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About the simplest mathematical lanzuage for which a non-
trivial theory of meaning can be formulated, is the language in
which the only objects and functions dealt with are the natural
numbers and the primitive recursive functions. Trivial as this
lancuage may seem, it is nevertheless rich enéuqh to allow us to

frame answers to such questions as
What is a natural number?
What is zero?
What is the successor of a natural number?

Moreover, the answers that we shall give to these questions will

serve as paradigms for our answers to the more general qnestions
What is a type?
What is a mathematical object of a given type?

which we shall pose later for the theory of types.

Characteristic of many investigations of the concept of
natural number, is that they‘attempt to define natural number in
.terms of other, more primitive, concepts. Thus Frege defined a
number as an extension of a property, Russell as a class of simi-
lar classes, and von Neumann as a set in the cumulative hierarchy.
According to the latter, now orthodox, definition, the natural
numbersvo, 1, 2, ... are defined to be the sets ¢, {¢}, {¢.{¢}}, P
However, these definitions only reduce the question what a natural

number is,  to the more refractory questions

What is an extension of a concept?



What is a class?
What is a set in the cumulative hierarchy?

For Dedekind, on the other hand, the natural numbers were the
elements of a simply infinite system (that ié, a system satisfy-
ing the Peano axioms) whose particular nature we have disregarded
by our faculty of abstraction. And he believed he was able tb
prove the existence of infinite systems and therefore also of
simply infinite ones. Of yet another kind is Wittgenstein’s answer
in the Tractatus: A number is the exponent of an operation., It
contains in embryo the analysis that we shall give, not only for
natural numbers, but for mathematical objects of any type.

The mathematical symbols that we shall use, will be divided

into function constants
O, s’ +’ .,.!’ o o 0
and numerical variables

x, y’ ¢ o o

The function constants are further divided into primitive and

. defined ones. Only O and s are primitive. All the rest are de-

fined. An expression (meaningless, in general) is simply a string

of symbols, like

5

0!, x-y+x, x!+s(0), ...

To talk about the language, as we shall do when describing its

syntax and semantics, we also need syntactical variables. These
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are

f, g, e o o

which stand for function constants,
¥y Wy saus

which stand for numerical variables, and
a; by s44

which stand for expressions. When we want to indicate that an

ekpression may contain the variables v ..oy VvV, and no others,

& k
we shall denote it by a(vi,...,vk). This allows us to denote the

result of substituting the expressions a ceey By for v sivy V

17 19

,vk) by a(ai,...,ak). Linguistic expressions, con-

k

in a(vi,...

sidered in the ordinary way, are not mathematical objects. Only
in metamathematics are they treated as such% But, of course, when
talking about expressions as metamathematical objects, we use
linguistic expressions in the ordinary sense. They can never be

X ¥
dispensed with. Likewise, the substitution operation, which takes

84y +.., 8 and a(vi,...,vk)'into a(ai,...,ak), is not a function

" in the mathematical sense. Only when the expressions are treated

as metamathematical objects, does substitution become a function,
which is defined by recursion on the expression as metamathemat-
ical object a(vl,...,vk).

The rules of the languége of primitive recursive functions

produce statements of the five forms

scamucey lavgoages {—lo_y ace M'ue“wi'(ca—( oé‘(ec¥$_
Se M*Apuuu\ aod Ccs chace M'H\voHa-

¥¥ RS Rrovwer -l—kcu;(n.‘(‘ ey coold be.



f(xi,...,xk,x) = y (y is the value of the recursively defined
function £ for the subordinate arguments Kyg eoes Xy and the

principal argument x)
COA Al P

a = x (a denotes x, or x is the value of a) At %
a4 eedn-ie

x is a natural number

a is a numerical function

S

a=Dbor a=>b (the functions a and b are definitionally

equal, or have the same value)

The phrases following f(xi,...,xk,x) =y,a=xand a = b in
parantheses only show how to read these statements in English.
They must in.no way be regarded as explanations of the meanings
of these statements. As such, they would have to be understood
already, and if Qould be absurd of us to assume this, because the
task that we have set ourselves is precisely to explain the mean-
ings of these statements, it being totally irrelevant whether
they are expressed in mathematical notation or in English. How-
ever, since we shall formulate our theory of meaning in English,
it will be convenient to have the option of expressing the state-
ments whose meanings we are to explain in English as well.

