diff --git a/weis/aeroelasticse/IEC_CoeherentGusts.py b/weis/aeroelasticse/IEC_CoeherentGusts.py index 40c806dd7..dc5c952c4 100644 --- a/weis/aeroelasticse/IEC_CoeherentGusts.py +++ b/weis/aeroelasticse/IEC_CoeherentGusts.py @@ -329,6 +329,8 @@ def wnd2bts(self, data, y, z): v = -np.sin(data[:,2]*np.pi/180) w = -np.cos(data[:,2]*np.pi/180) * np.sin(data[:,8]*np.pi/180) * data[:,1] + \ np.cos(data[:,8]*np.pi/180) * data[:,3] + + # u = ts['u'] = u ts['v'] = v ts['w'] = w @@ -350,8 +352,8 @@ def add_turbulence(fname, u, v = None, w = None, time = None, HH = None, new_fna u (array, optional): time-varying velocity in x-direction (assumed 0). time (array, optional): time array, must be same size as u (and v and w). If undefined, velocity inputs must match BTS file size. - HH (float, opt): user-defined height to take average WS at. - Assumed to be middle of grid. + HH (float, opt): user-defined height to take average WS at. Assumed to be middle + of grid. Only used if u.ndim = 1. new_fname (str, opt): filename for the new BTS file. If undefined, the function returns the TurbSimFile object instead. """ @@ -359,27 +361,105 @@ def add_turbulence(fname, u, v = None, w = None, time = None, HH = None, new_fna if v is None: v = np.zeros_like(u) if w is None: w = np.zeros_like(u) + ## Check if u, v, and w have same shape + if (np.shape(u) != np.shape(v)) or (np.shape(u) != np.shape(w)): + raise Exception('The shape of u {} must be the same as the shapes of v {} and w {}.'\ + .format(np.shape(u), np.shape(v), np.shape(w))) + ## Load BTS file ts = turbsim_file.TurbSimFile(fname) ts_shape = ts['u'].shape - if HH: - ## Find z location closest to reference height - ref_idx = np.argmin(abs(ts['z']-HH)) - ## If ref_height not defined, assume it to be in the middle - elif ts_shape[3] % 2 == 1: - ref_idx = int(ts_shape[3]/2-0.5) - else: - ref_idx = [int(ts_shape[3]/2-1), int(ts_shape[3]/2)] - ## Interpolate velocity signal if size is different from BTS file - if ts_shape[1] != np.shape(u): - u = np.interp(ts['t'], time, u) - v = np.interp(ts['t'], time, v) - w = np.interp(ts['t'], time, w) + ## Create 3D velocity vectors based on the shape of the provided velocity vectors + u_ndims = len(np.shape(u)) + + ## If u has one dimension, it must be the time dimension + if u_ndims == 1: + if np.shape(u) == np.shape(time): + # Interpolate provided time vector to bts time indices + u = np.interp(ts['t'], time, u) + v = np.interp(ts['t'], time, v) + w = np.interp(ts['t'], time, w) + + ## TODO: We could possibly add the functionality to provide constant shear here + ## (without providing veer/horizontal shear), so a (tN x zN) sized u + + elif np.shape(u) != ts_shape[1]: + # Otherwise must match bts time series length + raise Exception(\ + 'The shape of u {} must be the same as either time {} or the .bts time {}.'\ + .format(np.shape(u), np.shape(time), ts_shape[1])) + + # Match shape + u = np.tile(u[:, np.newaxis, np.newaxis], (1, ts_shape[2], ts_shape[3])) + v = np.tile(v[:, np.newaxis, np.newaxis], (1, ts_shape[2], ts_shape[3])) + w = np.tile(w[:, np.newaxis, np.newaxis], (1, ts_shape[2], ts_shape[3])) + + ## Determine reference height + if HH: + ## Find z location closest to reference height + ref_idx = np.argmin(abs(ts['z']-HH)) + ## If ref_height not defined, assume it to be in the middle + elif ts_shape[3] % 2 == 1: + ref_idx = int(ts_shape[3]/2-0.5) + else: + ref_idx = [int(ts_shape[3]/2-1), int(ts_shape[3]/2)] + + ## Calculate mean in x-direction at reference height + ## Note: it is assumed that v and w are always mean 0 + ## Note 2: in this case, the shear from the bts file is retained + tsu_mean = np.average(ts['u'][0,:,:,ref_idx], keepdims=True) + + ## If u has two dimensions, it must be the same size as the bts grid + elif u_ndims == 2: + if np.shape(u) != ts_shape[2:]: + raise Exception(\ + 'If a 2D array, the shape of u {} must be the same as the bts grid size {}.'\ + .format(np.shape(u), ts_shape[2:])) + ## TODO: We could possibly add the functionality to provide shear over time here + ## (without providing veer/horizontal shear) - ## Calculate mean in x-direction at reference height - ## Note: it is assumed that v and w are always mean 0 - tsu_mean = np.mean(ts['u'][0,:,:,ref_idx]) + else: + # Match shape + u = np.tile(u[np.newaxis, :, :], (ts_shape[1], 1, 1)) + v = np.tile(v[np.newaxis, :, :], (ts_shape[1], 1, 1)) + w = np.tile(w[np.newaxis, :, :], (ts_shape[1], 1, 1)) + + ## Calculate mean in x-direction at each height + ## Note: it is assumed that v and w are always mean 0 + ## Note2: in this case, all veer/shear is removed from the bts file, + ## as it is presumed to be provided in the u/v/w vectors + tsu_mean = np.average(ts['u'][0,:,:,:], axis=0, keepdims=True) + + ## If u has three dimensions, it must be (time, y, z) + elif u_ndims == 3: + + if np.shape(u)[0] == np.shape(time): + # Simple function to interpolate the grid over time + # TODO: replace for something more efficient + def interp_grid(ts, time, u, v, w): + u_interp = np.empty(ts_shape[1:]) + v_interp = np.empty(ts_shape[1:]) + w_interp = np.empty(ts_shape[1:]) + for n in range(np.shape(u)[1]): + for m in range(np.shape(u)[2]): + u_interp[:,n,m] = np.interp(ts['t'], time, u[:,n,m]) + v_interp[:,n,m] = np.interp(ts['t'], time, v[:,n,m]) + w_interp[:,n,m] = np.interp(ts['t'], time, w[:,n,m]) + return u_interp, v_interp, w_interp + + u, v, w = interp_grid(ts, time, u, v, w) + + elif np.shape(u) != ts_shape[1:]: + raise Exception(\ + 'If a 3D array, the shape of u {} must be the same as the bts u vector {}, or the first dimension must match time {}.'\ + .format(np.shape(u), ts_shape[1:], np.shape(time))) + + ## Calculate mean in x-direction at each height + ## Note: it is assumed that v and w are always mean 0 + ## Note2: in this case, all veer/shear is removed from the bts file, + ## as it is presumed to be provided in the u/v/w vectors + tsu_mean = np.average(ts['u'][0,:,:,:], axis=0, keepdims=True) ## Scaling factor for scaling turbulence scaling = u / tsu_mean @@ -388,12 +468,10 @@ def add_turbulence(fname, u, v = None, w = None, time = None, HH = None, new_fna ts_new = ts ## Change velocity profile as defined - ts_new['u'][0,:,:,:] = (ts['u'][0,:,:,:] - tsu_mean) + \ - np.tile(u[:, np.newaxis, np.newaxis],(1, ts_shape[2], ts_shape[3])) - ts_new['u'][1,:,:,:] = ts['u'][1,:,:,:] + \ - np.tile(v[:, np.newaxis, np.newaxis],(1, ts_shape[2], ts_shape[3])) - ts_new['u'][2,:,:,:] = ts['u'][2,:,:,:] + \ - np.tile(w[:, np.newaxis, np.newaxis],(1, ts_shape[2], ts_shape[3])) + ## Note that v and w are assumed zero-mean + ts_new['u'][0,:,:,:] = ts['u'][0,:,:,:] + u - tsu_mean + ts_new['u'][1,:,:,:] = ts['u'][1,:,:,:] + v + ts_new['u'][2,:,:,:] = ts['u'][2,:,:,:] + w if new_fname: ts_new.write(new_fname)