, hence it subscribes to the network channel. The
AddressBook is also responsible for sending messages to other nodes, since it
also keeps track of failed communication with other nodes. When a message
is not correctly delivered (an error occurred or an ACK message is missing)
the AddressBook starts periodically pinging the recipient of the message. If the
sender AddressBook is unable to contact the receiver after several attempts, it

17

marks the receiver as "permanently down" by deleting the receiver’s contact,
effectively disabling communication with it.

As previously mentioned, each message exchanged using the developed pro-
tocol is encrypted and signed, so that only the designed receiver is able to read
the message’s content and to verify the signature of the sender. To achieve
this goal, a mixture of RSA (asymmetric) and AES (symmetric) encryption
is employed, in a similar fashion to how PGP is designed. In fact, the RSA
asymmetric cryptography algorithm is used to exchange a symmetric AES key
between the sender and the receiver. The AES symmetric key is then used to
encrypt and decrypt the actual massage payload. Moreover, RSA is employed
to sign the content of the messages. These security measures guarantee our
protocol to be functional and dependable.

18

7 Extras: a new market strategy

One of the possible point of improvement of the Dollynator system was the
introduction of some new, more reliable strategies to deal with the bit-coin
market. In order to achieve this goal, we introduced crossover to the pre-existing
simple moving-average strategy that Dollynator was implementing.

7.1 Crossovers and moving averages

The moving average is a simple technical analysis tool to smooth out price
data by creating a constantly updated average price. The average is taken over
a specific period of time and it aims to detect and deal with market fluctuations.

Dollynator already implemented a MA strategy, namely the simple moving
average strategy. A five-day simple moving average (SMA) adds up the five
most recent daily closing prices and divides it by five to create a new average
each day. The algorithms then compares them in order to establish whether
there is a possibly increasing or decreasing trend in the market. Our contribu-
tion to this model consisted of two main parts, namely to include an exponential
moving average to the average calculation (where more recent data affects more
the outcome of the function) and to implement crossovers.

Crossovers are one of the main moving average strategies. The implementa-
tion we opted for, in particular, is to apply two moving averages to a chart: one
longer and one shorter. When the shorter-term MA crosses above the longer-
term MA, it’s a signal that the agent should wait to sell for bitcoins, as it
indicates that the trend is shifting up. Meanwhile, when the shorter-term MA
crosses below the longer-term MA, it’s a sell signal, as it indicates that the trend
is shifting down.

This helps Dollynator to effectively deal with the bit-coin market and to opti-
mise its bit-coin income in an automated way [14].

7.2 Moving average implementation

In order to include crossovers in Dollynator moving average strategy some refac-
toring of the previous code was in order. The code-base included an entire mod-
ule which aimed to both compute the average, compare them and interact with
the market. This approached was error prone as it implied very low cohesion in
the code.

For this reason, the code-base was modified to include a MovingAverage
template class, which is in charge of the moving average computations accord-
ing to an exponential model and given a variable time-span. The rest of the
computations, such as averages comparison and decision making, is taken care
of by a CrossoversMovingAverages class that inherits from MovingAverage.

19

This way we incremented the cohesion of the classes of the subsystem and
improved maintainability and testability of the code.

20

8 Discussion on ethical implications

As a consequence of our commitment to the Tribler team, a reflection on the
ethical consequences of our work is in order. After a detailed analysis of the pos-
sible moral implication of this project, we narrowed down our ethical thoughts
to two main topics, both strictly correlated to Tribler aforementioned intention
to provide its users with anonymity and privacy.

Anonymity is defined as the state of remaining unknown to most other peo-
ple. In other words, it is the impossibility of being identified in a given context.
This characteristic can be beneficial or even necessary to individuals in a variety
of occasions and for this reason anonymity itself is acknowledged by the ‘Decla-
ration on freedom of communication on the Internet’ or ‘Report of the Special
Rapporteur on the promotion and protection of the right to freedom of opinion
and expression’ [15].

Considering this, one could state not only that the usage of Tor-like tools is
legal, but that it is also an ethical choice, a valid decision to preserve the well-
being of the users of the internet. Nonetheless, it is worth specifying that the
morality of anonymity is context dependent, hence it would be misleading to
consider it an intrinsic value of human-kind.

Tor-like systems can indeed allow and encourage a immoral behaviour among
its users.

Anonymity on the internet notoriously stimulates despicable activities such as
copyright infringement, cyberbullying and the spread of morally compromised
contents. In fact, if an action is deemed illegal and unethical, perpetrating it
anonymously should also be considered illegal and unethical. For this reason it
is better to define anonymity as an extrinsic value: a medium to defend - for
example - the freedom of expression, the freedom of association, the right to
privacy and all the values that ensue the latter.

Privacy is indeed an important topic in this discussion as well. It can be
argued that there is a “right to be left alone” based on a principle of “inviolate
personality”, and it is therefore difficult to conceive of the notions of privacy and
discussions about data protection as separate from the way computers, the In-
ternet, mobile computing and the many applications of these basic technologies
have evolved [16]. Two main kind of privacy can be identified, namely consti-
tutional (or decisional) privacy and tort (or informational) privacy. Although
both rights are unarguably important, from now on we will refer to privacy
as the latter, which is concerned with the interest of individuals in exercising
control over access to information about themselves. Along with an attempt to
define privacy, in [17] the concept of right to privacy is introduced. The right
to privacy is not my right to control access to me, it is my right that others be
deprived of that access." Having privacy is not the same thing as having a right
to privacy. I can have either without the other [17]. Nonetheless, privacy is a
right that all people should have, however unfortunately it happens often that
people’s privacy gets violated. Two striking examples of privacy violations, one

21

by a government entity and the other by a private company, are testified and
reported by respectively [18] and [19]. The former one talks about the China’s
government’s behaviour towards the population during the Corona virus crisis,
while the latter one is about the big scandal that involved Facebook and Cam-
bridge Analytica.