When the expression occurring in the left hand member of a

denotation statement a(vi,...,VET = X contains variables, it will

1 19 ** 1 vk=x

of values to the variables, We shall indicate this by a figure

always be derived from certain assignments Vv, = x

k

of the form
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and say that a(v,,...,v,) = x for ?1 = Xy4 eeey ;k = X, or,
alternatively, that x is the value (denotation) of a(vl,...,vk)

for the arguments x X

10 e Xy

Rules of computation. The recursion scheme stipulates that,

given numerical functions a(vi,...,vk) and b(vl,...,v{,v,w), we

I
may define a (k+1)-place function f by the computation rules

‘\7=X
1

@ © 06 0 0 @ o 0 o 06 06 0 0 ¢ 0 0 0 2 0 ® o e ¢

a(V19"°9vk) = X

f(xi,...,xk,o) = X

f(xi,...,xk,x) =y bV, , . VLV W) = 2

f(xi,...,xk,s(x)) = z

The symbol f is to be uniquely associated with the expressions

a(vl,...,vk) and b(vi,...,v v,w), disrezarding the choice of the

k’
variables that Vis eoes Vs V and w stand for (mnaturally, since a
change of those variables does not affect the way in which f is

computed). As already indicated, in a computation statement
f(xi,...,xk,x) =y

xi, ceey X, are called the subordinate arguments, x the principal

argument, and y the value of the function f for these arguments.

Rules. of denotation. The computation rules refer back to

statements of the form a(vi,...,vk) = x, and hence they do not



allow us to determine the value of a recursively defined function

until the denotation rules have been given. They read

v = x (assignment)

ol
n
o
%r
7~
=

O )
a =X &S< PZ@:
s(a) = s(x) R
a, = X, e a, =X a=x f(xi,...,xk,x) =y

f(ai,-.ogak,a) = y

In the last rule, f is a (k+1)-place function defined by recursion.

First and second Peano axioms. When formulated as rules,

they read
0 is a natural number

x is a natural number

s(x) is a natural number

Rules of function formation. These are the rules producing

statements saying of an expression that it is a numerical func-

tion, namely

v is a numerical function

0 is a numerical function

a is a numerical function

s(a) is a numerical function

a,, <R a,, a are numerical functions
\

f(ai,...,ak,a) is a numerical function



Here, of course, v is a numerical variable, and f is a (k+1)-place

function defined by recursion.

Rules of definitional equality. Using the notation a = b

rather than a = b, they read

ai, .0y @, are numerical functions

f(ai,...,ak,o) = a(ai,...,ak)

B,y .00y @

a are numerical functions

R K’
ﬂai,...,ak,s(a)) = b(ais . ”saksaaf(a -’aksa)j
By = &4 ot 2 = %
b(ai,...,ak) = b(ci,...,ck)
a is a numerical function a=">o P b==¢c
a=a b=a a=r=¢c

In the first two.of these rules, f is a function defined by re-

cursion from the numerical functions a(vi,...,vk) and

b(v,,...,v,,v,W), and, in the third rule, b(v

to be a numerical function.

.,vk) is assumed

With this, the formulation of the syntax of the lancuare of

primitive recursive functions is conplete. Note that each of its

rules refers solely to the syntactical forms of the statements

occurring as premises and conclusion. This is what makes it into

a formal language. It remains for us to explain the meanings of

the statements that can be derived by means of the formal rules

or, what amounts to the same, how they are understood) because
9 :

understanding a language, even a formal one,

is not merely to

: " » & P
understand its rules as rules of symbol manipulation. Believing

X Re: whek wighk & meea Foc l,_qwo(\u:\e e Uc\cgecs-Lc.dA,“



this is the mistake of formalism. (Momwv}

To understand a language is to understand its rules, and
to understand a rule is to understand the conclusion under the
assumption that the premises have been understood.

The meaning of a computation statement f(x1,...,xk,x) =y

is the way in which it is derived. Similarly, the meaninz of a

denotation statement a(vl,...,vk7 = X is the way in which it is
derived from the assignments 71 = Xy eeny ;k = X, . Thus, to
understand a computation or denotation statement, we must know
nothing beyond how it is derived. This means that, for the com-
putation and denotation statements, the formalist interpretation’

is correct. For example, we understand that 0 + s(s(0)) = s(s(0))

from the derivation

X=0 . Z =0
0+0=0 s(z)=s(0) z = s(0)
0 + s(0) = s(0) s(z) = s(s(0))

0 + s(s(0)) = s(s(0))

Since to understand a rule is fo understand the conclusion under

the assumption that the premises have been understood, there is
nothing to understané about the rules of computation and denota- (Q
tion. If we know how to derive the premises, we know of course

how to derive the conclusion, namely, by applying the rule in
question., This is the ground for calling them mere stipu}ations.

