
, . 

f 
' 

I 

. l 

I • 

/ 

I 

/ 

/ 

IC\..\oc-t~«-l ~~~fes 
OC\ t="~ocu!a.-4-toC\S 

( d<t..f~ uC\e.eM-.,._,·L'.) 
(.tZS~c~a:~e \"'\bq ) 

1 

t / .· 
About the simplest mathematical lan~uage for which a non-

trivinl theory of meaning can be formulated, is the langua~e in 

which the only objects and functions dealt with are the natural 

numbers and the primitive recursive functions. Trivial as this 

language may seem, it is nevertheless rich enou~h t0 allow us to 

frame answers to such questions as 

What is a natural number? 

What is zero? 

What is the successor of a natural nuillber? 

Moreover, the answers that we shall give to these questions will 

serve as paradigms for our answers to the more general qnestions 

What is a. type? 

What is a mathematical object of a given type? 

which w·e shall pose later for the theory of types. 

Characteristic of many investigations of the concept of 

natural number, is that they attempt to define natural number in 

terms of other, more primitive, concepts. Thus Frege defined a 

number as an extension of a property, Russell as a class of simi-

lar classes, and von Neumann as a set in the cumulative hierarchy. 

According to the latter, now orthodox, definition, the natural 

numbers 0, 1, 2, ••• are defined to be the sets¢,{¢),{¢.{¢}\, 

However, these definitions only re<iuce the question what a natural 

number is,· to the more refractory questions 

What is an extension of a concept? 
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What is a class? 

What is a set in the cumulative hierarchy? 

For Dedekind, on the other hand, the natural numbers were the 

elements of a simply infinite system (that is, ~system satisfy­

ing the Peano axioms) whose particular na t ·ure we have di sre!?;arded 

by our faculty of abstraction. And he believed he was able to 

prove the existence of infinite systems and therefore also of 

simply infinite ones. Of yet another kind is Witt!?;enstein's answer 

i n the Tractatus: A number is the exponent of an operation. It 

contains in embryo the analysis that we shall give, not only for 

natural numbers, but for mathematical objects of any type. 

The ma~hematical symbols that we shall use, will be divided 

into function constants 

o, s, +, .,.!, 

and numerical Yariables 

x, y' ... 

I The function constants are further divided into primitive and 
l 

. j defined ones . Only 0 and s are primi ~ive . All the rest are de-

l · fined. An expression (meaningless, in !?;eneral) is simply a string 
! 

of symbols, like 

0!, X•Y+X, X!+s(O), 

To talk about the lan~uage 1 as we shall do when describin~ its 

syntax and semantics, we also need syntactical variables. These 
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are 

f' g' ••• 

which stand for function constants, 

v' w' ••• 

which stand for numerical variables, and 

a, b, •• • 

which stand for expressions. When we want to indicate that an 

expression may contain the variables v1, ..• , vk and no others, 

we shall denote it by a(v1 , ••. ,vk) . This allows us to denote t he 

result of substituting the expressions a 1 , ••• , ak for v1 , •.• , vk 

in a(~1 , ... ,vk) by a(a1 , .•. ,ak). Linguisti c express i ons , con­

sidered in the or d i nary way, are not mathematical objects. Only 

*' i . in metamath ematics are th ey treated a s such. But, of course, when 
' 

I 
I 
! 

I i 
I 

talking about ·expressions as metamathematical objects, we use 

linguistic expressions in the ordinary sense. They can never be 
ltl( 

dispensed with. Likewise, the substitution operation, which takes 

a 1 , ••• , ak and a(v1 , ••• ,vk)' into a(a1 , ... ,ak)' is not a function 

in the mathematical sense. Only when the expressions are treated 

as metamathematical objects, does substitution become a function, 

which is defined by recursion on the expression as metamathemat-

ical object a(v1 , ••• ,vk). 

The rules of the language of primitive recursive functions 

produce statements of the five forms 
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f(x
1

, ••• ,x,.,x) = y (y is the value of the recursively defined .... 
function f for the subordinate arguments x 1 , •.. , x, and the 

.{ 

principal argument x) 

a = x (a denotes x, or x is the value of a) 

x is a natural number 

a is a numerical function 

a= bora E b (the functions a and bare definitionally 

equal, or have the same value) 

The phrases following f(xi' .•. ,xk,x) = y, a= X and a= bin 

parantheses only show how to read these statements in En~lish . 

They must in no way be regarded as explanations of the meanings 

of these statements. As such, they would have to be understood 

already, and it would be absurd of us to assume this, because t h e 

task that we have set ourselves is precisely to explain the mean-

ings of these statements, it being totally irrelevant whether 

they are expressed in mathematical notation or in English. How-

ever, since we sha l l formulane our theory of meaning in En~lish , 

it will be convenient to have the option of expressing the state-

ments whose meanings we are t o explain in Engli sh as well . 

