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In recent years, bimodal salient object detection has developed rapidly. In view of the advanced perfor-
mance of their robustness to extreme situations such as background similarity and illumination variation,
researchers began to focus on RGB-Depth-Thermal salient object detection (RGB-D-T SOD). However,
most existing bimodal methods usually need expensive computational costs to complete accurate predic-
tion, and this situation is even more serious for three-modal methods, which undoubtedly limits their
applicability. To solve this problem, we are the first to propose a lightweight multi-level feature differ-
ence fusion network (MFDF) for real-time RGB-D-T SOD. In view of the depth modality contains less use-
ful information, we design an asymmetric three-stream encoder based on MobileNetV2. Due to the
differences in semantics and details between high and low level features, using the same module without
discrimination will lead to a large number of redundant parameters. On the contrary, in the coding stage,
we introduce a cross-modal enhancement module (CME) and a cross-modal fusion module (CMF) to fuse
low-level and high-level features respectively. In order to reduce redundant parameters, we design a low-
level feature decoding module (LFD) and a multi-scale high-level feature fusion module (MHFF). A great
deal of experiments proves that the proposed MFDF has more advantages than the 17 state-of-the-art
methods. On the efficiency side, MFDF has a faster speed (124 FPS when the image size is 320 � 320)
and much fewer parameters (8.9 M).
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Salient object detection (SOD) aims to make computers imitate
human beings and automatically detect and segment the most
prominent objects in input images. As one of the most popular
tasks in computer vision, SOD has been widely used in various
downstream vision directions, such as image-based quality assess-
ment (Risnandar, , 2022), semantic segmentation (Mohakud and
Dash, 2022; Zeng et al., 2022; Liu et al., 2023; Janneh et al.,
2023; Chen and Zhao, 2023), object detection (Sharma and Mir,
2022; Kesav and Jibukumar, 2022; Arulprakash and Aruldoss,
2022; Chen et al., 2022), object tracking (Xia et al., 2022) and so on.

In recent years, SOD has made a long-term advance with the
culmination of deep learning techniques. According to the number
of input image data sources, the existing research fields of SOD
based on deep learning can be divided into single-modality salient
object detection (RGB SOD), RGB-Depth salient object detection
(RGB-D SOD), RGB-Thermal infrared salient object detection
(RGB-T SOD) and RGB-D-T SOD.

Mainstream SOD networks are designed to process RGB images
generated by visible cameras and have made significant progress.
However, when dealing with some difficult scenes, such as similar
foreground and cluttered background, it is impossible to rely solely
on RGB images. Recent work has achieved remarkable results by
inputting RGB images together with a network of correspondingly
aligned depth images. Because the grayscale value of each pixel in
a depth image can be used to characterize the proximity of a point
in the scene to the camera, it possesses the ability to distinguish
prominent objects from the similar and complex background sur-
rounding them. However, depth information is easily disturbed
in practical applications, and it contains limited information in
the face of weak light, uneven illumination and small objects. In
contrast, thermal infrared images can simulate the spatial distribu-
tion of surface temperature of objects, and have low sensitivity to
illumination changes. Therefore, even in the above unfavorable
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Fig. 2. Comparison with some advanced methods on the VDT-2048 dataset. Our
method shows very competitive accuracy and a much faster speed.
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environment, thermal infrared images can capture objects clearly
and supplement rich contour information for RGB images. There-
fore cross-modal complementary information from depth and
thermal infrared images brings new vitality and progress to RGB
SOD from different angles.

A hierarchical weighted suppress interference (HWSI) method
(Song et al., 2022) is the pioneering work for RGB-D-T SOD, which
exchanges the information of three modalities and makes a new
VDT SOD benchmark dataset (VDT-2048).

Although the above methods have obtained excellent perfor-
mance, two critical issues have not been well settled. First of all,
they mainly focus on exploring the effective complementarity of
cross-modal information, while ignoring the essential differences
between high and low-level features. In the encoding and decoding
stage, only the same module is used for the fusion interaction of
high and low-level features, resulting in redundant parameters
and difficulty in achieving further performance breakthroughs, as
shown in Fig. 1(a). Second, as shown in Fig. 2, these frameworks
obtain higher precision at the expense of memory size and running
speed, which limits their application in real life.

To track the above issues, we develop a multi-level feature dif-
ference fusion network (MFDF) which can reduce the deployment
period of RGB-D-T SOD. In view of the differences in semantic level
and spatial resolution between high-low level features, we use dif-
ferent modules for high-level and low-level features in the encod-
ing and decoding stages, as shown in Fig. 1(d).

The main contributions of this paper can be summarized as
follows:

1) We propose a novel lightweight network named MFDF for
real-time RGB-D-T SOD. Considering the amount of informa-
tion contained in modalities due to different imaging mech-
anisms, we design an asymmetric backbone network based
on MobileNetV2 to reduce parameter redundancy.
Fig. 1. Existing mainstream fusion and decoding architectu
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2) We devise a simple and effective CMF to do a preliminary
cross-modal fusion for high level features, and introduce
the CME to reduce the diversity between modalities and
improve the effect of cross-modal fusion.

3) In the aspect of high-level feature fusion, the MHFF is pre-
sented to improve the model inference speed by reducing
the use of large dilated convolution kernels. In low-level fea-
ture decoding, we design the LFD to enlarge the receptive
field of low-level features.

4) The MFDF is far superior to the 17 SOTA methods in the F-
measure, and E-measure of reference benchmark VDT-
2048. For efficiency analysis, our network has only 8.9 M
res (a), (b) and (c), and our proposed architecture (d).
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parameters, achieving 124 FPS processing speed with the
input image size 320 � 320 on a single NVIDIA RTX2070
super.

2. Related work

2.1. RGB salient object detection

Due to the limitation of computer resources, the early tradi-
tional RGB SOD algorithm can only detect targets based on artificial
features and various prior knowledge, like foreground consistency
(Zhang et al., 2017), histograms (Lu et al., 2014), boundary prior
(Zhu et al., 2014), center prior (Cheng et al., 2015) and color prior
(Zhou et al., 2021). However, traditional methods cannot describe
the object structure in complex scenes and lack generalization.
There is no doubt that this weakness limits the development of
SOD.

Recently, due to the strong feature representation ability of
deep CNN, the RGB SOD methods have gone out of the restrictions
of traditional methods and made a significant breakthrough. Zhang
et al. (Zhang et al., 2017) proposed a generic aggregating multi-
level variable feature framework (Amulet), which first integrates
features at each resolution to predict salient map. Liu et al. (Liu
et al., 2018) presented the pixel-wise contextual attention network
(PiCANet) to improve the salient detection performance by inte-
grating global context and multi-scale local context. Hou et al.
(Hou et al., 2017) introduced a series of short connections into
the HED architecture so that the output layer of the network can
accurately capture the prominent objects and their boundaries in
the picture. Liu et al. (Liu et al., 2020) designed a unified end-to-
end training architecture to deal with the three tasks simultane-
ously. Tang et al. (Tang et al., 2021) used a high-resolution refine-
ment network (HRRN) to regress and predict the pixels in the
uncertain region. Wu et al. (Wu et al., 2022) adopted an
extremely-downsampled network (EDN) to learn image features
from a global perspective, so as to achieve accurate target location.