These articles are key resources to understand why privacy is a fundamental
step to reach freedom. More related to our work, people should have the chance
to freely browse the internet and fetch contents from it. Interference by enti-
ties that prevent users of the internet from retrieving information and/or doing
so in a secure and enjoyable way should be discouraged and avoided as much
as possible. For this reason, privacy is important since it protects people from
annoying custom advertisement or, in worse scenarios, blackmailing and govern-
ment restrictions that often threaten ones’ freedom of expression and opinion.
Tribler helps to guarantee people’s privacy thanks to the anonymity of its users,
provided through the usage of Tor technology and by the adoption of a Peer-to-
Peer model, where the absence of a central node prevents any server from being
able to control network traffic. However, analogously to what has been said
before with regards to anonymity, this kind of advantage is context dependent
too. In fact, since nobody can track down the user of an illicit request, a net-
work such as Tribler could give the possibility to its users to share in an easier
way content protected by copyright, confidential information, pedopornography
material, etc.

Although, as much as we would like to avert such an occurrence, this is
clearly a controversial situation since as per now the only way to prevent this
from happening is to control each node’s traffic, violating their privacy and re-
jecting the concept of a decentralised network.

In conclusion, all the values we talked about are extrinsic, content-dependent
values, which are to be considered essential to people’s well-being, but can harm
other people if used as a medium to adopt an immoral behaviour.

As threatening as it appears, relying on Tribler users’ ethical conduct is as
per now unavoidable. As with many other social dynamics, the premise of every
member of a society behaving in their interest without diverging form a common
moral scheme is an essential one.

Absence of privacy is, in many ways, a dangerous condition that can deprive
individuals of inalienable rights and inauspiciously affect their well being; for
this reason, and despite the aforementioned risks, we have chosen to design for
this value.

22

9 Conclusion

The aim of this report was to describe the developing process of Dollynator,
an autonomous self-replicating bot of Tribler exit-nodes. The main goal of the
project was to include support for collective learning in the process of VPS
purchasing. This goal was achieved by means of two main modification: a gos-
siping protocol for node communication in the botnet was developed and the
Reinforcement Learning algorithm responsible for VPS purchasing was modified
to adhere to the standards of QD-Learning (Distributed Q-Learning).

The advantages and disadvantages of these designs were evaluated and anal-
ysed in comparison to other possible solutions and eventually adapted to satisfy
the specific needs of our system. Along with that, preliminary work was made
to upgrade the base-line to a real-world deployable version of the code.

During the software development many difficulties were encountered, mainly
related to Dollynator strict dependencies to other software, especially Cloudo-
mate and Tribler. Being the two software currently under development as well,
and due to a lack of documentation on the current state of the systems, we
encountered some unpredictable issues with their integration with Dollynator.
As far as Tribler is concerned, its upgrade to the most recent version caused
an impossibility to successfully run the botnet nodes as Tribler exit-nodes. Tri-
bler is, as per now, suffering from a bug that prevents a correct instatiation
of a bitcoin wallet. This is because the bitcoinlib library responsible for the
bitcoin-wallet management is currently being updated to a later version and its
integration is not final and functional yet. As far as Must Have number one
is concerned, the task was accomplished but not entirely functional yet. Our
system is, in fact, able to successfully purchase a VPS from QHoster provider.
Nonetheless, kernel incompatibilities with the latest Tribler version prevents a
smooth execution of the software. Overall, we consider the system to be in a
satisfactory state as every other essential requirement was achieved, including
the Should Haves and one of the Could Haves in our list.

The solution adopted is solid and consistent but its real-world deployment
is prevented by a hard dependency on Cloudomate, a part of the system which
lacks maintainability and, as per now, real-world applicability. For this reason,
it is not easy to establish the quality of Dollynator performance out of a testing
environment. Our recommendation is to improve the quality of Cloudomate
software and its functionality as it would allow Dollynator’s decision process to
be deployed, evaluated and fine tuned in the out-side world.

The work-flow and team-performance was characterized by a steep learning
curve due to the complexity of the system under analysis. Dollynator is made up
of multiple, different parts and it is important to take into account a significant
amount of time to get acquainted with its implementation and functioning before
diving into further developing.

23

References

(1]

2]

13

[4]

[5]

[6]

7]

18]
19]

[10]

[11]

[12]

Tribler team. Tribler, 2020. Accessed on: Apr. 28, 2020. [Online]. Available:
https://github.com/Tribler/tribler/blob/devel/README.rst.

Tribler team. Tribler - Privacy using our Tor-inspired onion routing, 2020.
Accessed on: Apr. 28, 2020. [Online]. Available: https://www.tribler.
org/about.html.

E. Riviere and S. Voulgaris. "Gossip-based networking for internet-scale
distributed systems". Lecture Notes in Business Information Processing,
78:253-284, jan 2011.

L. Giaretta and S. Girdzijauskas. "Gossip learning: Off the beaten path".
2019 IEEFE International Conference on Big Data (Big Data), pages 1117—
1124, dec 2019.

S. Kar, J. Moura, and H. V. Poor. "@QD-learning: A collaborative dis-
tributed strategy for multi-agent reinforcement learning through consensus
+ innovations". IEEE Transactions on Signal Processing, 61, apr 2012.