When the expression occurring in the left hand member of a 

denotation statement a(vi, ••. ,vk) = x contains variables, it will 

always be derived from certain assi~nments vi= xi, .•. , vk = xk 

of values to the variables. We shall indicate this by a figure 

of the form 



....................... 

and say that a(v1 , ... ,vk) =X for Vi= x 1 , ..• , Vk = Xk' or, 

alternatively, that xis the value {denotation) of a{v1 , ..• ,vk) 

for the arguments x1 , ... , xk. 

Rules of computation. The recursion scheme stipulates that, 

given numerical functions a(v1 , ••• ,vk) and b(v1 , ... ,vk,v,w), we 

may define a (k+1)-place function f by the computation rules 

a(v1, ... ,vk) = x 

f(x1 , ..• ,xk,o) = x 

5 

V = X w = y 
........................................ 

f{x1 , .•. ,xk,x) = y b(v1 , ..• ,vk,v,w) = z 

f (x1 , •. . , x k , s( x )) = z 

The symbol f is to be uniquely associated with the expressions 

a(v1, ••• ,vk) and b(v1 , •.• ,vk,v,w), disregarding the choice of the 

variables that v 1 , ••• , vk, :and w stand for {naturally, since a 

change of those variables does not affect the way in which f is 

computed). As already indicated, in a computation statement 

x1 , ••• , xk are called the subordinate arguments, x the principal 

argument, andy the value of the function f for these arguments. 

Rules . of denotation. The computation rules refer back to 

statements of the form a(v1 , .•• ,vk) = x, and hence they do not 
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allow us to determine the value of a recursively defined function 

until the denotation rules have been given. They read 

V =X (assignment) 

0 = 0 

a = x 

sraT = s(x) 

-a = x 

In the last rule, f is a {k+i)-place function defined by recursion. 

First and second Peano axioms. When formulated as rules, 

they read 

0 is a natural number 

x is a natural number 

s{x) is a. natural number 

Rules of function formation. These are the rules producin~ 

statements saying of an expression that it is a numerieal func-

tion, namely 

v is a numerical function 

0 is a numerical function 

a is a numerical function 

s(a) is a numerical function 

a 1 , •.• , ak, a are numerical functions 

f(a
1

, ••• ,ak,a) is a numerical function 
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IIcre, of course, v is a numerical variable, and f is a (k+1)-place 

function defined by recursion . 

Rules of definitional equality. Using the notation a= b 

rather than as b, they read 

a
1

, •.. , ak are numerical functions 

f(a 1 , ... ,ak,o) = a(a1 , ... ,ak) 

a
1

, ••• , ak, a are numerica l functions 

al = cl ak = ck 

b(a1 , ... ,ak) = b(c 1 , ..• ,ck) 

a is a numerical function a= b 

b = a 

b = c 
- -a = c 

In t h e first two.of t h ese rules, f is a function defined by re-

c u rsion from ~he numerical fu n ctions a(v1 , ••• ,vk ) a n d 

b (v1 , • • • ,vk,v,w), and, in the third rule, b(v1 , •.. ,vk) is assume d 

to be a numerica l function. 

With this, the f o r mulation of the syntax of the lan~ua~e o f 

primitive recurs~ve functions is complete . Note that each of i ts 

rules refers solely to the syntact i cal forms of the sta t ements 

occurring as premises and conclusion. This is what makes it i n to 

a formal language. It remains for us to explain the meani ngs of 

t h e statements that can be derived by means of the formal ru le s 

(or, what amounts to the same, how t h ey are understood) because 

understanding a language, even a formal one, is not merely to 
;(. 

understand its rules as rules of symbol manipulation. Delievin!!; 
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this s the mistake of f o r ma l ism . 

To understand a lan~ua~e is to understand its rules, and 

to understand a rule is to understand the conclusion under the 

assumption that the premises have been understood. 

