diff --git a/TypeTheory/Csystems/hSet_ltowers.v b/TypeTheory/Csystems/hSet_ltowers.v index 6d00ae76..16a2ab27 100644 --- a/TypeTheory/Csystems/hSet_ltowers.v +++ b/TypeTheory/Csystems/hSet_ltowers.v @@ -699,11 +699,11 @@ Proof. exact eq. } clear eq0. - remember (transportf (isover X) (! eq) (isover_X_ftnX X (S n))) as H''. + set (H'' := transportf (isover X) (! eq) (isover_X_ftnX X (S n))). set (H3 := transportf (isover X) (! eq') (isover_XX X)). assert (eq'' : H'' = H3) by (apply isaprop_isover). rewrite eq''. - clear HeqH'' H'' eq'' eq. + clear H'' eq'' eq. induction eq'. cbn in H3. unfold H3. diff --git a/TypeTheory/Initiality/Interpretation.v b/TypeTheory/Initiality/Interpretation.v index 6239e69e..4693be22 100644 --- a/TypeTheory/Initiality/Interpretation.v +++ b/TypeTheory/Initiality/Interpretation.v @@ -1,5 +1,14 @@ (** This file defines the interpretation function, from the syntax of our toy type theory into any split type-cat with suitable structure. *) + +(** * TODO NOTE: This file depends on Coq.Init.Logic. + Removing the following line causes the error: + + File "./TypeTheory/TypeTheory/Initiality/Interpretation.v", line 366, characters 4-5: + Error: [Focus] Wrong bullet -: Current bullet + is not finished. + *) +Require Import Coq.Init.Logic. + Require Import UniMath.MoreFoundations.All. Require Import UniMath.CategoryTheory.Core.Prelude. diff --git a/TypeTheory/Initiality/SyntacticCategory.v b/TypeTheory/Initiality/SyntacticCategory.v index 9e3d40bc..512f218c 100644 --- a/TypeTheory/Initiality/SyntacticCategory.v +++ b/TypeTheory/Initiality/SyntacticCategory.v @@ -287,7 +287,7 @@ Section Contexts_Modulo_Equality. destruct ΓΓ as [n ΓΓ]. generalize ΓΓ. apply setquotunivprop'. { intros; apply isapropishinh. } - intros Γ; apply hinhpr. exists Γ; auto. + intros Γ; apply hinhpr. exists Γ; apply idpath. Defined. End Contexts_Modulo_Equality. diff --git a/TypeTheory/TypeCat/General.v b/TypeTheory/TypeCat/General.v index 55bf37e4..1fffe1f3 100644 --- a/TypeTheory/TypeCat/General.v +++ b/TypeTheory/TypeCat/General.v @@ -5,6 +5,14 @@ Note: much of this essentially duplicates material given already in the [CwF_Spl Probably much of this really should belong in a different package. *) +(** * TODO NOTE: This file depends on Coq.Init.Logic. + Removing the following line causes the error: + + File "./TypeTheory/TypeTheory/TypeCat/General.v", line 365, characters 6-115: + Error: not found in table: core.eq.type + *) +Require Import Coq.Init.Logic. + Require Import UniMath.MoreFoundations.All. Require Import TypeTheory.Auxiliary.CategoryTheoryImports. diff --git a/TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v b/TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v index 7119b42c..2aba9af6 100644 --- a/TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v +++ b/TypeTheory/TypeConstructions/CwF_SplitTypeCat_TypeEquiv.v @@ -362,11 +362,11 @@ Lemma unit_equiv_inv1 : ∏ x : unit_structure Sc, unit_equiv_2(unit_equiv_1 x) Proof. intro Unit. apply pair_path_in2. - assert (prj : pr2 Unit = pr12 Unit ,, pr22 Unit) by auto. + assert (prj : pr2 Unit = pr12 Unit ,, pr22 Unit) by apply idpath. apply pathsinv0. apply (pathscomp0 prj). refine (subtypePairEquality' _ _ ). - - assert (func: pr12 Unit = λ Γ : C , pr12 Unit Γ) by auto. + - assert (func: pr12 Unit = λ Γ : C , pr12 Unit Γ) by apply idpath. apply (pathscomp0 func). apply funextsec2. intro Γ. @@ -378,11 +378,11 @@ Lemma unit_equiv_inv2 : ∏ x : CwF_unit_structure CWF, unit_equiv_1(unit_equiv_ Proof. intro Unit. apply pair_path_in2. - assert (prj : pr2 Unit = (pr12 Unit ,, pr22 Unit)) by auto. + assert (prj : pr2 Unit = (pr12 Unit ,, pr22 Unit)) by apply idpath. apply pathsinv0. apply (pathscomp0 prj). refine (subtypePairEquality' _ _ ). - - assert (func: pr12 Unit = λ Γ : C , pr12 Unit Γ) by auto. + - assert (func: pr12 Unit = λ Γ : C , pr12 Unit Γ) by apply idpath. apply (pathscomp0 func). apply funextsec2. intro Γ. @@ -434,15 +434,15 @@ Lemma universe_equiv_inv1 Proof. intro Universe. apply pair_path_in2. - assert (prj : pr2 Universe = pr12 Universe ,, pr22 Universe) by auto. + assert (prj : pr2 Universe = pr12 Universe ,, pr22 Universe) by apply idpath. apply pathsinv0. apply (pathscomp0 prj). refine (subtypePairEquality' _ _ ). - - assert (func : pr12 Universe = λ Γ : C , pr12 Universe Γ) by auto. + - assert (func : pr12 Universe = λ Γ : C , pr12 Universe Γ) by apply idpath. apply (pathscomp0 func). apply funextsec2. intro Γ. - assert (simplman : pr12 Universe Γ = λ a : _, pr12 Universe Γ a) by auto. + assert (simplman : pr12 Universe Γ = λ a : _, pr12 Universe Γ a) by apply idpath. rewrite simplman. reflexivity. - do 4 (apply impred_isaprop; intro); exact (pr12 Split _ _ _). @@ -453,15 +453,15 @@ Lemma universe_equiv_inv2 Proof. intro Universe. apply pair_path_in2. - assert (prj : pr2 Universe = pr12 Universe ,, pr22 Universe) by auto. + assert (prj : pr2 Universe = pr12 Universe ,, pr22 Universe) by apply idpath. apply pathsinv0. apply (pathscomp0 prj). refine (subtypePairEquality' _ _ ). - - assert (func : pr12 Universe = λ Γ : C , pr12 Universe Γ) by auto. + - assert (func : pr12 Universe = λ Γ : C , pr12 Universe Γ) by apply idpath. apply (pathscomp0 func). apply funextsec2. intro Γ. - assert (simplman : pr12 Universe Γ = λ a : _, pr12 Universe Γ a) by auto. + assert (simplman : pr12 Universe Γ = λ a : _, pr12 Universe Γ a) by apply idpath. rewrite simplman. cbn; apply funextsec; intro a; rewrite tm_equiv_inter_21; reflexivity. - do 4 (apply impred_isaprop; intro); exact (setproperty (Ty CWF _) _ _).