However, researchers are no longer satisfied with improving the
accuracy blindly, and begin to consider the deployment of SOD
applications in practice. Li et al. (Liu et al., 2021) designed the first
lightweight SOD network called HVPNet, which carries out hierar-
chical perceptual learning on the premise of achieving a balance
between accuracy and efficiency. Liu et al. (Liu et al., 2021) pre-
sented a very lightweight stereoscopically attentive multi-scale
network (SAMNet), which adaptively fuses features of various
scales using stereo attention mechanism. For purpose of detecting
accurate targets quickly, a position prior attention network (PPA-
Net) presented by Zhang et al. (Zhang et al., 2022) brings in a prior
position to increase the confidence of objects in the central area.

2.2. RGB-D salient object detection

Although the SOD algorithm relying on CNN have made remark-
able achievements at present, it is difficult to distinguish back-
ground from foreground and reflect the logical relationship
between objects only by RGB images when faced with some realis-
tic complex scenes, such as prominent objects and background
with similar appearance, multiple objects, transparent objects,
one object with different colors, etc. With the emergence of a large
number of cheap and portable RGB-D camera recently, depth
images containing more position and contour information are
introduced into SOD to improve the detection results of objects.
Subsequently, a new research direction of RGB-D SOD is formed.

RGB-D SOD methods depending on deep CNN can be roughly
classified into two categories according to the importance of depth
information. The first one is to fuse RGB and D modalities as
equally important to explore modal differences.
3

Fu et al. (Fu et al., 2020) constructed a very flexible joint learn-
ing and dependent-cooperative fusion (JL-DCF) framework for
cross-modal complementarity. Zhang et al. (Zhang et al., 2021)
raised a bi-directional transfer-and-selection net (BTS-Net), which
introduces bidirectional interaction between RGB and depth in the
feature encoding phase. Aiming at the potential noise of the origi-
nal depth map, Ji et al. (Ji et al., 2021) tried to calibrate the original
depth directly through a depth calibration and fusion (DCF) frame-
work, which significantly improves the performance. Chen et al.
(Chen et al., 2021) established a depth potentiality-aware gated
attention network (DPANet) to explicitly model the confidence
response of depth maps and reduce pollution. A dynamic selective
network (DSNet) presented by Wen et al. (Wen et al., 2021) seeks
the possibility of consistently fusing cross-modal, cross-level and
multi-scale cues through dynamic selection. Li et al. (Li et al.,
2021) constructed a hierarchical alternate interactions network
(HAINet), specifically, firstly using RGB features to filter unfavor-
able information in depth features, and then the process is
repeated in reverse. Chen et al. (Chen et al., 2021) used the aggre-
gation ability of 3D convolution (RD3D) for the first time to com-
plete the pre-fusion in encoder stage and the deep fusion in
decoder stage. X. Fang et al. (Fang et al., 2022) introduced trans-
former, and developed the group transformer network (Group-
TransNet) to learn the long-range dependencies at the least cost
and obtain perfect feature expression. A novel specification-
preserving network (SPNet) proposed by Zhao et al. (Zhou et al.,
2021) learns shared representation while preserving the unique
features of each bimodal modality. Wang et al. (Wang et al.,
2022) adopted remote cross-modal correlation and local depth cor-
relation to refine features from different angles to ensure the fine
structure of the target.

Because high-level features emphasize semantic information
and low-level features highlight spatial information, Zhou et al.
(Zhou et al., 2022) raised a crossflow and cross-scale adaptive
fusion network (CCAFNet) which adopts different adaptive fusion
strategies for different levels of bimodal features in the encoding
stage to promote SOD. Zhang et al. (Zhang et al., 2021) used the dif-
ferences between modalities to realize the mutual supplement of
different levels of features in the encoding stage. The above process
establishes a cross-modal differential interaction network (CDI-
Net), as shown in Fig. 1(b).

The second is to let the auxiliary D modality information to seek
and strengthen RGB main features, and accomplish cross-modal
complementary fusion under the guidance of main modality. Ji
et al. (Ji et al., 2020) proposed a novel collaborative learning frame-
work (CoNet) that utilizes saliency knowledge and edge in a mutu-
ally beneficial way to improve detector performance. Chen et al.
(Chen and Fu, 2020) used depth prediction to reduce mutual degra-
dation between modalities, thus making up for missing parts and
wrong predictions. Liu et al. (Liu et al., 2020) provided the selective
self-mutual attention (S2MA) module to integrate self-attention
and others’ attention to accurately propagate context and filter
out unreliable modal information. A depth distiller (A2dele) pre-
sented by Piao et al. (Piao et al., 2020) explores the use of network
prediction and attention to adaptively transfer pixel-level depth
knowledge to prediction of RGB streams. In order to suppress the
interference in low-level cross-modal features, Zhao et al. (Zhai
et al., 2021) presented a bifurcated backbone strategy network
(BBS-Net) to mine deep and rich information by cascade refine-
ment mechanism. According to the different features of high and
low levels in the decoding stage, Liu et al. (Liu et al., 2021) designed
a triplet transformer embedding network (TriTransNet), which
firstly strengthens the features of the upper three levels, and then
combines them with the features of the lower two levels to realize
prediction.
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Benefiting from the geometric structure clues in depth images,
RGB-D SOD also shows amazing results in some extreme scenes.
However, there is no gainsaying that using separate feature extrac-
tion networks for different modality brings huge parameters,
which may lead to high computation and expensive storage costs.
This also limits the actual deployment process of the current RGB-
D model, especially in mobile devices. In order to solve this limita-
tion, Chen et al. (Chen and Fu, 2020) constructed a lightweight
depth backbone to reduce redundancy. By embedding A2dele, Piao
et al. (Piao et al., 2020) implemented a lightweight architecture
that does not use depth data during testing. The collaborative
learning strategy allows CoNet (Ji et al., 2020) without no addi-
tional deep networks and deep input during testing, thus making
it lighter and more versatile. Jin et al. (Jin et al., 2022) constructed
mobile asymmetric dual-stream networks (MoADNet), which uses
inverted bottleneck structure and atrous pyramid to speed up rea-
soning and compensate for information loss in lightweight back-
bone. Wu et al. (Wu et al., 2022) raised an implicit depth
restoration (IDR) technology used only in training to enhancement
the feature presentation of the mobile network (MobileSal) for an
efficient RGB-D SOD. By revisiting the feature fusion period, Huang
et al. (Huang et al., 2021) firstly presented a middle-level fusion
way for real-time SOD. An efficient lightweight RGB-D SOD model
(DFM-Net) designed by Zhang et al. (Zhang et al., 2021) can dynam-
ically filter the depth features according to the depth quality.