The meaning of a computation statement f(x
1

, •.. ,xk,x) = y 

is the way in which it is derived. Similarly, the meanin~ of a 

denotatton statement a(v1 , ••• ,vk} = X is the way in which it is 

-
derived from the assignments vi = xi, ... ' vk = xk. Thus, to 

unders t a nd a computation or deno t a-tion statement, we must know 

nothing beyond how it is derived. This means that, for the com -

putation and denotation statement s , the formalist interpretation 

is correct. For example, we understand that 0 + s{s(O)) = s(s(O)) 

from the derivation 

-X = 0 z = 0 

0 + 0 0 srzy s(O) - s(O) = = z = 
0 + s(O) = s(O) STZT = s(s(O)) 

0 + s(s(O)) = s(s(O)) 

Since to understand a rule is to understand the conclusion under 

the assumption that the premises have been understood, tl1ere is 

nothing t o understand about the rules of computation anrl denota-

tion. If we know how to derive the premises, we know of course 

how to derive the conclusion, namely, by applying the rule in 

question. This is the groun d f o r calling them mer e stipulation~ . 

The meaning of a statement of the form 

x is a natural number 

is the way in which a natural number is -detcrminect as the value 
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of a recursively defined function for x as principal and natural 

numbers as subordinate arguments. Thus, to undersLand that x is 

a natural number, we mu st k now ho w to determine a natural number y 

s uch that f(x
1

, .•. ,xk,x) = y under the assumption that f is a 

(k+1)-place function defined by recursion and x
1

, •.• , xk are 

natural numbers. What determines the value of a recursively de-

fined function for given arguments is the scheme of recursion. 

and hence we cannot understand a particular statement of the form 

t hat we are considering without looking back on t h is scheme. As 

is implicit in what we have just said, a natural number is an 

expression for wh i c h we have understood the statement abo:ve . Or, . 

as we may say, a natural number is an expression which we have 

understood (interpreted) as a natu r al number. Thi s is our answer 

to the question 

What is a natural number? 

posed in the beginning. Its relation to Wittgenstein's answer: 

A natural number is the exponent of an operation, becomes clear 

if we reformulate it thus: A na t ural number is the p r inciral 

a r gument of functions def i ned by recursion. Indeed, the iteration 

·f scheme 
i 

f(y) = z 

is nothing but a special form of the recursion scheme, the expo-

nent n being the principal and x the subordinate argument of the 

binary function fn(x). So our formulation is obtained from Witt-

genstein's by considering the recursion scheme in its general 

J ..J( Rc : :!. ciJ tv-~ c.n-J~tst.u..! ~s t.l. ... 4.. <>£."\..~<-t vv<_ va..l..~s-4-c:>oJ lt""t"" <LO.! """"'-*-~ ._{. ~"\..L 
t~~ ~- !{.... ...... ·*" SJ2.e<N c!e.ee. 
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form, rather than in the special form, called iteration. And this 

~~neralization is necessary since not every recursion (induction) 

hRS the form of a simple iteration. One can arrive at Witt~en-

stein's answer by makin~ the futile attempt to define a natural 

number as what we get to from zero by iterating the successor 

operation a finite number of times. This is circular, because the 

definition uses the words finite number which are synonymous to 

t he words natural number whose meaning it attempts to explain. 

T-here i s no way out of th i s circle but to say that a natural 

number is what we i terate up to, and this is essentially Wittgen-

stein's explanation. 

The meaning of a statement of the form 

a(v
1

, •• ;,vk) is a numerical function 

is the way in which a natural number is determined as the value 

(denotation) of a(v
1

, ••• ,vk) when natural numbers are assi~ned 

as values to the variables vi, •.. , vk. Thus, to understand that 

a(v1 , •.• ,vk) is a numerical function, we must know, given natural 

numbers xi, ••• , xk, how to determine a natural number x such 

th t ( - ' - . a a,v1 , ... ,vk) = x for v 1 = x 1 , ... , vk = xk. What determ1nes 

the value of a(vi, ••• ,vk) for given arguments are the rules of 

denotation, and hence we cannot understand a statement of this 

form without looking back on these rules. 

We can now also explain the meaning of a statement of the 

form 

t is ·a (k+i)-place function defined by recursion 

It s meaning, like that of any statement, is what we know when we 

I 

I 
i 
j 
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have understood it. And, to understand it, we merely have to 

understand that the expressions a(v1 , ... ,vk) and b{v1 , ••. ,vk,v,w), 

which in a purely formal way are associated with the symbol f, 

are numerical functions. 

Given these explanations, it is clear that what allows us to 

understand (determines the meaning of) the ·first Peano axiom 

0 is a natural number 

is the first clause 

....................... 
a{v1 , ... ,vk) = x 

f(x1 , ... ,xk,o) = x 
/ 

of th~ recursion scheme. Indeed, that f is a (k+1)-place function 

defined by recurs~on means that the expressions a(v1 , .•. ,vk) and 

b(v1 , •.. ,vk,v,w) in terms of which it is defined are numerical 

functions. In ~articular, so is a(v1 , •.. ,vk). Hence, given 

natural numbers x 1 , .•• , xk, we know how to determine a natural 

number x such that a{v1 , .•. ,vk) = x for ~1 = x 1 , .•• , vk = xk. 