The meaning of a statement of the form
X is a natural number

is the way in which a natural number is determined as the value



of a recursively defined function for X as principal and natural
numbers as subordinate arguments. Thus; to understand that x is

a natural number, we must know how to'determine a natural number y
such that f(xi,...,xk,x) = y under the assumption that f is a
(k+1)-place function defined by recursion and Xiy o0y X 2are
natural numbers. What determines the value of a recursively de-
fined function for given arguments is the scheme of recursion,

and hence we cannot understand a particular statement of the form
that we are considering without looking back on this scheme. As

is implicit in what we have just said, a natural number is an ”\

expression for which we have understood the statement above. Or, . (
as we may say, a natural number is an expression which we have (

understood (interpretcd) as a natural number. This is our answer ﬁ

to the question
What is a natural number?

posed in the beginning. Its relation to Wittgenstein’s answer:

A natural number is the exponent of an operation, becomes clear
if we reformulate it thus: A natural number is the principal
argument of functions defined by recursion. Indeed, the iteration

scheme

£0(x) = x Mx) =y £(y) = z
g3\l yy - 2

is nothing but a special form of the recursion scheme, the expo-
nent n being the principal and x the subordinate argument of the
binary function £7(x). So our formulation is obtained from Witt-

enstein's by considering the recursion scheme in its general
(=]

X RC: X dd ot codeestand Hus dea valkd we vadersbosd (TT 20d ondeades & 2l
npleneotal k. Mew & soens deep.
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form, rather than in the special form, called iteration. And this
weneralization is necessary since not every recursion (induction)
nas the form of a simple iteration. One can arrive at Wittgen-
stein’s answer by making the futile attempt to define a natural
number as what we get to from zero by iterating the successor
operation a finite number of times. This is circular, because the

definition uses the words finite number which are synonymous to

the words natural number whose meaning it attempts to explain.

There is no way out of this circle but to say that a natural
number is what we iterate up to, and this is essentially Wittgen-
stein’s explanation.

The meaning of a statement of the form
a(vl,..;,vk) is a numerical function

is the way in which a natural number is determined as the value

(denotation) of a(vi,...,v when natural numbers are assigned

i)

as values to the variables v Thus, to understand that

1, e e o9 vk.

a(Vl,...,vk) is a numerical function, we must know, given natural

numbers Xy eeey Xp, how to determine a natural number x such

that a(v =x for v, = x v What determines

R k) 1 PEEREET IR K*
the value of a(vi,...,vk) for given arguments are the rules of

cesV = X

denotation, and hence we cannot understand a statement of this
form without looking back on these rules.

We can now also explain the meaning of a statement of the

form

T is'a (k+1)-place function defined by recursion

Its meaning, like that of any statement, is what we know when we
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have understood it. And, to understand it, we merely have to

understand that the expressions a(Vi,---,Vk) and b(Vi,.--,V yV,W),

k
which in a purely formal way are associated with the symbol f,
are numerical functions.

Given these explanations, it is clear that what allows us to

understand (determines the meaning of) the:-first Peano axiom
0 is a natural number
is the first clause

v1=x1 e e o Vk=Xk

® © 06 060 0 0 0 06 00 0 0 0 ¢ o o 09 00 0 0 0

a(vl,...,VET = X

f(xi,...,xk,o) = X

of the recursion scheme. Indeed, that f is a (k+1)-place function
defined by recursion means that the expressions a(vi,...,vk) and
b(vi,...,vk,v,w) in terms of which it is defined are numerical

functions. In particular, so is a(vi,...,v Hence, given

Q-

natural numbers x coey Xy, We know how to determine a natural

1’
number X such that a(v

1,.0 1 = 1, e e 09 vk=xl{.

The first clause of the recursion scheme stipulates that this

.,Vk) = x for -\-f.