2.3. RGB-T salient object detection

Although depth images contain abundant geometric structure
and 3D information, they can be combined with visual cues to pro-
mote object detection and location. However, under complex con-
ditions such as weak light, dark or uneven light, the information
contained in the RGB and depth images may not be sufficient for
accurate detection. The thermal infrared imager can capture the
infrared radiation emitted by targets to create images, allowing it
to operate effectively during nighttime or under adverse weather
conditions. Therefore, RGB-T SOD algorithm for fusing visible and
thermal infrared images is gradually emerging. For detailed meth-
ods, please refer to the review written by Song et al. (Song et al.,
2023). Unlike RGB-D SOD, where depth modality may be in auxil-
iary position, RGB and thermal modality are in the same position.
In extreme environments, thermal images are used to supplement
details such as contours and boundaries, while RGB images are
used to provide complementary color, texture and semantic
information.

Tu et al. (Tu et al., 2020) proposed a novel attention-based deep
fusion network (ADFNet) and constructed a large-scale, high-
diversity benchmark VT5000. Zhou et al. (Zhou et al., 2022) intro-
duced generation countermeasure learning into RGB-T SOD and
improved generation of an adversarial learning assistance and per-
ceived impact fusion network (APNet). Aiming at the insufficiency
of cross-modal information fusion, Wang et al. (Wang et al., 2022)
raised a novel cross-guided fusion network (CGFNet) to seek and
fuse the information of different modalities. An effective and con-
sistent feature fusion network (ECFFNet) presented by Zhou et al.
(Zhou et al., 2022) fuses feature of corresponding levels and per-
forms bilateral fusion of background information. Tu et al. (Tu
et al., 2021) raised a multi-interactive dual-decoder (MIDD) to
upsample the twomodalities separately to prevent the information
of the two modalities from influencing each other excessively in
the interaction process. Liu et al. (Liu et al., 2022) developed the
SwinNet driven by Swin Transformer, which relies on attention
mechanism to bridge the modal gap, with edge information guid-
ing the decoder to highlight the contour. A two-stage fusion net-
work (TSFNet) presented by Guo et al. (Guo et al., 2021) fuses the
intersection and union information of local regions and the back-
4

ground features. Gao et al. (Gao et al., 2022) developed a novel
multi-stage and multi-scale fusion network (MMNet) to explore
complementarity. Liao et al. (Liao et al., 2022) constructed a
cross-collaborative fusion-encoder network (CCFENet) to reduce
the negative response of contaminated data and encourage effi-
ciency and accurate SOD. A novel deep correlation network
(DCNet) proposed by Tu et al. (Tu et al., 2022) solves a new weak
alignment-free RGBT SOD task at spatial, feature and semantic
levels. Taking account into indoor complex illumination changes,
Song et al. (xxxx) build a VI-RGBT1500 dataset and a multi-graph
affinity interactive (MGAI) network. Chen et al. (Chen et al.,
2022) established a cross-guided modality difference reduction
network (CGMDRNet) to reduce modal differences and become
more different fusion features. And according to the diverse prop-
erties of high-low layer features, they took different treatment
measures in the decoding stage, as shown in Fig. 1(c).

However, the above RGB-T SOD frameworks need high comput-
ing cost and memory consumption while obtaining high precision,
which is not suitable for running on resource-limited devices. To
solve this problem, Huo et al. (Huo et al., 2022) created a real-
time one-stream semantic-guided refinement network (OSRNet),
which uses an easy and useful early fusion to avoid the cumber-
some two-stream encoder structure. Huo et al. (Huo et al., 2022)
used the lightweight backbone and designed highly effective deco-
ders, named context-guided stacked refinement network (CSRNet).
2.4. RGB-D-T salient object detection

For purpose of better coping with the complex interference
environment, Song et al. (Song et al., 2022) proposed a method
named HWSI and provided a new VDT-2048 dataset by combining
the advantages of RGB, Thermal, and Depth modalities for the first
time. However, HWSI adopts pairwise fusion for the three modal-
ities, and then synthesizes the final decoder features. The stacking
and homogenization of multiple identical modules make the com-
plexity and running speed of the model not dominant.

Most available methods of RGB-D, RGB-T, RGB-D-T mentioned
above mainly focus on the design of fusion module, ignoring the
problem that there are differences between high and low level fea-
tures in terms of semantic level and spatial resolution. Therefore,
they only use the same module to process the encoding and decod-
ing stages of fusion interaction of features at different levels,
resulting in very redundant parameters and limiting the perfor-
mance improvement. There are only a few exceptions, such as
CCAFNet (Zhou et al., 2022) and CDINet (Zhang et al., 2021), which
distinguish the encoding process, while TriTransNet (Liu et al.,
2021) and CGMDRNet (Chen et al., 2022) are different from the
decoding process. But they are not put forward for the purpose
of lightweight.

Unlike the above bimodal and trimodal algorithms, the pro-
posed MFDF is the first one to adopt different processing means
for the interaction of the three modalities in the encoding and
decoding stages in response to the difference between high and
low level features, as shown in Fig. 1(d). It solves the above limita-
tions by ensuring the high performance of the benchmark dataset
VDT-2048, fewer model parameters and competitive reasoning
speed for RGB-D-T SOD. Our network has obtained accurate real-
time salient target detection results in extensive experiments.
3. Methodology

In this part, we present the overall look of our net. Specifically,
low-level features, they are firstly enhanced by the CME, and then
we utilize the CMF to fuse them, while high-level features are
directly aggregated by the CMF. Secondly, high-level semantic
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information RTD5 of trimodal images is obtained by high-level
cross-modal fusion between RT5 and D5 for salient prediction.
After that, the fused features are sent to DAS to restore the depth
map, which is used to play an auxiliary role in supervision. Finally,
the LFD and MHFF are developed for reducing unnecessary
parameters.

3.1. Architecture overview

Fig. 3 paints the overall architecture of the proposed MFDF,
where we utilize three branches, RGB, depth, and thermal infrared,
to extract trimodal information respectively.

3.1.1. RGB branch and T branch
We use MobileNetV2 (Sandler et al., 2018) as the feature extrac-

tion backbone of our method, and remove the GAP layer and the
final FC layer in order to apply the salient object detection task.
Each layer of the RGB and T branches is a convolutional layer with
a step size of 2, and the number of channels output from each layer
is 16, 24, 32, 96, 320. For subsequent convenient representation,
we denote the RGB branch’s five layers of the RGB branch are rep-
resented as R1, R2 in the lower layer and R3, R4, and R5 in the
higher layer. Moreover, the five layers of the T branch are repre-
sented as T1, T2 in the lower layer and T3, T4, and T5 in the higher
layer.

3.1.2. Depth branch
It is basically the same as RGB and T branches. Since depth

images have less texture and semantic information compared to
RGB and T images, we use a simplified version of MobileNetV2
(Sandler et al., 2018) to extract depth features. This approach can
reduce unnecessary computational complexity. For the depth
branch is a convolutional layer with a step size of 2 per layer and
the number of channels output per layer is 16, 24, 32, 96, 320.
For easy representation, the five layers of features of the depth
branch are denoted as D1, D2, D3, D4, and D5.