The first clause of the recursion scheme stipulates that this 

·number x is to be the value of f for the subordinate arguments 

x 1 , ••• , xk and the principal argument 0. And, of course, there 

is no other rule which allows us to derive a statement of the 

form f(x1 , •.• ,xk,O) = x. This is the meaning of the first Peano 

axiom, that is, the way in which a natural number is determined 

as the value of a recursively defined function for the principal 

argument 0 and natural numbers as subordinate arguments. It is 
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also our answer to the question 

What is zero? 

because, as stated in the opening sentence of Frege's Grundlagen! 

the question what the numbe r z e ro i s , come s to the same as th e 

question what the symbol 0 mean s 

Our explanation of the meaning of the symbol 0 is typical 

of how substance can be given to Wittgenstein's slo~an that 

mean i ng is use, or, more explicitly, that the meanin~ of an ex-

pression is determined by the rules that govern its use in the 

14nguage of which it forms a part. It would be absurd to inter-

pret that slogan as saying that meaning is conferred automatic-

a l ly upon t h e expressions of a language by its rules. There wotil d 

then be no need for a theory of meaning. If we lay down any old 

set of rules, like those of set theory with the unrestricted 

(inconsistent) comprehension axiom or t hose of the type-free 

calculus of lambda-conversion, the expressions derivable by means 

of t hose rules allow in general no other than the formalist 

i nterpretation, according to which the meaning of an expression 

~is the way in which it is derived. The difficulty in explaining 

Lt he meaning of an expression of a language is to discern what are 

rules of the language that determine its meaning. For instance, 

in the language of primitive recursive functions, the symbol 0 

occurs explicitly, not only in the first clause of the recursion 

scheme, but also ( twice!) in· t h e denotation rule 0 = 0, in t h e 

first Peano axiom, in one of the rules of function formation, 

and in one . of the rules of definitional equality. It is by no 

means automatic that it is the first clause of the recursion 

the 
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scheme and none of the other rules that determines the meaning of 

the symbol 0 as a natural number. 

If somebody suggests that the function of the spark plugs in 

an internal-combustion engine is to be connected by cables via 

the distributor to the battery, we must explain to him how the 

engine works, thereby convincing him that the function of the 

spark plugs is to ignite the mixture of petrol and air which is 

sucked into the cylinders from the carburettor. It is not that it 

is wrong to say that the spark plugs are connected by cables via 

the distributor to the battery: they certainly are. But that is 

not what we should primarily pay our attention to in order to 

understand the function of the spark plugs in the running of the 

engine. Similarly, in arithmetic, if somebody suggests that the 

I meaning of the symbol 0 is determined by the first Peano axiom, 

I he is wrong, not because 0 is not a natural number: it certain ly 

1 is, but because t h e f i rs t Peano axiom is not the rule from which 

~ the meaning of the symbol 0 is learnt. Instead, we must direct 
f 
t 

I his attention to the f irst clause of th e r ecurs ion scheme, because 

that is the rule which t ell s h im how a na tura l number is dete r-

mined as the va l ue of a recurs ively defined function when 0 is 

inserted into its principal argument place together with natural 
f 

f 

l 
f 

numbers as subordinate arguments. 

Recall that, to understand a rule, we must understand the 

conclusion under the assumption that the premises have been 

I 
t 
t 

f 

. I 

understood. Hence, to understand the second Peano axiom 

x is a natural number 

s(x) is a natural number 
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we must know how to evaluate a recursively defined function for 

the principal argument s(x), given that we know how to evaluate 

it for the principal argument x. So let f be a (k+1)-place func-

tion defined by recursion and x 1 , ... , xk natural numbers. By 

a~sumption, we know how to determine a natural number y such that 

f(x1 , ... ,xk,x) = y. Since f is a {k+1)-place function defined by 

recursion, the second of the expressions associated with the sym­

bol f, call it b{v1 , ... ,vk,v,w), is a numerical function. Hence, 

x 1 , ..• , xk, x andy being natural numbers, we know how to deter­

mine a natural number z such that b( v 1 , ... ,vk,v,w) = z for 

v 1 = x 1 , ... , vk = xk, v = x and~= y. The second clause of the 

recursion scheme 

V = X \V = y ....................................... 
f{x1 , •.. ,xk,x) = y b(v1 , ... ,vk,v,w) = z 

f(x1 , ..• ,xk,s{x)) = z 

stipulates that this number z is to be the value of f for the 

subordinate arguments x 1 , ••. , xk and the principal argument s(x). 

