CPSC 340:
Machine Learning and Data Mining

More CNNs
and
Deep Learning Software

Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1



Admin

* Assignment 6:
— Due Thursday

* Final exam:
— Saturday April 14, 3:30pm-6:00pm, SUB 2201
— Covers Assignments 1-6, Lectures 2-31 (not today or Friday)



AlexNet Convolutional Neural Network

* ImageNet 2012 won by AlexNet:

— 15.4% error vs. 26.2% for closest competitor.

— 5 convolutional layers.

— 3 fully-connected layers.
— SG with momentum.

— ReLU non-linear functions.

— Data translation/reflection/
cropping.

— L2-regularization + Dropout.

— 5-6 days on two GPUs.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896-64,896-43,264—
4096—4096—-1000.



AlexNet Convolutional Neural Network
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Bonus slides: other well-known networks

ZFNet (2013)
— “deconvolutional networks” to see what CNNs learn
VGGNet (2014)

— Small (3x3) convolutions, many (19) layers

GooglLeNet (2014)

— 22 layers, no fully connected layers
— Try to predict labels at multiple locations

ResNet (2015) — we saw this last class
— Learn “residuals” between input and desired signal

DenseNet (2016)

— Layer layers see values in early layers



Mission Accomplished?

* For speech recognition and object detection:
— No other methods have ever given the current level of performance.
— Deep models continue to improve performance on these and related tasks.
— We don’t know how to scale up other universal approximators.
— There is likely some overfitting to popular datasets like ImageNet.

* CNNs are now making their way into products.
— Apple face recognition.
— Amazon Go
— Self-driving cars.



Mission Accomplished?

* Despite high-level of abstraction, deep CNNs are easily fooled:
— But progress on fixing ‘blind spots’.

* Recent work: imperceptible noise that changes the predicted label
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esign(V.J(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

* Can someone repaint a stop sign and fool self-driving cars?



Beyond Classification (CPSC 540)
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prediction:

neural networks allow “dense’

forward /inference
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backward/learning

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

* |mage segmentation:

FCN-8s SDS[17]  Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan er al. [ 1 7]. Notice the fine structures recovered (first



Beyond Classification (CPSC 540)

e “Fully convolutional” neural networks allow “dense” prediction:

forward /inference

Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions for per-pixel tasks like semantic segmen-
tation.

e Depth Estimation:




Beyond Classification

* Image colorization:

T > P
X A , . METE . ¥
fi :-_6 Ry > S

a

— Image Gallery, Video

Berry Field, June 1909

Hamilton, 1936
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Inceptionism

* Acrazyidea:
— Instead of weights, use backpropagation to take gradient with respect to x.

* |nceptionism with trained network:

— Fix the label y, (e.g., “banana”).

— Start with random noise image x.. , )
'gt\ow W['\A‘/ )IOu 'h\.'n/\/ Q Eanome« /(]olys /&ke

— Use gradient descent on image x.

— Add a spatial regularizer on x;:
» Encourages neighbouring x; to be similar. fEsis Aoty

optimize
with prior




Inceptionism

* Inceptionism for different class labels:

Starfish

Anemone Fish Banana Parachute




Inceptionism

* Inceptionism where we try to match z(™ values instead of y..

— Shallow ‘m’:
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Inceptionism

* Inceptionism where we try to match z(™ values instead of y..

~ Deepest ‘m’: . E e

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"
14



Inceptionism

* Inceptionism where we try to match z(™ values instead of y..

— “Deep dream” starts from random noise:
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— Inceptionism gallery
— Deep Dream video
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Artistic Style Transfer

 Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S’.
— Make a image that has content of ‘C’ and style of ‘S’.