As shown in Fig. 3, we first fuse the five layers of features
extracted from RGB and T branches respectively. The lower-level
features have more texture information, so we first enhance them
using the CME and then fuse them employing the CMF, while the
higher-level features are fused directly using the CMF. For ease of
representation, RGB and T features fused by the CMF are denoted
Fig. 3. The overall structure o
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as RT1, RT2, RT3, RT4, RT5. Secondly, the high-level cross-modal
fusion is performed using RT5 and D5 to obtain the high-level
semantic information RTD5 of the trimodal images for salient pre-
diction. Then, RT1, RT2, RT3, RT4 and RTD5 features are input to the
DAS to reconstruct the depth map for aiding supervised RGB and T
branches to enhance their feature learning capability. Finally, for
the prediction part of the salient map, we raise the LFD and MHFF
for the characteristics of high and low-level features to cut down
the number of unnecessary parameters. The final output of the
low-level feature decoding module is the salient map. The details
are described in the next parts.

3.2. Cross-Modal enhancement and fusion modules

1) Cross-modal enhancement module (CME). There are five
main layers in the feature extraction branch of RGB and T.
As in previous studies (Zhou et al., 2022; Zhang et al.,
2021), texture information is mainly concentrated in the
first two layers of feature extraction, and semantic informa-
tion is mainly concentrated in the last three layers. There-
fore, in the first two layers of extracted features, we
believe that the texture information of the images is affected
by different modalities with large variability, while in the
last three layers of extracted features, the semantic informa-
tion accounts for the major part and the modal variability of
the features is small. To solve the problem of large modal
differences in texture information of shallow features, we
develop a cross-modal enhancement module to decrease
the modal differences between RGB and T images, and then
boost the effect of cross-modal fusion.

As shown in Fig. 4, the structure of the CME is shown. Where Ri
and Ti represent the low-level features of the input RGB and T, and
we explicitly model the differences between the two modalities by

element-wise subtraction RTdif
i :

RTdif
i ¼ Ri� Ti; i 2 ½1;2� ð1Þ
The variability of the RGB and T modalities is later reduced by

the following operations:

R i ¼ CBRðCBRðRiÞ � CBRðRTdif
i Þ þ CBRðRiÞÞ; i 2 ½1;2� ð2Þ

T i ¼ CBRðCBRðTiÞ � CBRð�RTdif
i Þ þ CBRðTiÞÞ; i 2 ½1;2� ð3Þ
f the proposed method.



Fig. 4. The architecture of Cross-modal enhancement and fusion modules.
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where R_i and T_i stand for the enhanced Ri and Ti, respectively, and
CBR represents the convolution layer (Conv2d), normalization layer
(BN) and activation function layer (Relu). For the discrepancy infor-

mation RTdif
i , the multiplication operation with RGB features is per-

formed to enhance the T information weight in RGB, and the
original information of RGB is retained by residual connection.

2) Cross-modal fusion module (CMF). Cross-modal interac-
tive fusion is a crucial step in predicting multimodal saliency
maps, which can be accurately predicted by fusing informa-
tion from different modalities. At present, the favorable
information of the two modal images cannot be fully fused
by simply multiplying, adding and connecting operations
(Wang et al., 2022). Therefore, we build a cross-modal fusion
module to aggregate the features of different modalities sim-
ply and effectively. As shown in Fig. 4, in the low-level fea-
ture fusion stage, the input of the CMF is R_i and T_i after
feature strengthening. In the high-level feature fusion stage,
the input of the CMF is directly provided by the feature
extraction backbone. The detailed operation process is
shown in Fig. 3. The formula is expressed as follows:

RTi ¼ CAððSAðR iÞ � T iÞ þ T iÞ þ CAððSAðT iÞ � R iÞ þ R iÞ; i 2 ½1;2�
ð4Þ

RTi ¼ CAððSAðRiÞ � TiÞ þ TiÞ þ CAððSAðTiÞ � RiÞ þ RiÞ; i 2 ½3;4;5�
ð5Þ

where CA and SA (Woo et al., 2018) stand for the channel attention
mechanism and spatial attention mechanism, respectively. RTi rep-
resents the features after cross-modal fusion of Ri and Ti. By using
the cross-parallel operation of CA and SA and by multiplying and
adding the features, the background redundant information in
RGB and T images can be removed and the differentiated informa-
tion of both can be retained. The gain of this module is also shown
in the ablation experiment section. The final features after cross-
modal fusion can be directly sent to the final decoding section for
predicting the salient maps.

3) High-level cross-modal fusion module (HCMF). The depth
map mainly provides the spatial structure information of
objects. When the complex texture of RGB image or temper-
ature intersection of T image is encountered in detection, it
is helpful to distinguish the target and background informa-
tion in the region. As previously studied (Sun et al., 2021), it
is crucial to apply the depth map to the salient object detec-
tion task in a rational way. Here, since the texture informa-
tion and imaging quality of the depth map are in most cases
6

inferior to those of RGB and T images, but the depth map has
an advantage in distinguishing foreground and background
information, and to save computational cost, we fuse only
the high-level features of the depth information. High-level
depth features are introduced to compensate for the lack
of semantic information when RGB and T images encounter
challenging scenes. And in order to efficiently and effectively
fuse the high-level trimodal features, as shown in Fig. 3, we
raise the HCMF, as illustrated by Eqs. (6).

RTD5 ¼ CBRðCMFðD5;RT5Þ � D5� @ðGAPðRT5ÞÞÞ ð6Þ
where CMF stands for the cross-modal fusion module, @ represents
the Sigmoid activation function, and GAP denotes for global adap-
tive pooling. We first perform cross-modal fusion with D5 and
RT5 to obtain the initial fusion features. To retain the advantage
of depth features in distinguishing foreground and background,
we then multiply with D5. To retain the high-level semantic fea-
tures of RGB and T, we then multiply with RT5 processed by GAP
and Sigmoid layers. Finally, the final trimodal high-level semantic
features are output by CBR and used to guide the multi-scale
high-level feature fusion.

3.3. Multi-scale high-level feature fusion (MHFF) module and low-level
feature decoding (LFD) module

In the process of feature extraction, multi-scale features are lost
step by step and semantic information in contrast increases as the
number of layers deepens. Therefore, rational utilization of seman-
tic and texture information of features at different scales is crucial
in the salient object detection task. Nevertheless, most detection
methods (Wen et al., 2021; Zhou et al., 2022) available only use
the same decoder in the decoding phase, directly from the top to
low level mapping to decode the final output significant map.
Although these methods have some compatibility in dealing with
multiscale features with different distributed texture and semantic
information, this compatibility is achieved through the redundant
design of the decoder. Therefore, in order to save computational
cost and ensure the accuracy of saliency detection, we exploit
two different decoders in the decoding phase.