This is the meaning of the second Peano axiom, or, what amounts 

to the same, the meaning of the symbol s. Our explanation of t h e 

meaning of s{x) in terms of the meaning of x, is at the same time 

our answer to the question 

What is the successor of a natural number? 

because, to ask forth~ meaning of the expression s{x), is the 

same as to ask what s(x) is. 

It is of utmost importance to realize that the first two 
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Peano axioms do not stipulate what a natural number is~ That 

would be to say that a natural number is an expression for which 

we have derived (instead of understood) the statement 

x is a natural number 

This is to confuse natural numb ers with nume r als, which i s the 

formalis t mis i nterpretation of the concept of natural number. 

What the first two Peano axioms show, is the form of a natural 

number. But an expression is a natural number, not in virtue of 

its form, but in virtue of its function. And this function is to 

serve as the principal argument of functions defined by recursion. 

Having explained the meanings of the first two Peano axioms, 

we now turn to the rules of function formation. Remember that. 

to understand a statement of the form 

a(v1 , •.. ,vk} is a numerical function 

we must know, given natural numbers x 1 , ••• , xk, how to determine 

a natural number X SUCh that a(v1 , ..• ,vk) =X for v1 = x1 , •.• , 

vk = xk. In particular, we understand the statement 

v is a numerical function 

for a numerical variable v, by looking back on the denotation 

rule which says that 

v = :x; 

provided x is assigned as value to the variable v. It is this 

stipulation which allows us to interpret the symbol v as a numer-

ical function. The statement 

l 
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0 is a numerical function 

is understood from the stipulation 

0 = 0 

and the first Peano axiom. Thus we cannot interpret the symbol 0 

as a numerical function until after we have interpreted it as a 

natural number. The rule 

a is a numerical function 

s(a) is a numerical function 

is understood from the stipulation 

srar = s·(x) 

and the second Peano axiom. Suppose namely that a is a numerical 

function, that is, that we know how to determine a natural num­

ber X such that a = X. Then s(x) is a natural number by the 

second Peano axiom, and the denotation rule above stipulates that 

staT= s(x). This is the meaning of the above rule of function 

formation, that is, the way in which a natural number (namely, 

s(x)) is determined as the value of s(a) under the assumption 

that a is a numerical function. Not e that we can u nd e rstand t his 

r ule only after we have und e rstood the second Peano axiom. The 

final rule of function formation is 

a
1

, .•• , ak, a are numerical functions 

f(a1 ,~ •• ,ak,a) is a numerical function 
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where f is a (k+1) - place function defined by recursion. To under ­

stand it, we must know how to evaluate f(a 1 , .•. ,ak,a) under the 

assumption that we know how to evaluate a 1 , .•. , ak and a, that 

is, that we know how to determine natural num~ers xi, •.. , xk 

-and x such that i 1 =xi, •.• , ak = xk and a = x. But this is 

precisely what the denotation rule 

a = x 

tells us. Indeed, since f is a (k+1)-place function defined by 

recursion and the subordinate arguments x 1 , ••• , xk are natural 

numbers, we know that a natural nu~ber is determined as its value 

whenever a natural number is inserted into its principal ar~urnent 

place. In particular, this is so for x, that is, we know how to 

~ determine a natural number y such that f(x1 , ..• ,xk,x) = y. The 

denotation rule stipulates that this number y is to be the value 

(denotation) of f(a1 , •.. ,ak,a). This is how the meaning of the 

expression f(a1 , ... ,ak,a) as a numerical function is determined 

in terms of the meanings of the expressions a 1 , •.• , ak and a. 

I 
t 
I 
! 
' 

Composition of functions. If a 1 , ..• , ak and b(v1 , ... ,vk) 

are numerical functions, then so is b(a1 , ••. ,ak}, and 

b{a1 , ..• ,ak} = y provided a1 = xi, ... ' ak = xk and 

b(v1 , .•• ,vk) = y for vi = xi' ... ' vk = xk. 

This cannot be proved, it has to be understood. And what 

has to be understood is the way in which b(a1 , •.• ,ak) is evalu­

ated, and_ that its value is the same as is obtained by first 

evaluatin~ a 1 , •.• , ak and _then evaluating b(v1 ••.. ,vk) for these 

values as arguments. So suppos·e tJ1.~.t a 1 , ••. , ak are numerical 
. : .. ·1: 

I 
I 
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functions, that is, that we know how natural numbers x 1 , ••. , xk 

are determined as their values 

' Suppose further that b(v1 ,.-.. ,vk) is a numerical function. Then, 

x 1 , .•• , xk being natural numbers, we }{now how to determine a 

natural number y as the value of b(v1 , ... ,vk) for these arguments 

............... ........ 