"number x is to be the value of f for the subordinate arguments
Xyo eeey Xy and the principal argument 0. And, of course, there
is no other rule which allows us te derive a statement of the

form f(xi,...,x 0) = X. This is the meaning of the first Peano

k’
axiom, that is, the way in which a natural number is determined
as the value of a recursively defined function for the principal

argument 0 and natural numbers as subordinate arguments. It is
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also our answer to the question
What is zexro?

because, as stated in the opening sentence of Frege’s Grundlagen,
the question what the number zero is, comes to the same as the
question what the symbol O means

Oour explanation of the meaning of the symbol O is typical
of how substance can be given to Wittgenstein’s slogan that
meaning is use, or, more explicitly, that the meaning of an ex-
pression is determined by the rules that govern its use in the
language of which it forms a part. It would be absurd to inter-
pret that slogan as saying that meaning is conferred automatic-
ally upon the expressions of a lansuage by its rules. There would
then be no need for a theory of meaning. If we lay down any old
set of rules, like those of set theory with the unrestricted
(inconsistent) comprehension axiom or those of the type—free
calculus of lambda-conversion, the expressions derivable by means
of those rules allow in general no other than the formalist
interpretation, according to which the meaning of an expression

Y~is the way in which it is derived. The difficulty in explaining
>

¢ i

q the meaning of an expression of a language is to dlseern what are the
g_rules of the language that determine its meaning. For instance,
in the language of primitive recursive functions, the symbol O
occurs explicitly, not only in the first clause of the recursion
scheme, but also (twice!) in the denotation rule 0 = O, in the
first Peano axiom, in one of the rules of function formation,

and in one of the rules of definitional equality. It is by no

means automatic that it is the first clause of the recursion

Ceo: Q—L,w ace 'L‘hvsc ('VL¢S \Soik'&‘& Se-ow e oo=es -\—(.\u% &an‘(- ?
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scheme and none of the other rules that determines the meaning of
the symbol O as a natural number.

If somebody suggests that the function of the spark plugs in
an internal-combustion engine is to be connected by cableé via
the distributor to the battery, we mﬁst explain to him how the
engine works, thereby convincing him that the function of the
spark plugs is to ignite the mixture of petrol and air which is
sucked into the cylinders from the carburettor. It is not that it
is wrong to say that the spark plugs are connected by cables via
the distributor to the battery: they certainly are. But that is
not what we should primarily pay our attention to in order to
understand the function of the‘spark plugs in the running of the
engine. Similarly, in arithmetic, if somebody suggests that the
meaning of the symbol 0 is determined by the first Peano axiom,
he is wrong, not because 0 is not a natural number: it certainly
is, but because the first Peano axiom is not the ?ule from which
the meaning of the symbol O‘is learnt. Instead, we must direct
his attention to the first clause of the recursion scheme, because
that is the rule which tells him how a natural number is deter-
mined as the value of a recﬁrsively defined function when 0 is
inserted into its principal argument place together with natural
numbers as subordinate arguments. :

Recall that, to understand a rule, we must understand the

conclusion under the assumption that the premises have been

understood. Hence, to understand the second Peano axiom

x is a natural number

s(x) is a natural number
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we must know how to evaluate a recursively defined function for
the principal argument s(x), given that we know how to evaluate
it for the principal argument x. So let f be a (k+1)-place func-

tion defined by recursion and x es Xp natural numbers. By

1, ° o 1

assumption, we know how to determine a natural number y such that

f(xi,...,xk,X) = y. Since f is a (k+1)-place function defined by
recursion, the second of the expressions associated with the sym-

bol f, call it b(vl,...,v v,w), is a numerical function. lence,

k’

Xio eoes X9 X and y being natural numbers, we know how to deter-

mine a natural number z such that b(vi,...,vk,v,w) = @ Tor
71 = Xiy eeey Vk = X, ¥ =xand W = y. The second clause of the
recursion scheme
V1 = x1 oo Vk = Xk V = X W =Y
f(xl,...,xk,x) =y b(vi,...,vk,v,ﬁT = z

f(xi,...,xk,s(x)) =z

stipulates that this number z is to be the value of f for the

subordinate arguments x,, ..., X, and the principal argument s(x).

1’
This is the meaning of the second Peano axiom, or, what amounts
to the same, the meaning of the symbol s. Our explanation of the

meaning of s(x) in terms of the meaning of x, is at the same time

our answer to the question
What is the successor of a natural number?

because, to ask for the meaning of the expression s(x), is the
same as to ask what s(x) is.