1) Multi-scale high-level feature fusion module (MHFF).
High-level features mainly contain semantic information,
and have many channels and low resolution, while middle-
level features have a balanced position of channel number
and resolution. In order to reduce unnecessary computation,
we need to obtain a coarse salient feature to guide the
decoding of low-level features. We present a lightweight
MHFF module, as shown in Fig. 5.
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Unlike existing multi-scale feature decoding modules (Zhai
et al., 2021), we use depthwise separable convolutions instead of
ordinary convolutions to reduce unnecessary parameters. Simulta-
neously, due to the low resolution of high-level features, using
large convolution kernel cannot effectively improve the feature
receptive field, but will slow down the inference speed. Therefore,
we utilize different dilated convolution rates (Yu and Koltun, 2015)
to accelerate the inference speed of the net. As shown, D-GCM rep-
resents a depthwise separable global context module, where D-
GCM-1 uses dilated rates of 1, 3, 5, D-GCM-2 using 1,3,7, and D-
GCM-3 using 1, 3, 5, 7. The number of characteristic channels of
RT3, RT4, and RTD5 treated by D-GCM is unified as 32, which we
represent G_RT3, G_RT4, and G_RTD5. The specific formulas of
multi-scale high-level feature fusion module are expressed as
follows:

W1 ¼ CAT Fup DCBRðG RTD5Þð Þ;DCBR Fup DCBRðG RTD5Þð Þ � G RT4
� �� �

ð7Þ

W2 ¼ CBR CAT DCBR RT3� DCBR Fup2 RT4ð Þ� �� DCBR Fup4 RT5ð Þ� �� �
;DCBR W1ð Þ� �� �

ð8Þ
whereW1 represents the intermediate result of the feature fusion of
the fifth and fourth layers. W2 is the result of the third layer feature
and a fusion with scale 44 � 44 and number of channels 32. CAT
indicates the concatenation operation and Fup�n represents n times
upsampling of the features.

2) Low-level feature decoding module (LFD). Different from
the high-level features, the low-level features mainly con-
tain texture information, with a small number of channels,
Fig. 5. Details of Multi-scale high-level feature fusion module.
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high resolution, and the detail accuracy of the final salient
map is closely related to the low-level features. For this pur-
pose, we design the LFD module, as shown in Fig. 6.

Unlike other methods, we do not use the original features at the
end of the decoding operation, but also the features output by a U-
Net structure. It is worth noting that using a large convolution ker-
nel on the lower-level features, and the effect on the inference
speed is not obvious, so we use multiple dilated convolution ker-
nels of different sizes on the LFD to improve the detection accu-
racy. This way can reduce the interference of the background
information in the original feature brought about by the direct
residual connection. The specific formulas are expressed as
follows:
Ui ¼ CATðRTi;CFup2�iðW2ÞÞ; i 2 ½1;2� ð9Þ
Fmapi ¼ GAPðUiÞ � CBRðConvðBR Pj
3
DConvd¼jðConvðUiÞÞ

� �
Þ þ U3ðUiÞÞ;

i 2 ½1;2�; j 2 ½3;6;9;12�
ð10Þ
where CFup2�i represents the mapping function of W2, consisting of
CBR + Fup. And Ui indicates the features after the fusion of middle-
level feature maps and low-level features and serves as input to the
LFD. DConvd represents a depthwise separable convolution with a
dilated convolution rate. U3 represents the U-Net structure function
of the three-layer residual connections. Fmapi represents salient fea-
tures, which are finally output through a 1 � 1 convolution.
Fig. 6. Details of low-level feature decoding module.
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3.4. Supervised and loss functions

1) Deep auxiliary supervision. Lightweight feature extraction
backbone such as MobileNet (Sandler et al., 2018) is not as
powerful as large numbers of parameters such as ResNet
(He et al., 2016), VGG (Simonyan and Zisserman, 2014). To
increase the accuracy of multi-modality salient object detec-
tion, we tried to improve the feature extraction ability of the
lightweight feature extraction backbone. We found that the
imaging of the depth map does not have the texture infor-
mation of RGB and T pictures, but is presented with a spatial
smoothing degree. This character enables the depth map to
suppress a part of the background information, and the sup-
pressed background information is basically consistent with
the background information of RGB and T images. Therefore,
we consider that the depth map can be used as an auxiliary
supervision during the training stage to supervise the back-
bones to improve their inhibitory ability to the background
features. For this purpose, we design the DAS module, as
shown in Fig. 3. The DAS uses RT1, RT2, RT3, RT4, RTD 5 as
input, through 1 � 1 convolution normalized to 256 chan-
nels, then sampled to the scale size of RT4, and connected
together through a CBR and four DCBR operations, finally
through a 1 � 1 convolution output prediction depth map,
and the depth map as supervision to feedback, as illustrated
by Eqs. (11) to (12).

Dmap ¼ Conv1�1ðDCBR4ðCBRðConv1�1ðRT1;RT2;RT3;RT4;RDT5ÞÞÞÞ
ð11Þ
lossD ¼ 1� SSIMðD;DmapÞ ð12Þ

where DCBR4 represents four sets of DCBR operations. SSIM is used
to calculate the structural similarity of two features and lossD repre-
sents the loss of depth versus predicted depth maps for auxiliary
supervision. In the inference stage, this part will not occupy the cal-
culated amount.

2) Salient map supervision. We use the output of these three
decoders, Fmap1, Fmap2, W2 to supervise our approach. These
three features are converted into a single channel by 1 � 1
convolution, and the predicted salient map is output by sig-
moid and bilinear interpolation up-sampling. For conve-
nience of representation, we note as Fsali; i 2 ½1;2;3�, where
Fsal1 is the final predicted salient map. We supervise our
model using the binary cross-entropy loss and the dice loss
(Milletari et al., 2016). The specific loss calculation formula
is as follows:
loss ¼
Xi

1

ðki � BCEðGT; FsaliÞ þ bi � DiceðGT; FsaliÞÞ; i 2 ½1;2;3� ð13Þ

where the loss stands for the main loss of the model. The ki and bi

represent the loss equilibrium coefficient, and we set the default
parameters 1.
4. Experiments

In this part, we explain the experimental setup. Then we com-
pare the proposed method with the most advanced SOD methods.
Meanwhile, we conduct a comprehensive ablation experimental
analysis of the proposed module, a complexity analysis, and finally
we analyze the reason of failure examples.
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4.1. Experimental setup

1) Implementation Details: The equipment system we use is
Ubuntu18.04, the model training and testing framework is
PyTorch, and all the experiments are calculated on NVIDIA
RTX2070 super. Our model is trained for 65 iterations with
an initial learning rate of 0.0001. The batch size is 4. Using
Adam as the optimizer of our model, momentum, weight
decay coefficient, b1, and b2 is set to 0.9, 0.0001, 0.9 and
0.99, respectively. During data loading, we use data
enhancement operations such as horizontal flipping and
random cropping, and finally adjusted the multimodal
images to 320 � 320. The dataset and code are available
at: https://github.com/VDT-2048/MFDF.

2) Datasets: We use the publicly available VDT-2048 dataset.
We use the data completed by HWSI (Song et al., 2022) as
our training and test sets, so as to ensure the fairness of
the contrast experiments.