Replacing the variables v1 , ••. , vk in this evaluation by the 

expressio~s a 1 , .•. , ak and attaching to it the evaluations of 

these 

....................... 

we see that the natural numb.er y is determined as the value of 

b(a1 , ••• ,ak). This is how we understand that b(a1 , ... ,ak) is a 

numerical fun~tion. 

The last part of the statement ·about composition of func-

tions states that the value of a composite function is determined 

by the values of its components. Reading Bedeutung for value, 

we recognize this as one of the these~ that was set forth by 

Frege in tiber Sinn und Bedeu t ung. Remember that i t is not some-

thing which can be pr ove d , but must be understood. Hence the word 
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thesis rather than theorem. 

The meaning of a definitional equality, that is, a statement 

of the form 

is the way in which a natural number is determined as the common 

value of a(v1 , •.. ,vk) and b(v1 , ... ,vk) when natural numbers are 

assigned as values to the variables v 1 , · ••. , vk. Thus, to under­

stand a statement of this form, we must know, for arbitrarily 

given natural numbers x 1 , ••. , xk' how to determine a natural 

number x such that 

for v 1 = x 1 , .•. , vk = xk. Alternatively, we might have said that 

two expressions are definitionally equal if they are both num~r-

ical functions, and, moreover, they take the same value for 

arbitrarily given natural numbers as arguments. 

Consider now the first rule of definitional equality 

a 1 , ••. , ak are numerical functions 

f(a1 , ... ,ak,o) = a{ai, ... ,ak) 

To understand it, we must understand the conclusion under the 

assumption that the premises have been understood. So suppose 

that we know how to determine natural numbers x 1 , ... , xk such 

that a 1 = x 1 , .•. , ak = xk. By composition of functions, 

a(a1 , •.. ,ak) is a numerical function, and a(a1 , ... ,ak) = x 

where xis the natural number such that a(vi, •.. ,vk) = x for 

vi= xi, .•. , vk = xk. On the other hand, the first clause of 



the recursion scheme and the denotation rules yield 

••••••••••••• <I ••••••••• 

0 = 0 

a{v
1

, .... v,) = x 
K 

This is how we determine the natural number x such that 

The second rule of definitional equality 

a 1 , ••• , ak, a are numerical functions 

20 

is understood in a similar way. Assume that we know how to deter-

mine natural numbers x 1 , ••. , Xk and X such that a1 = x
1 
•... , 

ak = xk and a = x. Then, since f is assumed to be a (k+1)-place 

function defined by recursion, we can determine, first, a natural 

number y such that f(x 1 , ••. ,xk,x) = y and, second, a natural 

number z such that b(v1 , •.• ,vk,v,w) = z for ~1 = x 1 , ••• , vk = xk, 

v = x and w = y. By the denotation rule 

a = x 

and composition of functions, 

On the other hand, this number z is determined as the value of 



vi = xi .... vk = xk V =X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
a = x f(xi, •.. ,xk,x) = y b rv1-,----:-:--. ' v k ' v' w) = z 

a1 = x1 • • • ak = xk srar = s(x) f( X l , ... , Xk, S (X) ) = Z 

fT a 1 ;-:--.. , ak, s (a) } = z 

Fig. 1 

w = y . ..... . 

l\:) .... 



f(a
1

, .•• ,ak,s(a)) by the second clause of the recursion scheme 

and the dP.notation rules, as shown in Fig. 1. This is hO\V we 

understand the second rule of definitional equality. The third 

rule 

a1 = c1 ak = ck 

b(a1 , ... ,ak) = b(c1 , .•• ,ck) 

is the principle that definitional equality is preserved under 

substitution. Assume that its premises have been understood, 
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that is, that we know how to determine natural numbers x 1 , .•. , xk 

such that 

Since, by assumption, b(v1 , ••• ,vk) is a numerical function, we 

know how to determine a natural number y such that b(v
1

, .•. ,vk) = y 

for v 1 = x 1 , ••• , vk = xk. By composition of functions, 

b ( a 1 , ••• , ak) = y = b ( c 1 , ... , c k) 

which i~ precisely what \Ve had to see. Of the remaining rules of 

definitional equality. 

a is a numerical function a = b a= b b = c 

b =a 

the reflexivity and symmetry are understood immediately, and the 

transitivity as follows. Suppose that we know how to determine 

natural numbers x and y such that a = x = b and b = y = ~- Then, 

since both x and y are determined as the value of b, they must 

be the same expressions. Therefore the same natural number x is 
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determined as the value of both a and c, which is precisely what 

we must know in order to understand that a = c. This finishes our 

explanations of the meanings of the rules of the lan~uage of 

primitive recursive functions. 