It is of utmost importance to realize that the first two
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Peano axioms do not stipulate what a natural number is. That
would be to say that a natural number is an expression for which

we have derived (instead of understood) the statement
X is a natural number

This is to confuse natural numbers with numerals; which is the
formalist misinterpretation of the concept of natural number;‘
What the first two Peano axioms show, is the form of a natural
number. But an expression is a natural number, not in virtue of
its form, but in virtue of its function. And this function is to
serve as the principal argument of functions defined by recursion.
Having explained the meanings of the first two Peano axioms,
we now turn to the rules of function formation. Remember that.

to understand a statement of the form
a(vi,...,vk) is a numerical function

we must know, given natural numbers xi, & e Xk’ how to determine

a natural number x such that a(vi,...,vk) =x for v, = x

Vk = X, . In particular, we understand the statement
v is a numerical function

for a numerical variable v, by looking back on the denotation

rule which says that
V:X

provided x is assigned as value to the variable v, It is this
stipulation which allows us to interpret the symbol v as a numer-

ical function. The statement
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O is a numerical function
is understood from the stipulation
0=0

and the first Peano axiom. Thus we cannot interpret the symbol O
as a numerical function until after we have interpreted it as a

natural number. The rule

a is a numerical function

s(a) is a numerical function
is understood from the stipulation

a=x

s(a)

1l

s(x)

and the second Peano axiom. Suppdse namely that a is a numerical
function, that is, that we know how to determine a natural num-
ber x such that @ = x. Then s(x) is a natural number by the
second Peaho axiom, and the denotation rule above stipulates that
s(a) = s(x). This is the meaning of the above rule of function

formation, that is, the way in which a natural number (namely,

's(x)) is determined as the value of s(a) under the assumption

that a is a numerical function. Note that we can understand this
rule only after we have understood the second Peano axiom. The

final rule of function formation is

By ceey ak, a are numerical functions

f(al,j..,ak,a) is a numerical function
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where f is a (k+1)-place function defined by recursion. To under-

stand it, we must know how to evaluate f(ai,...,a ,a) under the

k

assumptioﬁ that we know how to evaluate a and a, that

1, o 0 o g ak

is, that we know how to determine natural numbers x - B

% k

and x such that 51 = X5, ...y 8 = X, and a = x. But this is

precisely what the denotation rule

a, = x ok a, =X, as=xXx f(xi,...,xk,x) =y

F(ai,...,ak,a) = y

tells us. Indeed, since f is a (k+1)-place function defined by

1? K are natural

numbers, we know that a natural number is determined as its value

recursion and the subordinate arguments x pw oy X

whenever a ngtural number is inserted into its principal argument
place; In particular, this is so for x, that is, we know how to
determine a natural number y such that f(xi,...,xk,x) = y. The
denotation rule stipulates that this number y is to be the value

(denotation) of f(a,,...,2,,a). This is how the meaning of the

k’
expression f(ai,...,ak,a) as a numerical function is determined

. in terms of the meanings of the expressions Biy ey 8y and a.

Composition of functions. If agy ..y a and b(v,,...,v,)

are numerical functions, then so is b(ai,...,ak), and

y provided a1 = xi, siieiey ak = xk and

b(vi,-.n,vk) = y for V1 = Xl’ o e o g Vk = xk.

This cannot be proved, it has to be understood. And what

b(ai,...,a

i}

)

has to be understood is the way in which b(ai,...,ak) is evalu-
ated, and that its value is the same as is obtained by first

evaluating a and then evaluating b(vl....,vk) for these

1’ ll., ak
values as arguments. So suppOSE_thaﬁ 8,9 «o+y 8 are numerical
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functions, that is, that we know how natural numbers x oy X

e k

are determined as their values

e
5 o
e ® o o e

ai = X1 a.k = xk

Suppose further that b(vi"“"vk) is a numerical function. Then,

Xis eees X being natural numbers, we know how to determine a

natural number y as the value of b(vi,.,.,vk) for these arguments

V = X e o o V = X
1 1

@ 06 060 00000 00000900 00 s 00 0 o

b(vii'--svk) =Y

Replacing the variables Vis eees Yy in this evaluation by the

expressions a and attaching to it the evaluations of

1, ..Q’ ak
these

a, = x ee. @, =X
R Xk Kk

@ o 6 © ¢ 6 0o 0606 06 06 06 0 0 8 0 0 0 0 0 @

b(ai,...,ak) =y

we see that the natural number y is determined as the value of
b(ai,...,ak). This is how we understand that b(ai,...,ak) is a
numerical function,