J. Alexander McKenzie. Fwvolutionary Game Theory. The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
2019.

K. Tuyls and S. Parsons. "What evolutionary game theory tells us about
multiagent learning". Artificial Intelligence, 171:406-416, may 2007.

K. P. Sycara. "Multiagent systems". Al Magazine, 19(2):79, jun 1998.

L. Wei-Bing and W. Xian-Jia. "An evolutionary game based particle swarm
optimization algorithm". Journal of Computational and Applied Mathemat-
ics, 214(1):30 — 35, 2008. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0377042707000799.

Z. Yong, G. Dun-wei, and D. Zhong-hai. "Handling multi-objective op-
timization problems with a multi-swarm cooperative particle swarm op-
timizer". FEzxpert Systems with Applications, 38(11):13933 — 13941, 2011.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0957417411007275.

R. van den Berg, J. Heijligers, and M. Hoppenbrouwer. "Plebnet,
botnet for good". Delft University of Technology, Student bachelor
thesis, jul 2017. [Online|. Available: https://repository.tudelft.nl/
islandora/object/uuid’3A08841cf0-8ddf-4354-9c99-bc7c270d67£d?
collection=education.

Python Charmers Pty Ltd. "Futurize: Py2 to py2/3", 2013-2016. Ac-
cessed on: Jun. 7, 2020. [Online]. Available: https://python-future.
org/futurize.html.

24

https://github.com/Tribler/tribler/blob/devel/README.rst
https://www.tribler.org/about.html
https://www.tribler.org/about.html
http://www.sciencedirect.com/science/article/pii/S0377042707000799
http://www.sciencedirect.com/science/article/pii/S0377042707000799
http://www.sciencedirect.com/science/article/pii/S0957417411007275
http://www.sciencedirect.com/science/article/pii/S0957417411007275
https://repository.tudelft.nl/islandora/object/uuid%3A08841cf0-8ddf-4354-9c99-bc7c270d67fd?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A08841cf0-8ddf-4354-9c99-bc7c270d67fd?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A08841cf0-8ddf-4354-9c99-bc7c270d67fd?collection=education
https://python-future.org/futurize.html
https://python-future.org/futurize.html

[13] C. Kalt. "RFC 2810 - internet relay chat: Architecture”, 2000. Accessed
on: May, 28. 2020. [Online]. Available: https://tools.ietf.org/html/
rfc2810#section-3.

[14] C. Mitchell. "How to use a moving average to buy stocks",
2020. Accessed on: Jun. 19, 2020. [Online]. Available: https:
//www.investopedia.com/articles/active-trading/052014/
how-use-moving-average-buy-stocks.asp.

[15] E. Qaligkan, T. Minarik, and A.M. Osula. "Technical and legal overview
of the tor anonymity network". NATO Cooperative Cyber Defence Centre
of Excellence (the Centre), 2015.

[16] J.van den Hoven, M. P. W. Blaauw, and M. Warnier. "Privacy and informa-
tion technology". In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, summer 2020
edition, 2020.

[17] J. H. Reiman. "Driving to the panopticon: A philosophical exploration
of the risks to privacy posed by the highway technology of the future".
Robotics and Autonomous Systems, Santa Clara High Tech. L.J, pages
97-103, jan 1995. [Online|. Available: http://digitalcommons.law.scu.
edu/chtlj/volll/iss1/5.

[18] The Guardian. ""More scary than coronavirus’ South ko-
rea’s health alerts expose private lives", 2020. [Online]. Avail-
able: https://www.theguardian.com/world/2020/mar/06/
more-scary-tan-coronavirus-south-koreas-health-alerts-expose-private-1lives.
[19] The Guardian. "Facebook to be fined 5bn dollars for cam-
bridge analytica privacy violations", 2019. [Online]. Avail-
able: "https://www.theguardian.com/technology/2019/jul/2/

facebook-fine-ftc-privacy-violations.

25

https://tools.ietf.org/html/rfc2810#section-3
https://tools.ietf.org/html/rfc2810#section-3
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp
http://digitalcommons.law.scu.edu/chtlj/vol11/iss1/5
http://digitalcommons.law.scu.edu/chtlj/vol11/iss1/5
https://www.theguardian.com/world/2020/mar/06/more-scary-t an-coronavirus-south-koreas-health-alerts-expose-private-lives
https://www.theguardian.com/world/2020/mar/06/more-scary-t an-coronavirus-south-koreas-health-alerts-expose-private-lives
https://www.theguardian.com/technology/2019/jul/ 2/facebook-fine-ftc-privacy-violations
https://www.theguardian.com/technology/2019/jul/ 2/facebook-fine-ftc-privacy-violations

Appendix A - Product Feedback

In this appendix we will describe the feedback received by the SIG (Software
Improvement Group).

We contacted them in week 4.5 in order to ask for a product review, but un-
fortunately they answered that, due to the Corona virus situation, they didn’t
have enough time and men power to do it; so they suggested us to use a static
tool instead named 'BetterCodeHub’ developed by the SIG itself.

The tool gave our project an overall score of 8/10, which is pretty good. How-
ever, after discussing with the client, we decided not to take it into consideration
because static tools can be very inaccurate grading big projects like ours.

26

Appendix B - System’s Component Diagram

1l/em

2102

; JENT=T]

JajguL

uopesiunwiwod

SETLES

1|ugald

12180y

ajewopno|

27

Appendix C - Original Project Discription

The goal of this Bachelor end project is to create a Bitcoin-based entity which
can earn money, mutate, multiply, and dies. We provide a crude starting project
which needs decades of further work in order to be considered 'really’ living. This
project builds upon existing code that creates autonomous life. Two previous
groups have worked on this system and their documentation can be found in
the TU Delft repository (see here and here). Recently, two groups of master
students have expanded the project.