Statements of the five forms that we have been considering 

cannot be proved, only understood. There is no question of their 

being true or false, like ordinary mathematical (or metamathe­

matical) propositions. They can only be meaningful or meaning l ess. 

For example , the statement 

0 is a na tural number 

is not rue, but meaningful, and the statement 

§ is a natur al number 

is not fals~, but meanin~less, because there is no way of evalu­

ating a recursiveiy defined function for the principal argument§. 

Or , as we may say, we cannot interpret the symbol § as a natural 

number. It is meanin~less (as a natural number). 

When we h a ve understood a language, that is, when we have 

understood its rules, we know. that the statements which can b e 

jormally der i v ed by means o f those rules are meaningful . 

For an ordinary mathematical proposition, there remains the 

question, even after it has been understood, that is, after it 

has been understood that it is a proposition, whether it is true 

or false. And this question c~n only be settled by proving or 

disproving (that is, proving the negation of) it. However, that 

a lin~uistic expression is a proof of a certain mathematical 

proposition is not somethiri~ that we can again set about to 
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prove: it has to be understood. When we reach the words Q.E.D. at 

the end of a proof of a theorem, we are supposed to have under­

stood that it is a proof of the theorem in question. 

The distinction between statements that can be proved and 

those that can only be understood, is, essentially, Wittgen­

stein's distinction in the Tractatus between what can be said 

and what can only be shown. It is also closely related to his 

distinction between properties and relations proper (external 

properties and relations) and formal (internal) properties and 

relations, and, somewhat later, between concepts proper and 

formal concepts. A property proper is a propositional function 

which assigns to an object the proposition that the object has 

the property in question. This is an ordinary mathematical pro­

position, which we may try to prove or disprove. Bein1; an even 

number, a prime number, the sum of two prime numbers, and so on, 

are all properties proper (of natural numbers). That somethin~ 

falls under a formal concept, on the other hand, cannot be proved: 

it has to be understood. Or, in Wittgenstein's words, it cannot 

be said: it shows itself. A formal concept cannot be repre-sented 

by a propositional function. In the lan~uage of primitive recur­

sive functions, the concepts of natural number and numerical 

function are both formal concepts. And the relation of defini­

tional equality is a formal relation. 

In the Tractatus, Wittgenstein apparently thought of a 

formal (internal) property as a property of objects. This ex­

plains why he said that a property is internal if it is unthink­

ab l e that its object should not possess it. If the statement 

I 
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0 is a natural number 

is construed as saying of the object 0 that it is a natural 

number, then we may indeed say that it is unthinkable that 0 were 

not a natural number, because we cannot perceive the object 

{understand the symbol) 0 without perceiving (understanding) it 

as a natural number. However, a formal property is not a property 

of objects. Only properties proper are proJJerties of objects. 

A formal property is a property of expressions. Likewise, what 

falls under a formal concept is an expression, not an objPct. 

The first Peano axiom says of the symbol 0 that it is a natural 

number, that is, that it works as the principal argument of func­

tions defined by recursion. 

Instead of saying that we understand statements of the forms 

x is a natural number 

and 

a(v1 , ••• ,vk) is a numerical function 

we have sometimes said that we understand (interpret) the expres­

sion x as a natural number and the expression a(v 1 , •.• ,vk} as a 

numerical function. There is no question of our understandin~ 

separately the expression x and the concept of natural number 

and then proving that x is a natural number: when we understand 

the expression x, we understand it as a natural number. So we may 

say that, in the statement that x is a natural number, the predi­

cate is contained in the subj.ect (provided, like Wittgenstein, 

we take the subject to be the object and not the expression x). 
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This is precisely the characteristic of a statement which i s 

analytic in Kant's terminology. Similarly, we do not understand 

the expression a(v1 , •.• ,vk) separately from the concept of 

numerical function and then prove that it falls under this con­

cept: we understand it as a numerical function. So the statement 

that a(v1 , ... ,vk) is a numerical function is also analytic. On 

the other hand, all mathematical propositions in the ordinary 

sense, that is, propositions which we prove, are, according to 

Kant, synthetic (and a priori since their truth does not depend 

on experience}. The distinction between statements that can be 

proved and those t hat can only be understood, may be regarded as 

a fomulation of the distinction between synthetic and analyti c 

judgements which is not limited to statements of subject-predicate 

form. Ano.ther such formulation (used by Quine , for example) is 

that a statement is analytic if it is true by virtue of its 

meaning. But that formulation is less fortunate, because an 

analytic judgement is a statement which has been understood , 

and for which there is no question of being true or false. 