The last part of the statement -about composition of func-

tions states that the value of a composite function is determined

by the values of its components. Reading Bedeutung for value,

we recognize this as one of the theses that was set forth by
Frege in Uber Sinn und Bedeutung. Remember that it is not some-

thing which can be proved, but must be understood. Hence the word
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thesis rather than theorem.
The meaning of a definitional equality, that is, a statement

of the form

a(vl,...,vk) = b(vi,...,vk)

is the way in which a natural number is determined as the common
value of a(Vl,...,Vk) and b(vi,...,vk) when natural numbers are

assigned as values to the variables v, , ..., V.. Thus, to under-

1’ k

stand a statement of this form, we must know, for arbitrarily

given natural numbers X g ey X how to determine a natural
=y 1’ 9 k9

number x such that

a(vi,...,vk7 = x = b(vi,...,vk)

for v, = x v x

1 10 7 Tk T Tk

two expressions are definitionally equal if they are both numer-

Alternatively, we might have said that

ical functions, and, moreover, they take the same value for
arbitrarily given natural numbers as arguments.

Consider now the first rule of definitional equality

a are numerical functions

1, C‘., ak
f(ai,...,ak,o) = a(ai,...,ak7

To understand it, we must understand the conclusion under the
assumption that the premises have been understood. So suppose

that we know how to determine natural numbers Xx .0y X SUCh

19
By composition of functions,

J = x

<

k

that a, = X Kk K

.,ak) is a numerical function, and a(a

a.n’a = X

a(a N

1_10-
..,Vk7 = X for

190.
where x is the natural number such that a(v

1°°

Vl = Xgy eees Vk = X, . On the other hand, the first clause of
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the recursion scheme and the denotation rules yield

(|
"
b
o3|
]
o]
ol
!
o
}.b
»

f(ai,...,ak,G) = X

This is how we determine the natural number X such that

f(ai,...,ak,O) =x = ala .,a

TR

The second rule of definitional equality

ai, ceey 8, @ are numerical functions

f(ai,...,ak,s(a)) = b(ai,...,ak,a,f(al,...,ak,a))

is understood in a similar way. Assume that we know how to deter-

47 ++-s X, and x such that 51 = X0 ooen,

x = Xk and a = x. Then, since f is assumed to be a (k+1)-place

function defined by recursion, we can determine, first, a natural

mine natural numbers x

a

number y such that f(xi,...,xk,x) = y and, sécond, a natural

number z such that b(vl,...,vk,v,w) = z for 71 = Xy ey V=X

v =x and w = y. By the denotation rule

-8.-=X o o a, =X
k

f(al,...,a

l{ E:X f(Xi,...,Xk,X) = y

k’a) =Yy

and composition of functions,

b(ali-"vakvaaf(aio---oaksay) =2

On the other hand, this number z is determined as the value of

k,
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a = X

Vi =% =00 W =EX VeX

f(xl,...,xk,x) =y

b(vi,...,vk,v,ﬁT = Z°

s(x)

s(a)

f(xi,...,xk,s(x)) = z

f(ai,...,ak,s(a)) = 2z

Fig. 1
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f(al,...,ak,s(a)) by the second clause of the recursion scheme
and the denotation rules, as shown in Fig. 1. This is how we
understand the second rule of definitional equality. The third

rule

a, =% xe ay = %k

B(a,, .- 18,) = BlE;5- 770,

is the principle that definitional equalityv is preserved under

substitution. Assume that its premises have been understood,

that is, that we know how to determine natural numbers Xjo wees X
such that
a1 = X1 = 01 oo e ak = xk = Ck

Since, by assumption, b(vl,...,vk) is a numerical function, we

know how to determine a natural number y such that b(vi,...,vk) =y

for v, = x

" v ?k = x, . By composition of functions,

Lr k

b(ai,...,ak) =y = b(cl,...,ck)

which is precisely what we had to see. Of the remaining rules of

definitional equality.

a is a numerical function a=> a=b D=r—c
a=a b =a a=—¢

the reflexivity and symmetry are understood imhediately, and the
transitivity as follows. Suppose that we know how to determine

natural numbers x and y such that a = x = b and b = y = ¢. Then,

since both x and y are determined as the value of b, they must

be the same expressions. Therefore the same natural number x is
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determined as the value of both a and ¢, which is precisely what
we must know in order to understand that a = ¢, This finishes our
explanations of the meanings of the rules of the lansguage of
primitive recursive functions.