3) Evaluation Metrics: The accuracy evaluation index of salient
object detection can objectively measure the accuracy of dif-
ferent methods to detect salient objects. Similar to recent
work, we mainly use the following metrics, absolute average
error (MAE) (Perazzi et al., 2012), the lower the better; F-
measure (Fm) (Achanta et al., 2009), which considers preci-
sion and recall; weighted F-measure (W_F) (Margolin et al.,
2014), which extends the base quantity to non-binary values
and determines the weight error according to their location
and neighborhood; E-measure (Em) (Fan et al., 2018), which
is an enhanced alignment method, considering local pixels
and image mean; S-measure (Sm) (Fan et al., 2017), which
evaluates spatial structure similarity by combining regional
perceived structural similarity Sr and object perceived struc-
tural similarity. Model complexity evaluation index can
objectively measure the requirements of different methods
for computing hardware. The Frames Per Second (FPS),
which is the number of pictures per second of the model
computing device in the inference stage; the Model Size
refers to the space size of the computing device occupied
by the pre-training weight; the amount of model parameters
(Model Params), which refers to the number of parameters
contained in the model; the Floating Point Operation Per
Second (FLOPs), which includes multiplication and addition,
only related to the model, and can be used to measure its
complexity.

4.2. Comparison with the SOTA bimodal/trimodal methods

Currently, only individual method for salient object detection
uses the VDT-2048 dataset. To ensure the comprehensiveness of
the comparative experiment, we choose 16 state-of-the-art bimo-
dal SOD methods relying on deep learning in the past few years.
Meanwhile, for purpose of justice of the experiment, those meth-
ods that do not use VDT-2048 dataset, we do not use the training
model provided by them, we use their open-source code to re-
train and test, and the experimental parameters are set according
to the original paper.

As shown in Table 1, these methods prove the effect of our pro-
posed method on detection. Among these methods, DPANet (Chen
et al., 2021), JL-DCF (Fu et al., 2020), BBS-Net (Zhai et al., 2021),
CoNet (Ji et al., 2020), RD3D (Chen et al., 2021), HAINet (Li et al.,
2021), CDINet (Zhang et al., 2021), DSNet (Wen et al., 2021), Mobi-
leSal (Wu et al., 2022), and MoADNet (Jin et al., 2022) are the RGB-
D SOD methods. The RGB-T methods include ADFNet (Tu et al.,
2020), MIED (Tu et al., 2020), MIDD (Tu et al., 2021), CGFNet
(Wang et al., 2022), CSRNet (Huo et al., 2022), and OSRNet (Huo
et al., 2022). HWSI (Song et al., 2022) is the RGB-D-T method.

https://github.com/VDT-2048/MFDF


Table 1
Quantitative comparison results for different methods, where red represents the best, blue represents the sub best, and green represents
the third best. (Chen et al., 2021; Fu et al., 2020; Zhai et al., 2021; Ji et al., 2020; Chen et al., 2021; Li et al., 2021; Zhang et al., 2021; Wen
et al., 2021; Wu et al., 2022; Jin et al., 2022; Tu et al., 2020; Tu et al., 2020; Tu et al., 2021; Wang et al., 2022; Huo et al., 2022; Huo et al.,
2022; Song et al., 2022).
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Quantitative metrics show that our proposed method is compa-
rable to the most advanced method in bimodal SOD task in accu-
racy, and even some metrics have reached the current optimal. It
is notable that the accuracy of our method is comparable to that
of OSRNet (Huo et al., 2022), but in terms of complexity, the FPS
of our method is about twice that, the Model Size (MS) is only
about half that, and the FLOPs is one tenth of that. Therefore, under
the condition of certain hardware requirements, our method is
easier to implement than OSRNet (Huo et al., 2022). At the same
time, we can see MobileSal (Wu et al., 2022), MoADNet (Jin et al.,
2022) and CSRNet (Huo et al., 2022) in the table. These methods
belong to lightweight methods, which perform well in complexity
index, but their accuracy index is average. In practical application,
these methods have low robustness and generalization, and will be
analyzed in visualization results. Finally, the HWSI belongs to the
trimodal salient target detection method. This method makes full
use of the complementarity of trimodal images in model design,
and has excellent detection performance. However, its model com-
plexity exceeds that of most bimodal salient target detection meth-
ods which is too large. Its practical application difficulty is even
greater than that of general bimodal methods. The results in
Fig. 2 also show more intuitively that MFDF is an attractive multi-
spectral salient object detector in terms of accuracy and speed. To
sum up, our method has the advantage of providing enough infor-
mation by using the trimodal image, and from the perspective of
lightweight model, the detection accuracy is comparable to that
of the most advanced bimodal method. Meanwhile, our model is
lighter than it, which has the possibility of practical application.

In order to show the advantages of our proposed method more
directly, we compare all the comparison methods in two new met-
rics, max E-measure scores (Emax) and max F-measure scores
(Fmax), and show them through the histogram in Fig. 7. The results
also prove that our method is competitive with other methods.
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4.3. Analysis of the visual results

As shown in Fig. 8, the salient objects in the first line of pictures
have multiple bar profiles, and it can be seen that our method can
detect the profiles more accurately than the others. The second and
third rows are the detection of small objects, and it can be seen
that our method is hardly disturbed by other information. In the
fourth row, the color of the salient object is similar to the back-
ground color, our method can be accurately detected, and the sali-
ent object profile detected by other methods has different degrees
of deletion. The fifth, sixth and seventh rows are to detect salient
under low illumination conditions. It can be seen that other meth-
ods are affected by illumination, and there are problems such as
partial missing structure of salient objects or unclear boundary
between multiple objects. The visualization results verify that
our method maintains good detection accuracy and has good
robustness in some challenge scenarios. As shown in Fig. 9 PR
curves and F-measure curves, our method shows excellent perfor-
mance compared with other methods, and it is noteworthy that
our method also gains a fairly competitive lead at different F-
measure thresholds.

As shown in Fig. 10, we conduct a comprehensive performance
comparison of our method with others. In Fig. 10(a), we compare
the model parameter size and E-measure accuracy. For clarity of
the experimental results, we remove the coordinates of RD3D
(Chen et al., 2021), which falls between BBS-Net (Zhai et al.,
2021) and MIDD (Tu et al., 2021), and only keep the coordinates
of CDINet (Zhang et al., 2021) for the comparison, as the results
of CDINet and HAINet (Li et al., 2021) were similar. We can see that
although the model parameter size of CSRNet (Huo et al., 2022),
MobileSal (Wu et al., 2022), and MoADNet (Jin et al., 2022) is
low, their detection accuracy is poor. In contrast, our proposed
method has a model parameter size of only 8.9 MB and high



Fig. 7. Comparison of visualization results between our MFDF and other methods on Emax and Fmax.

Fig. 8. Comparison of the visualization results of our MFDF and other methods.
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detection accuracy. In Fig. 10(b), we compare the model FLOPs and
S-measure accuracy. Here, we remove CoNet (Ji et al., 2020), MIDD
(Tu et al., 2021), and ADFNet (Tu et al., 2020) for clarity, as they
were close to BBS-Net. We can see that MobileSal and MoADNet
have a low computational cost, but their detection accuracy is also
low. CSRNet has a similar computational cost as our method, but
we have a much higher detection accuracy. In summary, our MFDF
achieves a good balance between detection accuracy and model
complexity.