In terms o knowledge, the distinction is between knowledge 

of truth and knowledge of m~aning . What we lmm when we have 

proved a statement is its truth, and what we know when we have 

understood a statement is its meaning. That a person knows the 

truth of .a proposition manifests itself in his ability to prove 

it. In the terminology used by Dummett in his Bristol paper, 

knowledge of truth is verbalizable knowledge. Knowledge of the 

meaning of a linguistic expression, on the other hand, can only 

manifest itself in the ability to use the expression correctly. 
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Thus there is no one linguistic act, like that of proving a 

theorem, which conclusively shows that we know the meanin~ of a 

linguistic expression. In particular, it is not in our ability to 

explain its meaning that our understanding of a lin~uistic ex­

pression manifests itself. I f t hat we r e the cas e , a lmost n o 

rna heruatician could be sai d to unde r stand the primitive notions 

of mathematics. In Dummett's words, knowledge of meanin~ is 

implicit knowledge. 

Our understanding of the free variable statements 

atv1 , •.. ,vk) is a numerical function 

and 

is necessarily uniform in the arguments, because our lmowledge 

how to determine a natural number x such that 

respectively 

for v 1 = x 1 , ~··' vk = xk' comes solely from the knowledge that 

x 1 , ••• , xk are natural numbers. There is no question of ~roving 

s t at ements of this kind b y i nduc ~ ion , that is, by separating 

cases according to the form of one of the arguments. That would 

be to treat them as metamathematical propositions proper. For 

example, we cannot understand the free variable statement 

. I 
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(as opposed to v + 0 = i) because we cannot see from the defining 

equations of the addition function and the denotation rules how 

to determine a natural number x such that 0 + v·= x fori= x. 

On the other hand, we can prove by induction as metamathematical 

t heorems t hat 0 + x = x is derivable, and h ence t hat 0 + v = x · is 

derivable from i = x, for all numerals x. But that is something 

entirely different from understanding that 0 + v = x for v = x. 

When the language of primitive recursive functions is treated 

meta~athematically, the expressions become rnetamathematical 

objects of an inductively defined type, ahd the five different 
' forMs of statements that we have been considering are turned into 

i nductively def i ned metamathematical propositions proper , that is, 

propositions which can be proved and combined by means of the 

logical connectives· and quantifiers. In particular, 

x is a natural number 

is turned into a property proper, and 

into a (k+1 ) -place relation proper between expressions as meta-

mathematical objects. Therefore we can form the metamathematical 

proposition 

(\lx1 ) ... (\Jxk)(x1 is a natural number & 

& xk is a natural number ~ (3 x)( x is a natural number 

& a(v i, .•. , vk) = X for Vi = Xi, ••• , Vk = Xk)) 
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in which the quantifiers ran~e over expressions as metamathemati-

cal objects. It expresses that the open expression as meta­

mathematical object a(v1 , ••• ,vk) is convertible in the sense of 

Tait, and must in no way be confused with the statement 

a(v1 , •.. ,vk) is a numerical function 

The former is a proper rnetamathematical proposition which we may 

try to prove, whereas the latter can only be understood. Now, it 

follows directly from our understanding of the langua,ge of prim-

itive recursive functions and the fact that a natural number must 

have the form of a numeral, that, if the statements 

x 1 is a natural number 

xk is a natural number 

and 

a(v1 , ••• ,vk) is a numerical function 

can be derived, then an expression x is determined for which 

x is a natural number 

and 

can be derived, in the latter case, from the assignments ~1 = x
1

, 

••• , vk = xk. The metamathematical counterpart of this is the 

theorem, easily proved by Tait's method of convertibility, that, 
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if 

a(v
1

, .•• ,vk) is a numerical function 

can be derived, then a(v1 , •.. ,vk) is convertible. Two things must 

be born in mind in connection with this theorem. First, in both 

t h e formulation and the proof of the theorem, we use l inguistic 

expression s i n t h e ordinary sense. Second, the proof of t h e 

t h eorem has to be understood. Otherwise, it wou ld have n o cogn i-

tive value. And understanding the metalanguage in which the proof 

of convertib i lity is carried out, is at least as difficult as 

unders tanding the object language, in t h is case, the lan~uage of 

primitive recu rsive functions, for wh i ch convertib il i ty is p roved. 

It would be absurd to mainta i n, at least in the case of the Ian-

g uage of primitive recursive functions, that we do understand th e 

metalanguage but not the object langua,g e, and hence that t h ere is 

a gen uine n eed for the proof of conver t ibility. But ; of course, 

i t may be interesting for other reasons. 