Statements of the five formé that we havé been considering

cannot be proved, only understood. There is no question of their

being true or false, like ordinary mathematical (or metamathe-

matical) propositions. They can only be meaningful or meaningless.

For example, the statement
0 is a natural number

is not true, but meaningful, and the statement
§ is a naturél number

is not false, but meaningless, because there is no way of evalu-

ating a recursively defined function for the principal argument §.

Or, as we may say, we cannot interpret the symbol § as a natural
number. It is meaningless (as a natural number).

When we have understood a language, that is, when we have
understood its rules, we know that the statements which can be

Iormaliy derived by means of those rules are meaningful.

For an ordinary mathematical proposition, there remains the -

question, even after it has been understood, that is, after it
has been understood that it is a proposition, whether it is true
or false. And this question can only be settled by proving or
disproving (that is, proving the negation of) it. However, that
a linguistic expression is a proof of a certain mathematical

proposition is not something that we can again set about to
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prove: it has to be understcod. When we reach the words Q.E.D. at
the end of a proof of a theorem, we are supposed to have under-
stood that it is a proof of the theorem in question.

The distinction between statements that can be proved and
those that can only be understood, is; essentially, Wittgen-
stein’s distinction in the Tractatus between what can be said
and what can only be shown. It is also closely related to his

distinction between properties and relations proper (external

properties and relations) and formal (internal) properties and

relations, and, somewhat later, between concepts proper and

formal concepts. A property proper is a propositional function
which assigns to an objéct the proposition that the object has
the property in question., This is an ordinary mathematical pro-
position, which we may try to prove or disprove. Being an even
number, a prime number, the sum of two prime numbers, and so on,

are all properties proper (of natural numbers). That something

~falls under a formal concept, on the other hand, cannot be proved:

it has to be understood. Or, in Wittgenstein’s words, it cannot
be said: it shows itself. A formal concept cannot be represented
by a propositional function. in the lanzuage of primitive recur-
sive functions, the concepts of natural number and numerical
function are both forma1~conCepts. And the relation of defini-
tional equality is a formal relation.

In the Tractatus, Wittgenstein apparentlyAthought of a
formal (internal) propefty as a property of objects. This ex-
plains why he said that a property is internal if it is unthink-

able that its object should not possess it. If the statement

s e e e
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0 is a natural number

is construed as saying of the object O that it is a natural
number, then we may indeed say that it is unthinkable that 0O were
not a natural number, because we cannot perceive the object
(understand the symbol) O without perceiving (understandiﬁg) it
as a natural number. However, a formal property is not a property
of objects. Only properties proper are pfoperties of objects.

A formal property is a property of expressions. Likewise, what
falls under é formal concept is an expression, not an object.

The first Peano axiom says of the symbol 0 that it is a natural
number, that is, that- it works as the principaliargument of func-
tions defined by recursion.

Instead of saying that we understand statements of the forms
X is a natural number

and

a(vi,...,vk) is a numerical function

’

we have sometimes said that we understand (interpret) the QXpres-
sion x as a natural number and the expression a(vi,...,vk) as a
numerical function. There is no question of our understanding
separately the expression x and the concept of natural number

and then proving that x is a natural number: when we understand

the expression x, we understand it as a natural number. So we may

say that, in the statement that x is a natural number, the predi-
cate is contained in the subjéct (provided, like Wittgenstein,

we take the subject to be the object and not the expression x).

T A S T I ST T e W YR VA M
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This ié precisely the characteristic of a statement which is
analytic in Kant’s terminology. Similarly, we do not understand
the expression a(vl,...,vk) separately from the concept of
numerical function and then prove that it falls under this con-

cept: we understand it as_a numerical function. So the statement

that a(vl,...,vk) is a numerical function is also analytic. On
the other hand, all mathematical propositions in thé ordinary
sense, that is, propositions which we prove, are, according to
Kant, synthetic (and a_priori since théir truth does not depend
on experience), The distinction between statements that can be
proved and those that can only be understood, may be regarded as
a formulation of the distinction between syntbetic and analytic
judgements which is not limited to statements of subject-predicate
form. Another such formulation (used by Quine, for example) is
that a statement is analytic if it is true by virtue of its
meaning. But that formulation is less fortunate, because an
analytic judgement is a statement which has been understood,

and for which there is no question of being true or false.