You will create an Internet-deployed system which can earn money, replicate
itself, and which has no human control. In the past, humanity has created chess
programs that it can no longer beat. The distant future of an omniscient com-
puter system that on day chooses to exterminate humanity in the Terminator
films is not the focus of your project. You will create software that is beyond
human control and includes features such as earning money (Bitcoin) and self-
replicating code (the software buys a server and spawn a clone). Earning money
consists of helping others become anonymous using the Tor-like protocols de-
veloped at TUDelft and our own bandwidth token designed for this purpose,
called Tribler tokens. A cardinal unanswered question is how to securely pass
the wallets with Tribler tokens and Bitcoin to the offspring servers. You Python
software is able to accomplish some parts of the following functionality:

e Earn income in a form of a bandwidth token (existing code).

e Sell these earned tokens on a decentralized market for Bitcoin or other
currencies.

e Buy a server with Bitcoin or Ethereum without human intervention (see
our existing PyP1i scripts).

e Login to this Linux server and install itself with code from the Github
repository.

e Automatically buy and install VPN protection to hide the outgoing traffic
from the servers.

The software should be able to have a simplistic form of genetic evolution. Key
parameters will be inherited to offspring servers and altered with a mutation
probability. For instance, what software version of yourself to use (latest re-
lease?), what type of server to prefer buying (quad core, 4GB mem, etc), and
whether you offer Tor exit node services for income or not. Bitcoins owned by
TUDelft will be used to bootstrap your research.

28

https://repository.tudelft.nl/islandora/object/uuid%3Aa1b443c7-8b37-4263-ae96-d38bc8b8f397?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A08841cf0-8ddf-4354-9c99-bc7c270d67fd?collection=education

Appendix D - Project Skills

Roberta Gismondi

During this year iteration of the Software Project (CSE2000) our team was
picked to work for TU Deft Blockchain Lab and contribute to the Tribler /Dollynator
project. Tribler is a tor-like peer-to-peer system that aims to provide its users
with anonymous access to a network for content sharing purposes. In order to
do so, Tribler makes use of Tribler exit-nodes, which are entry-points to the
tor-net. In order to furnish a reliable and highly available suppliance of net-
work entry-points Dollynator was developed. Dollynator is a self-replicating
autonomous botnet of exit-nodes. The system exploit Reinforcement Learning
techniques to pick and purchase Virtual Private Servers to be run as Tribler
exit-nodes instances. Our contribution to the project mainly focused on ensur-
ing a decentralised architecture for the botnet and to improve the algorithm
responsible for VPS purchasing. Furthermore, the main concern of our team
was to enable the latter algorithm to exploit information gathered from all the
nodes of the network in order to improve the decision-making process.

In order to achieve such goals we decided to provide the system with a new,
decentralised communication protocol for message exchange among nodes based
on gossiping and to modify the pre-existing learning algorithm to adhere to a
collective-learning model. Along with that, modifications to other Dollynator
hard dependency systems were in order to guarantee a dependable deployment
in real-world environment.

The team consists of five second year students, studying Computer Science
and Engineering at TU Delft. The development process was organised such
that each of us could initially focus on one of the three aforementioned sub-
problems. Two of us implemented a reliable, decentralised messaging protocol,
two of us put their efforts into modifying the current learning algorithm to
use such protocol and consume information from the entire network during the
learning process and one of us focused on fixing the dependency-related issues
of the project. Nonetheless, we constantly kept a flexible division of tasks,
with everyone willing to help with different problematics when necessary. The
documentation-related matters were handled by a thorough approach consist-
ing of division of the assignments (based on the weekly individual code-related
workload) and peer-review.

During the project our team did not encounter major task-related conflicts,
the division of the tasks was discussed thoroughly and established according
to everyone’s interests, knowledge, skills and ability. Everyone came form a
different variant of our studies and have different expertise, yet everyone was
willing to put effort into learning about new concepts and technologies. For this
reason it was easy for us to find a compromise to accommodate everyone’s need,
ensuring a positive and formative experience during which every component of
the team was given the chance to improve him/her-self both personally and

29

professionally. Being our team a well balanced group of students, consisting of
trustworthy and competent members, and being our personal and professional
relationships already stable before the beginning of the project, the decision-
making process was easily held in a positive and constructive environment where
each of us was able to research about the problem first, express their opinion
afterwards and occasionally change their mind according to what had emerged
during the discussion.

As we established our goals and expressed thoughts about our expectations
about the project before-hand, we were able to avoid conflict of interests and
misunderstandings during the development process. The division of the work in
sub-problems and thus sub-groups made possible for us to reduce the number
of intra-group conflicts.

Fach decision was first discussed and deeply analysed in the context of the
sub-group (between two or three people) and then presented to the entire team
along with the list of pros and cons evaluated before-hand. Discussing matters
in a smaller group first facilitated the communication and the fact that the dy-
namics between group members were already familiar (due to our pre-existing
personal and professional relationship) helped us to promptly manage the oc-
casional tension between teammates. The specific situation everyone is forced
to face during the lockdown implied an additional amount of difficulties and
potential problems. The impossibility of meet and discuss matter and the need
to only communicate through internet could have lead to a more likely chance of
under-performance of one or multiple members of the group. The organisation
of our work into sub-problems tackled by a couple of people reduced the risk of
social loafing as this is a phenomenon strictly correlated to the size of a group
responsible for a specific task and could have been enhanced by the current
world-wide situation.