Con"e h{:
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Artistic Style Transfer

Image Gallery




- Image Construction
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Figure: Left: My friend Grant, Right: Grant as a pizza
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Artistic Style Transfer

Recent methods combine CNNs with graphical models (CPSC 540):

' SOk DA -
Content A + Style B Content B + Style A
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Artistic Style Transfer

 Recent methods combine CNNs with graphical models (CPSC 540):

Input style

Input content Ours
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Artistic Style Transfer for Video

 Combining style transfer with optical flow:
— https://www.youtube.com/watch?v=Khuj4ASIdmU

* Videos from a former CPSC 340 student/TA’s paper:




Move to Jupyter for deep learning software



Summary

e Convnets can do a lot of cool stuff
 You can train models on GPUs in the cloud with minimal hassle



/FNet Convolutional Neural Network

* Looked at how prediction changes if we hide part of the image:

~ @ True Label: Afghan Hound
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/FNet Convolutional Neural Network

* ImageNet 2013 won by variation of AlexNet called ZF Net:

— 11.2% error (now using 7x7 stride 2 instead of 11x11 stride 4).
— Introduced deconvolutional networks to visualize what CNNs learn.

Rectified Un, aps Feature Maps
onvolutiona onvolutiona
Filtering {FT} Filtering {F}
I Reconstruction ‘ ‘ Layer Below Pooled Maps ‘
Layer Above I n _
Reconstruction ‘l& |||||||
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Feature Maps “

Figure 1. Top: A deconvnet layer (left) attached to a con-
vnet layer (right). The deconvnet will reconstruct an ap-
proximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using swilches which record the
location of the local max in each pooling region (colored

zones) during pooling in the convnet.
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/FNet Convolutional Neural Network
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ZFNet Convolutional Neural Network
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ZFNet Convolutional Neural Network

28



VGG Convolutional Neural Network

* Image 2014 “Localization” Task won by a 19-layer VGG network:
— 7.3% error for classification (2" place).
— Uses 3x3 convolution layers with stride of 1:

* 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
e Speeds things up and reduces number of parameters.
* Increases number of non-linear ReLU operations.

— “Deep and simple”: variants of VGG are among the most popular CNNs.
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GoogleNet

* Image 2014 classification task won by GooglLeNet:
— 6.7% errors.
— 22 layers

* No fully connected layers.

* During training, try to predict label at multiple locations.
— During testing, just take the deepest predictions.

* “Inception” modules: combine convolutions of different sizes.

Filter
concatenation

ﬂv\

1x1 convolutions [}

1x1 convolutions
er

(b) Inception module with dimensionality reduction

3x3 max pooling

makes sense  becunse
ﬂf:g ore f,‘,sf 2 dimepsons bf%?p (onv.



ResNet

* Image 2015 won by Resnet (all 5 tasks):
— 3.6% error (below estimate 5% human error).
— 152 layers (2-3 weeks on 8 GPUs to train).

— “Residual learning” allows better performance with deep networks:
* Include input to layer in addition to non-linear transform.

X

Y

weight layer
.7:()() ! relu

weight laye

X

identity

Figure 2. Residual learning: a building block.
* Network just focuses on “residual”: what is not captured in original signal.
* Along with VGG, this is another of the most popular architectures.
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DenseNet

* More recent variation is “DenseNets”:
— Each layer gets to see all the values in the previous layers.
— Gets rid of vanishing gradients.

Figure 1: A 5-layer dense block with a growth rate of £k = 4.
Each layer takes all preceding feature-maps as input.
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CNNs for Rating Self

Good selfies

Our training data

Bad selfies
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CNNs for Choosing YouTube Thumbnails

Input Video

Sampled
Frames

Quality
Model

_______
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Rendering
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default 120x90

mqdefault 320x180
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Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S’.
— Make a image that has content of ‘C’ and style of ‘S..

* CNN-based approach applies gradient descent with 2 terms:
— Loss function: match deep latent representation of content image ‘C’:
* Difference between z™ for deepest ‘m’ between x. and ‘C’.

— Regularizer: match all latent representation covariances of style image ‘S’.

« Difference between covariance of z(™ for all ‘m’ between x. and ‘S’
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