In terms of knowledge, the distinction is between knowledge
of truth and knowledge of meaning. what we know when we have
proved a statement is its truth, énd what we know when we have
understood a statement is its meaning. That a person knows the
truth of a proposition manifests itself in his ability to prove

it. In the terminology used by Dummett in his Bristol paper,

knowledge of truth is verbalizable knowledge. Knowledge of the
meaning of a linguistic expression, on the other hand, can only

manifest itself in the ability to use the expression correctly.
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Thus there is no one linguistic act, like that of proving a
theorem, which conclusively shows that we know the meaning of a
linguistic expression. In particular, it is not in our ability to
explain its meaning that our understanding of a linguistic ex-
pression manifests itself. If that were the case, almost no
mathematician could be said to understand the primitive notions
of mathematics. In Dummett’s words, knowledge of meaning'is

implicit knowledge.

Our understanding of the free variable statements

a(vi,...,v is a numerical function

i)

and

a(Yii""vk) = b(vi,...,vk)

is necessarily uniform in the arguments, because our knowledge

how to determine a natural number x such that

a(vi,...,vk) = X

respectively

a(vi”"’vk) X = b(vi,...,vk)

for v, = Xiy oeey V) = X, comes solely from the knowledge that

1
Xys <oy X, are natural numbers. There is no question of ﬁroving
statements of this kind by induction, that is, by separating
cases according to the form of one of the arguments. That would

be to treat them as metamathematical propositions proper. For

example, we cannot understand the free variable statement
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O+ Vv=yv

(as opposed to Vv + O = V) because we cannot see from the defining
equations of the addition function and the denotation rules how
to determine a natural number x such that 0 + v = x for Vv = X.
On the other hand, we can prove by induction as metamathematical
theorems that O + X = x is derivable, and hence that 0 + v = X is
derivable from Vv = x, for all numerals x. But that is something
entirely different from understanding that O+vexforvs= X.'
When the language of primitive recursive functions is treated
netamathematically, the expressions become metamathematical
objects of an inductively defined type, and the five different
forms of statements that we have been cénsidering are turned into
inductively defined metamathematical propositions proper, that is,

propositions which can be proved and combined by means of the

logical connectives- and quantifiers. In particular,
X is a natural number

is turned into a property proper, and

a(vy,...,v,) = x for v, ='x

1 1 1’

into a (k+1)-place relation proper between expressions as meta-
mathematical objects. Therefore we can form the metamathematical

proposition

(\fxi)...(\"xk)(x1 is a natural number & ...

& x, is a natural number -> (dx)(x is a natural number

& a(vy,...,v,) = x for Vl = Xgp o eeey Vo= X))

AT L. YO e
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in which the quantifiers range over expressions as metamathemati-
cal objects. It expresses that the open expression as meta-

mathematical object a(vl,...,vk) is convertible in the sense of

Tait, and must in no way be confused with the statement
a(vi,...,vk) is a numerical function

The former is a proper metamathematical proposition which we may
try to prove, whereas the latter can only be understood. Now, it
follows directly from our understanding of the language of prim-
itive recursive functions and the fact that a natural nﬁmber must

have the form of a numeral, that, if the statements

x1 is a natural number

xk is a natural number

and
a(vi,...,vk) is a numerical function
can be derived, then an expression x is determined for which

X is a natural number

and

a(vi,...,vk) = X

can be derived, in the latter case, from the assignments 71 = X

coey Vi = X The metamathematical counterpart of this is the

19

theorem, easily proved by Tait’s method of convertibility, that,

D A
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if
a(vi,...,vk) is a numerical function

can be derived, then a(vi,...,vk) is convertible. Two things must
be born in mind in connection with this theorem. First, in both
the formulation and the proof of the theorem, we use linguistic
expressions in the ordinary sense. Second, the proof of the

theorem has to be understood. Otherwise, it would have no cogni-

tive value. And understanding the metalanguage in which the proof
of convertibility is carried out, is at least as difficult as
understanding the object lancuage, in this case, the lansuage of

primitive recursive functions, for which convertibility is proved.

It would be absurd to maintain, at least in the case of the lan- '

guage of primitive recursive functions, that we do understand the
metalancuage but not the object language, and hence that there is
a genuine need for the proof of convertibility. But,; of course,

it may be interesting for other reasons.
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