Fortunately, the nature of most conflicts raised during our team-project was
healthy; the nature of our work excluded the chance of a conflict for resources
all together (as the work did not need any specific hardware nor had particular
technical requirements), conflicts over power and competition were mitigated by
the mutual esteem of group members, and the personal relationships between
group members was one of friendly affection and reciprocal support before the
start of the team-project. The dynamics of the team lead us to deal with the
occasional conflict using a collaborative approach as much as possible. Some
of us were less prone to assertiveness but willing to cooperate, resulting in an
often accommodating behaviour towards the ones more assertive. The nature
of this behaviour could be traced back to both an apparently wider knowledge
of the topic by some of the group members and a natural inclination.

Furthermore, the current impossibility to have an actual confrontation (and
the chance to more easily avoid discussing problematics) probably encouraged
the aforementioned behaviour.

Nonetheless, when a conflict emerged, the team put as much effort as possible
to allow everyone to express their own opinion, asking questions and encourag-

30

ing everyone to make a clear point. Avoidance was highly discouraged as every
perceived problem was immediately discussed and never dismissed in the inter-
est of time and quality of our work. Overall, each of us was able to balance
out their cooperativeness and assertiveness to guarantee that each of the small
conflicts occurred during the process were solved through compromise and oc-
casionally full collaboration. This guaranteed a positive working environment,
where each of the group member could grow personally and professionally. The
quality of our team-work also reflected on the quality of our product and the
pace to which it was developed.

Overall, the process loss of our team-project was a satisfactory percentage of
out potential performance, this lead us to enjoy our collaboration and to benefit
from the experience of working together and along with a third party (a client),
developing a complex system that contributed to our personal and professional
growth.

Giacomo Mazzola

The Software Project is getting to an end, therefore it is appropriate to make
a reflection about it, retracing the path we have followed during these ten weeks.

It has been a challenging project, full of difficulties and unexpected problems;
in particular we have had a rough start due to a lack of information provided by
the client. In fact, he gave us a lot of freedom in designing the product, giving
us very few requirements. This turned out to be helpful in a later stage, but
made us struggling in the beginning because we did not have enough knowledge
about the exiting project to make proper decisions. Moreover, the struggling
was increased by the fact that we had to fix the current (broken) complicated
and not well documented existing project, in particular Cloudomate.

After overcoming these difficulties we found our pace and we started to work
as we were required to do. We did such a good job that we managed to bring
to the midterm meeting a first functioning demo of the messaging protocol and
the reinforcement learning algorithm.

The following weeks have passed very quickly, however we managed to finish
our must and should haves and also to implement a could have.

After giving a general summary of the project, a discussion about intragroup
organization and relations is required.

Despite the many encountered difficulties, I think that we managed to complete
the project in a successful way thanks to our group organisation and devotion
to it. From the beginning we divided the requirements into two main parts, the
gossiping related parts and the reinforcement learning related ones. We did this
because implementing the project from both parts simultaneously gave us the
ability to show every week many different improvements to the client and the
TA, and also, more important, since the two parts interact with each other, im-
plementing them at the same time was the better way to make a proper design

31

and to adjust it whenever we found a problem in one of them.

Overall, I had a good relationship with the other members of the group; the
only remark I want to point out is that I would have preferred to have more
communication, review and support between each other.

As for the organization of the project itself, I think it was really well done.
I liked that fact that we were constantly followed by a TA that helped us out
in some situations and the coach, that with his experience gave us useful tips
throughout the project. I found very useful the TW and the responsible CS
components of the course. They are fundamental skills for an engineer and in-
serting them in a project is the best way to practise and learn them. However,
I think that we were overloaded by the extra homeworks of these components,
especially in the first two weeks of the project. The coordinators of the Software
Project must consider that a week in not enough to get along with a huge and
complicated project such as ours, therefore I would make less strict deadlines
for the next years, especially in the first three weeks.

One additional difficulty that has to be discussed is the situation caused

by the Corona virus. Due to the lock down, we were forced to face a unusual
situation that caused us many troubles. First of all, we were forced to work
from home without physically see each other. Everybody knows that physical
meetings are easier to take and more time efficient then online meetings and
that techniques like pair programming can be very useful in certain situations;
unfortunately the virus didn’t let us the possibility to opt for this techniques.
Furthermore, we had, and we still have, an increased workload since the post-
poned exams were rescheduled to an overlapping period with the project. For
these reason, we were not able to spend the required amount of time on the
project.
Considering the given reasons, I would expected the coordinators of the project
to adjust the workload and the requirements in such a way that let us be able
to have a life instead of spending 60 hours per week working for TU Delft and,
in the end, perform worse than usual because we had too many things to work
on at the same time. I however understand that this is a situation that involves
many parties and none of them want to give in to find a trade off that is better
for the students.

Last topic I want to discuss is the educational side of the project.

I think that the project contributed in an important way to increase our knowl-
edge and skills. We learned much about Python, Linux, distributed systems,
bitcoin technology...

However, what makes me glad the most about this experience is the experience
itself. We worked for a real client, in a real-world environment with professional
people and professional tools. We also practised various techniques and proce-
dures that are used in a real jobs, such as the literature study, the meeting with
real clients and many more. We also practised our abilities to face and solve
arising problems in the project and with the client.

32

To conclude, I must say that this was a very positive experience and, even
though this was not my first experience of real job in the field of Computer
Science and Engineering, it gave me a very valuable fund of experience.