4.4. Ablation study

4.4.1. The effect analysis of different module
In this part, we study the contribution of the main modules we

used. All of the ablation experiments are trained and tested on the
VDT-2048 dataset. We use five evaluation metrics. The specific
data are shown in Table 2.
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1) Contribution of the CMF module: As shown in the second
row of Table 2, we add a cross-modal fusion module on
the basis of backbone, and other parameter settings remain
unchanged from the proposed method. We can see that
the F-measure a maximum increase of 4.4%. Other indexes
have also improved to varying degrees. It is worth noting
that some indexes will decline slightly, which may be caused
by the low stability of the network. Secondly, it is possible
that the CMF mainly uses the spatial and channel attention
mechanism in the fusion stage, and the information process-
ing is not perfect. As far as the overall index is concerned,
this module contributes to improve the detection
performance.

2) Contribution of the DAS module: As shown in the third row
of Table 2, we add a deep auxiliary supervision module on
the basis of 1), and other parameter settings remain
unchanged with the proposed method. We can see that most



Fig. 9. Quantitative comparison results between our proposed method and the SOTA methods on the VDT-2048 dataset. The first line is Precision (vertical axis) Recall
(horizontal axis) curves, and the second line shows the F-measure scores of the deep learning-based methods under different thresholds.

Fig. 10. Comprehensive performance comparison. The larger the E-measure and S-measure, the better. The smaller the Model Params and FLOPs, the better.

Table 2
Comparison of the different contributions of the main modules.

Model MAE; Fm " W_F" Em " Sm "
– 0.0044 0.7675 0.8100 0.9382 0.8907
CMF 0.0041 0.8115 0.8147 0.9589 0.8868
CMF-DAS 0.0039 0.8136 0.8120 0.9614 0.8899
CMF-DAS-HCMF 0.0038 0.8104 0.8314 0.9605 0.8984
CMF-DAS-HCMF-MHFF 0.0036 0.8205 0.8468 0.9640 0.9079
CMF-DAS-HCMF-MHFF-LFD 0.0032 0.8291 0.8619 0.9644 0.9170
CMF-DAS-HCMF-MHFF-LFD-CME 0.0031 0.8392 0.8665 0.9687 0.9191
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indexes have been improved to some extent. This module
mainly improves the feature extraction ability of the feature
extraction backbone and improves the stability of our
method.

3) Contribution of the HCMF module: As shown in the fourth
row of Table 2, we add a high-level cross-modal fusion mod-
ule on the basis of 2), with other parameter settings and the
proposed method remaining unchanged. We can see that the
11
index W_F has a maximum 1.96% increase, the S-measure is
a 0.85% increase, and some indexes have a slight decrease.
The reason is that this module mainly provides semantic
information when RGB and T images encounter challenge
scenes at the same time, and has certain robustness in the
detection of some hard scenes. If the depth information is
unreliable, it will affect the already unreliable RGB and T
information.
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4) Contribution of the MHFF module: As shown in the fifth row
of Table 2, we add a multi-scale high-level feature fusion
module on the basis of 3), keeping other parameter settings
and the proposed method. We can see that all indexes have
improved, among which the W_F increased by 1.54%, the F-
measure increased by 0.99%, and the S-measure increased by
0.95%. This module mainly carries out multi-scale fusion of
high-level features, and outputs a middle-level salient fea-
ture to guide the subsequent low-level decoding. This fusion
method can reduce the parameter redundancy of step-by-
step decoding, and plays a crucial part in improving the
detection performance and reducing the model complexity.

5) Contribution of the LFD module: As shown in the sixth line
of Table 2, we add a low-level feature decoding module on
the basis of 4), and other parameter settings remain
unchanged with the proposed method. We can see that all
indexes have improved, with the F-measure increasing by
0.86%, the W_F by 1.51%, and the S- measure by 0.91%. This
module mainly aims at the characteristics of low-level fea-
tures with rich texture information. By using U-Net struc-
ture instead of residual structure to remove part of the
background information of the low-layer features, and using
multiple empty convolution cores to expand the feature
receptive field, so as to reduce the interference of the back-
ground information on the final salient map.

6) Contribution of the CME module: As shown in the last row of
Table 2, we add the CME based on 5), and other parameter
settings remain unchanged from the proposed method. We
can see an improvement in all indexes, with F-measure
increased by 1.01%. This module is mainly before the CMF.
The reason why reducing the difference between modalities
is not used in high-level is that the difference is mainly obvi-
ous in low-level features. By doing so, it can avoid cross-
modal fusion in the wrong direction because the features
of a certain modality deviate from the truth map extremely.
This module can improve our method to deal with the fusion
problem caused by poor imaging quality of one of the
modalities.

4.4.2. The influence analysis of different factors

1) Effectiveness analysis of U-Net structure in LFD module. As
shown in Table 3, the first row indicates that we change
the original U-Net structure into a simple residual connec-
tion, and other structural parameters remain unchanged.
The experimental results show that the complexity of the
model is only slightly reduced, but the detection results
are greatly reduced, in which Fm is reduced by 3.03%, and
other accuracy indexes are also reduced to varying degrees,
so this part of the structure is effective.

2) Different Dilation Rates used in LFD module. As shown in
Table 4, the numbers to the right of the name represent
the parallel features at different spatial rates. We can see
that using different dilation rates in LFD module has little
effect on model complexity, but the detection accuracy is
improved to varying degrees, and the Fm of the proposed
method is improved by 1.12%.
Table 3
Effectiveness analysis of U-Net structure in LFD module.

Models Precision Metrics

MAE; Fm " W_F" Em "
LFD-U � 0.0033 0.8089 0.8572 0.9566
OUR 0.0031 0.8392 0.8665 0.9687
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3) Analysis of depthwise separable convolution in the MHFF
module. As shown in Table 5, we replace the depthwise sep-
arable convolution with ordinary convolution in the MHFF
module of our method while keeping other structural
parameters unchanged. From the experimental results, it
can be observed that the model complexity increases signif-
icantly, and only some detection accuracy indicators
improve slightly. Therefore, it is feasible to replace vanilla
convolution with depthwise separable convolution.

4) Analysis of MHFF module with convolution kernels of differ-
ent sizes. As shown in Table 6, the number to the right of the
name represents the parallel convolution kernel size we use
in the high-level feature. In the first row, we all use convolu-
tion kernels of size 1 and 3 in the three layers of high-level
features. The complexity of the model decreases, but the
detection results also decrease obviously. In the second
row, we all use kernels of size 1, 3, 5 and 7 in the three layers
of high-level features. We can see that the complexity of the
model has increased and the detection accuracy indicator
has partially increased. In the third, the size distribution of
convolution kernels used in the three levels of high-level
features is opposite to the proposed method. The complexity
indicator of the model partially increases, because the
dimension of the high-level features is high and the scale
is small, and the convolution kernel used has many parame-
ters. However, because the scale is small, the computation is
small, and there is a balance relationship here. We can also
see that the accuracy indicator here has declined. To sum
up, the different high-level feature convolution kernel distri-
bution strategies used in the proposed method are better.