Daan Goossens

I worked on a project called Dollynator, with my project team members: Tom-
maso Tofacchi, Giacomo Mazzola, Roberta Gismondi, Giorgio Acquati. I got
into the group via Giacomo when I heard that they needed one last member in
their group and I was basically the new guy in the group, the others all new
each other already. I was the only Dutch guy in group of Italians, but I didn’t
feel there was any language barrier, because we all spoke English pretty well. 1
definitely went through the 5 stages of group development, except I didn’t really
experience the conflict stage so much, because we all reached a common goal
what we wanted to improve on the Dollynator project. I couldn’t have asked
for better team members and had a good experience during this project.

Dollynators name comes from the combination of Dolly the sheep (the first
cloned mammal) and the artificial intelligence of the Terminator movie. To un-
derstand what we improved on Dollynator, you first have to understand what
Dollynator does. The lifecycle of Dollynator agent is to run as an Tribler exit-
node on a VPS, earning mb-tokens (the currency in Tribler earned when running
as an exit-node). The agents trades the mb-tokens on a decentralized Tribler
market for bitcoin. When the agent has earned enough bitcoin, it buys an-
other VPS where it self-replicates onto, and the cycle continues. The goal of
Dollynator is to create a network of agents that run as Tribler exit-nodes on a
VPS. Currently there was a reinforcement learning algorithm implemented for
selecting the next VPS provider to buy and replicate onto. Our goal in this
project was to get the old code working again first, because the code hasn’t
been touched in over 2 years and wasn’t fully functioning anymore and after
that improve this reinforcement learning algortihm, by implementing a gossip
algorithm and implementing a reinforcement learning algorithm that works with
gossipping. The gossip algorithm, is a state of the art algorithm, that hasn’t
been used yet in many real world applications. The gossip algorithm is an algo-
rithm in which agents share their experiences with other nearby agents in the
network. This way collective learning can be applied in a decentralized network
of Dollynator nodes.

We didn’t really have much task-related conflicts in the project. The only
instance where there was a task-related conflict was during the implementa-
tion phase of the project, which was about how to implement the reinforcement
learning algorithm in my sub-group that worked on that problem. It was a
short lasting and the healthy kind of conflict. They were all about how to go
about solving the problem at hand, and then we discuss the different solutions
and come to a singular solution we all agreed with. I think this is a natural
task-related conflict that should happen in any project for it to function prop-

33

erly. What helped is that we all agreed in the beginning what to improve about
the project and we all had the same goal, namely improve the reinforcement
learning algorithm by implementing a gossip algorithm. I also feel there was
good (transparent) communication which especially made task-related conflicts
get resolved quickly.

We didn’t have any intragoup conflicts during the course of the project. All
my project team members were really nice to work with, especially compared
to other group projects I worked on, where there was a lot of social loafing
going on, and some people were always late during meetings, or they never
communicated. On a theoretical level there can be because of multiple reasons
for having no intragroup conflicts.

Firstly, our group had a high entitativity, partly because our group for the
most part already knew each other already, but also because as a group we
decided our goal early on in the project.

Secondly, the group was transparent. We had regular meetings updating
each other what we have done. And when the group was split up into sub-
groups, I kept everyone in my subgroup up to date what I was doing and they
kept me up to date what they were doing. The communication was in my
opinion the key part for making this group project work. This also made sure
there wasn’t any social loafing in our project.

Thirdly, we divided the project pretty well into everyones individual parts.
This made it so everyone was responsible for something in the project. This
also aided in the lack of social loafing in our group.

Lastly, we didn’t have any of the 5 roots of intragoup conflicts (conflict and
competition, conflict over resources, conflict over power, task and process con-
flict, personal conflicts) to begin with, this was caused because everyone had
the same collective goal what to improve on the Dollynator project and we all
were motivated. This also made sure there was good collaboration in the group.
All in all this was a nice group to work with with a healthy working environment.

There weren’t any unhealthy conflicts in the team, only some healthy con-
flicts, namely the task-related conflicts. Those were conflict were about how
everyone had a different idea how to implement something. But those were
dealt with explaining to each other why we wanted to implement something
that way and convince each other of our own implementation. After discussing
we always agreed to one solution which was the best for the project. As men-
tioned before we didn’t have many conflicts, because the work environment was
good, so there were only healthy conflicts, which are in my opinion necessary for
a good project team. Even if there would be an unhealthy conflict, they would
probably not get out of hand, because there was good communication and the
conflict would go away quickly. Everyone also was motived, so there wasn’t
much social loafing going on in the team. This was, because in the end everyone
had something specific they worked on, so everyone has their own contribution
to the project and in the end everyone has done about the same amount of work.
Everyone also trusted each other on the work they did.

34

In conclusion, I have good experiences working in this project team, with
little conflicts, of which there was no unhealthy conflicts.

Giorgio Acquati

Our project team consists of five members, alphabetically listed as follows:
Giorgio Acquati, Roberta Gismondi, Daan Goossens, Giacomo Mazzola and
Tommaso Tofacchi. The five of us were assigned the task of continuing the
development of Dollynator, a botnet of self-replicating agents that run on the
Tribler distributed network. When we took over, the project was already well
structured, and our main objective was to continue the development as started
by the previous group that worked on it in order to bring the botnet to a state
in which it is able to run in the real world, and not just in a simulated envi-
ronment. Since the project was already in an advanced stage when we took
over, our team had to spend a considerable amount of time getting acquainted
with it. In fact, given the complex nature of the system that we were dealing
with, understanding how it is structured and its behaviors posed a great chal-
lenge to us members of the group. During this initial period, we analyzed each
component of the system under the perspective of understanding how one could
modify its behavior or enhancing the features it provides. Moreover, we needed
to reach a deep level of knowledge about the system before we would be able to
negotiate functional requirements with our client. Fortunately, our client took
over the role of an advisor more than a counterpart of negotiation. In fact, they
limited themselves to pointing out to some rather general areas in which they
wished their system were improved. While facilitating the negotiation phase,
this certainly gave us the feeling of lacking guidance. After roughly three weeks
spent on doing research on the matter, we finally were able to clearly state what
our goals for this project was and to negotiate the requirements with our client.