5) Analysis of homogeneous module in cross-modal fusion
stage. As shown in Table 7, the first row indicates that we
use the CMEmodule for each layer of features, while keeping
other structure constant. We can see that the model com-
plexity increases significantly, and the detection accuracy
does not reach the optimal level. The second row indicates
that we do not use the CME for each layer of features, while
keeping other structure constant. The model complexity
decreases slightly, and the detection accuracy does not reach
the optimal level. In conclusion, our proposed method only
uses CME for low-level feature cross-modal fusion stages,
which has little impact on model complexity but improves
detection accuracy to varying degrees, with Fm increasing
by 1.01%.

6) Analysis of homogeneous module in decoding stage. As
shown in Table 8, the first row indicates that we use LFD
to decode all layers in the decoding stage, while keeping
other network structure unchanged. We can see that the
model complexity decreases, but the detection accuracy
decreases to varying degrees, with Fm decreasing by 1.67%.
The second row indicates that we use MHFF to decode all
layers in the decoding stage, while keeping other network
structure unchanged. The model complexity increases sig-
nificantly, and the detection accuracy of the model decreases
by a large margin, with Fm decreasing by 7.86%. In summary,
the proposed method’s differential treatment of high and
Complexity Metrics

Sm " FPS" MS(MB); MP(M); FLOPs(G);

0.9148 130 55.1 8.8 3.8
0.9191 124 56.4 8.9 4.2



Table 4
Different Dilation Rates used in LFD module.

Models Precision Metrics Complexity Metrics

MAE; Fm " W_F" Em " Sm " FPS" MS(MB); MP(M); FLOPs(G);

LFD-3 0.0035 0.8155 0.8536 0.9567 0.9118 128 56.4 8.9 4.1
LFD-3,6 0.0033 0.8157 0.8562 0.9590 0.9147 125 56.4 8.9 4.1
LFD-3,9 0.0033 0.8280 0.8552 0.9624 0.9112 125 56.4 8.9 4.1
OUR 0.0031 0.8392 0.8665 0.9687 0.9191 124 56.4 8.9 4.2

Table 5
Analysis of depthwise separable convolution replacement in MHFF module.

Models Precision Metrics Complexity Metrics

MAE; Fm " W_F" Em " Sm " FPS" MS(MB); MP(M); FLOPs(G);

MHFF-Dwise � 0.0032 0.8096 0.8623 0.9553 0.9211 95 62.4 9.5 5.6
OUR 0.0031 0.8392 0.8665 0.9687 0.9191 124 56.4 8.9 4.2

Table 6
Analysis of MHFF module with convolution kernels of different sizes.

Models Precision Metrics Complexity Metrics

MAE; Fm " W_F" Em " Sm " FPS" MS(MB); MP(M); FLOPs(G);

MHFF-1,3 0.0033 0.8306 0.8618 0.9650 0.9138 129 53.7 8.2 3.6
MHFF-1,3,5,7 0.0033 0.8355 0.8627 0.9698 0.9130 112 57.9 9.3 4.3
MHFF- opposite 0.0033 0.8259 0.8538 0.9644 0.9099 117 56.6 8.9 4.0
OUR 0.0031 0.8392 0.8665 0.9687 0.9191 124 56.4 8.9 4.2

Table 7
Analysis of homogeneous module in cross-modal fusion stage.

Models Precision Metrics Complexity Metrics

MAE; Fm " W_F" Em " Sm " FPS" MS(MB); MP(M); FLOPs(G);

CME (all-layers) 0.0033 0.8267 0.8607 0.9637 0.9165 94 73.6 13.2 4.8
CME � 0.0032 0.8291 0.8619 0.9644 0.9170 132 56.3 8.9 3.8
OUR 0.0031 0.8392 0.8665 0.9687 0.9191 124 56.4 8.9 4.2

Table 8
Analysis of homogeneous module in decoding stage.

Models Precision Metrics Complexity Metrics

MAE; Fm " W_F" Em " Sm " FPS" MS(MB); MP(M); FLOPs(G);

LFD (all-layers) 0.0031 0.8225 0.8585 0.9598 0.9150 138 53.2 8.3 3.0
MHFF(all-layers) 0.0038 0.7606 0.8369 0.9248 0.9141 40 61.9 10.1 25.5
OUR 0.0031 0.8392 0.8665 0.9687 0.9191 124 56.4 8.9 4.2
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low-level features is an effective decoding strategy that
achieves advantages in both model complexity and detec-
tion accuracy.

4.5. Failure examples analysis and future direction

In this section, we mainly analyze the failure of our method, and
put forward relevant solutions that may be used in future schemes.
As shown in Fig. 11, in the first row, when the RGB image is extre-
mely dim, the salient in the T image resembles the background
color, which leads to the failure of our method to detect salient.
This situation may require a more powerful backbone for feature
extraction.
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In the second row, the salient object in both RGB and T images is
very obvious. However, the color information in RGB images
crosses and thermal crossover occurs in T images, which eventually
leads to the incomplete detection of the salient map at the junction
of the two modalities of color. In this case, it may be necessary to
choose the one with high confidence for the local information of
different modalities in the cross-modal fusion stage. In the third
row, the salient objects in RGB, D and T images are not obvious,
so the available effective information is not enough to support
the existing methods to detect. In this case, it is generally neces-
sary to improve the imaging quality of the equipment or improve
the imaging conditions of the scene to be detected. The fine pole
part of the fourth line of badminton racket is not detected. This



RGB D T GT Ours

Fig. 11. Failure cases of the proposed MFDF. The first row shows the RGB image is extremely dim. The second row presents thermal crossover phenomenon exists in the T
images. The third row illustrates the salient object of RGB, D, and T images is not obvious.
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situation may be that part of the color of the bar in RGB and T
images is similar to the background, which makes it difficult for
our method to extract features. Secondly, it may be that we extract
this part of features and are filtered out in the fusion decoding pro-
cess. To solve this problem, it may be necessary to design a module
for detecting slender objects in the future.
5. Conclusion

In this paper, we propose a lightweight multi-level feature dif-
ference fusion network for real-time RGB-D-T SOD. Firstly, we
leverage the distinct information present in different modal
images. We design an asymmetric network structure with Mobile-
NetV2 as the backbone to effectively utilize the information from
each modality while reducing unnecessary parameters. Secondly,
in the cross-modal fusion stage, we employ the CME module to
minimize the discrepancy between modalities prior to fusing
low-level features. This helps to prevent incorrect low-level tex-
ture information from one modality from influencing the detection
results. Next, we employ multi-scale high-level features for level-
by-level refinement and optimize the model’s inference speed by
reducing the usage of large null convolution kernels. For low-
level feature decoding, we adopt multiple dilated convolution ker-
nels to expand the perceptual field of low-level features. Addition-
ally, we use a U-shaped structure instead of a residual structure to
filter out background information. Our comparative experiments
demonstrate the excellent performance of our method in terms
of detection accuracy and complexity. Furthermore, our analysis
of different factors shows that the employed module structure
and model architecture are effective. In the future, we will con-
tinue to optimize our method and aim to apply it to terminal
devices.
14
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