As soon as our functional requirements were set, we immediately started
working on implementing improvements to the system. At this point, our main
concern was that we had spent a lot of time doing prep-work, and that we
feared that we would not have enough time to satisfy the requirements that we
had set. After all, a relatively long time had passed during which we had not
written a single line of code. However, the time spent planning soon proved
to be worth it. We immediately split our team of five in 2/3 sub-teams, each
assigned with different complementary tasks. Personally, I was able to realize
how splitting the work in smaller teams made us work in a very efficient way.
We went on using this approach throughout the entire project, and I believe
that it showed both its cons as it showed its pros. On the bright side, I believe
that the team put good trust in individuals in solving problems related to a
single task. This resulted in an unforeseen high efficiency, to the point where we
completed our Must-Have requirements in just a few weeks. Moreover, this ap-
proach proved to be also highly effective at keeping the team members’ level of
stress low, since each team member was always concerned about small, atomic
tasks. Not once during the implementation phase I was warried that we would
not able to finish our project in time. However, looking back at that period

35

I believe that we moderately exceeded in splitting tasks. We were aware that
communication between members of the group was set to play an important
role, especially during the quarantine time during which we could not physi-
cally see each other. In fact, we always schedule 2/3 meetings every week, to
make sure that all the sub-teams were always aligned and aware of the progress
made by other members. However, these meetings had the tendency to be very
short and I believe that we made the mistake of miscommunicating how chal-
lenging some of the tasks that we faced were. Moreover, I believe that in some
cases we failed to communicate the fallacies of some of the solutions that we
implanted to complete the more challenging parts of the tasks assigned. While
not compromising the overall team progress, this miscommunication generated
considerable difficulties in integrating different parts of the systems together to
create the final demo for the project. To be fair, some of the more challenging
problems faced in the integration part were not caused by miscommunication
between team members, but rather to incompatibility of some components of
our work with latest versions of the Tribler network. In fact, Tribler is an ongo-
ing project that our system is based on, and it was modified during our work.
In retrospective, I believe that the time spent planning was both sufficient and
necessary to a satisfying outcome of the project. Moreover, our team was very
efficient at splitting the work balance, but we slightly came in short regarding
communication between team members. Overall, I am quite satisfied by how
the project went from a technical point of view.

Regarding personal interactions between members of our group, I do not
believe that any issue worth noting was encountered. In fact, we came from
the advantageous situation of knowing each other very well before taking on the
project. In my opinion, this almost completely cancelled many of the challenging
aspects of cooperation, since we did not need to get acquainted with each other
during the initial period of the project. This greatly facilitated communication
and cooperation between members of the group. One thing worth noting is that
four out of the five team members are of Italian nationality, while one of us
is Dutch. I believe that Daan, our Dutch team member, would agree with me
in saying that we made sure to never speak in our native language whenever
he was present. From previous experience, I can tell how frustrating it can be
working with people who discriminate you by speaking in a language that you
do not understand, and I believe that we all put in the necessary amount of
effort to avoid this situation.

As stated in the previous sections, I believe that this project group made
for an overall positive experience. Thanks to previous team projects, we were
aware of the challenges that working in group poses, and I believe that we
successfully implemented some strategies to prevent conflicts within the team. I
believe that knowing each other before the beginning of the project really helped
eliminating the most common causes of miscomprehensions and non-task related
conflicts. Regarding task-related conflicts, I believe that the only time during
which we faced anything resembling a conflict was during the integration phase.
These conflicts were mainly solved by openly discussing the issues with all the
members of the team present. Moreover, after agreeing on a common solution,

36

we adopted the technique of “pair programming”, which provided a way of closely
collaborating.

Tommaso Tofacchi

I am Tommaso Tofacchi and I am part of the Dollynator’s project team for
2020’s Software Project iteration. Over the weeks that spanned the duration of
the course, Dollynator has proven to be an as interesting as challenging project
to tackle on a variety of aspects.

Firstly, the type of work which we were required to accomplish did not all
fall under the same category, but could at least be seen as of two branches.
Since we had to deal with a project that had remained untouched for about
one and a half years, we immediately had to focus on bringing Dollynator back
to a usable state, and did so by updating all of its interactions with external
dependencies (another hot topic on the matter, as once again previously and
adequately discussed) that had drastically changed in the meantime. Moving
onwards, Dollynator’s “restart and maintenance” kind of project emerged from
the need to rewrite the codebase itself to make use of the latest Python Long
Term Support version - currently 3.6 -, as the entire software was written in the
by-now EOL Python 2.7. On the other hand, during the past ten-week period
we had the opportunity to concentrate ourselves on Dollynator’s new features
implementation, covering a typology of project that is now closer to actual
innovation compared to the previous, albeit still required fixing-and-upgrading
work.

As the project is evidently composed by a high number of tasks, cooperation
and efficiency as a group was needed more than ever. Working on Dollynator
I collaborated in a group environment that was — by different means — already
interconnected before the beginning of the 4th quarter. Giorgio and Giacomo,
for instance, have been my roommates since the beginning of the 2019/2020
academic year; Roberta has been a friend of ours from the first days at TU
Delft and Daan was Giacomo’s project-mate for many of their assignments. We
all knew that we were motivated student who would have all strived to achieve
the best possible result given a situation and would not just be settled with
accomplishing the bare minimum. Our collaboration for the duration of the
Software Project ended up reflecting the expectations that came to our minds
when teaming up in first place, which finally leads to an analysis on how effective
our teamworking turned out to be.

During our first week together, we discussed a basic contract of cooperation
to be signed by every member of the group. Other than establishing general
rules regarding attendance to meetings and working methodology (for instance,
Sprint-based iterations and adhering to Agile principles), we defined internal
team roles for all team members. These roles, which concerned aspects of team-
working of a higher level than Dollynator’s tasks fulfillment (i.e.: delegating a
Scrum master, a Git repository maintainer, a secretary and deadline supervi-
sors), were nonetheless welcomed by every member and remained functional for
entirety of the project.

37

When dealing with proper development and its tasks subdivision, we tended
to split in two groups of people, in order to tackle two diverse macro-areas of
requirements. After effectively dividing the workload in this manner for the first
weeks, we decided to stick to it, since we were satisfied with both the quality
and quantity of our production. As a result, for what concerns new-features
implementation Giorgio and Roberta focused on the gossiping algorithm, whilst
Giacomo, Daan and I dealt with the reinforcement learning part. As the devel-
opment proceeded, so did the need of merging the two groups’ works together
in a way that could allow for integration tests and general trial of Dollynator
in a as close as possible scenario; facing the “merging of features” issue was sur-
prisingly easy, since one or two person per group could join together and bring
their acquired expertise to rapidly solve it.

In addition to this, all of the major decisions were taken with common agreement
by consulting every member during a meeting. These strength points enabled
us to avoid task-related issues throughout the entirety of the project, as anyone
could have a constant overview of the project’s development and express his/her
opinion before any decision were to be made. Having this approach favoured
the integration of every team element as a fundamental piece for Dollynator, as
well as the correct spread of team mentality in which all of our individualities
could positively emerge to finally benefit the project itself.

As a result, our intragroup relationships did not encounter negative bumps

on the road. The role that each one of us covered in the team resulted in meet-
ings that would often see suggestions on a main, commonly-shared solution
emerge and be discussed. Such instances can be considered healthy discussions,
as they all were task-related and relative to different approaches, rather than
targeting power or personal issues.
The absence of unhealthy arguments has to be brought back to the previously
analysed “individual in a team integration”. Effective tasks management and
reduction of encountered issues to the bare minimum is linked with every mem-
ber’s always high engagement and responsibility in the project. Having such
team structure required constant effort from all of us, as at any time of devel-
opment there was no weak link that could decide to suddenly back off without
consequences on the others’ work. This directly leads to active participation
during meetings and avoidance of passive participation, which - for instance
- makes it difficult for me to reflect on finding the classic figure of a leader
amongst us.

Finally, every bit added up until this point makes it evident that no in-
tervention technique was needed to be applied. Our natures and personalities
(which, once again, were known to the others to a certain extent before decid-
ing to team-up) blended extremely well right from the start of the project and
continued to do so the more we got together. The proactive discussions that we
had helped us giving ourselves the needed guidelines that we may not always
find in the words of our client, and enriched every member with lines of thought
that otherwise one would not have considered.

In fact, I believe that the suggestions for intervention techniques were actually
well exploited in our team by making use of the fundamentals at the basis of

38

them (see the previous paragraphs), in order to prevent harmful behaviours to
appear. I am pleased and very satisfied with how we have emerged as a group
and, even more, as individuals that put their maximum effort for their own and
their teammates success.

Appendix E - Info-sheet

e Title of the project: Creating a Botnet of Self-Replicating Autonomous
Organisms

e Name of the client organization: Delft Blockchain Lab

e Team members: Giorgio Acquati, Roberta Gismondi, Tommaso Tofac-
chi, Daan Goossens, Giacomo Mazzola

e Description:

— Challenge: the challenge was to bring forward the development
of Dollynator, a botnet of self-replicating agents. These agents run
Tribler exit nodes, which earns them Bitcoin currency. The earned
currency is then spent to buy new Virtual Private Servers instances
onto which the agents replicate, making the botnet expand.

— Product: the created product consists of a botnet of agents that can
share information in order to increase their chances of replicating.
Specifically, agents make use of gossiping communication to share in-
formation about available VPS options onto which they could repli-
cate. By sharing this information, the agents are able of collectively
establishing which option is more convenient to use for replication.

— QOutlook: the project is mostly related to research efforts rather than
real world needs, therefore it is hard to establish whether the system
will be used by the client. The system will probably not be used by
the client in its current state, but will (hopefully) probably pose as
a solid foundation for implementing real-world deployable solutions
based on it.

39

	Preface
	Summary
	Introduction
	Designing a botnet of self-replicating nodes
	Make competing agents collaborate
	Evolutionary based reinforcement learning approach
	Feasibility study
	Risk analysis

	Requirements
	Functional requirements
	MoSCoW
	Must have
	Should have
	Could have
	Won't have

	Non-functional requirements

	Preliminary work
	Updating to latest version of Tribler
	Fixing Cloudomate
	Upgrading to Python 3.6

	Product design
	Choosing a VPS provider for replication
	Communication between nodes

	Implementation
	Reinforcement learning for VPS choice
	Gossip algorithm

	Extras: a new market strategy
	Crossovers and moving averages
	Moving average implementation

	Discussion on ethical implications
	Conclusion
	References
	Appendix A - Product Feedback
	Appendix B - System's Component Diagram
	Appendix C - Original Project Discription
	Appendix D - Project Skills
	Roberta Gismondi
	Giacomo Mazzola
	Daan Goossens
	Giorgio Acquati
	Tommaso Tofacchi

	Appendix E - Info-sheet

