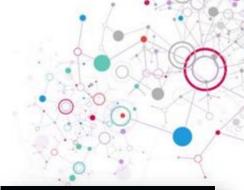
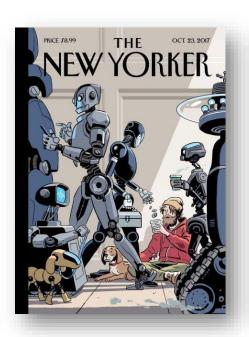

中国科学院学部-科学与技术前沿论坛 大模型 / AIGC 的健康发展与赋能赋智


大模型赋能全民数字素养与技能提升

王伟

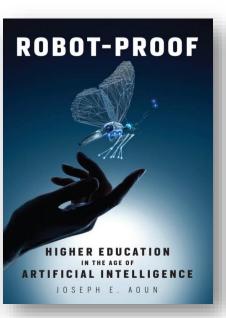
国家级全民数字素养与技能培训中心 华东师范大学/数据科学与工程学院

驱动力 | 智能时代 |



ALL Systems Go

At last — a computer program that can beat a champion Go player

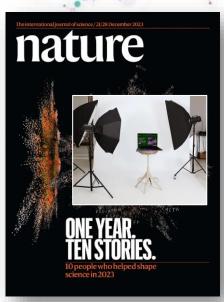

Nature 2016.01

DARK FACTORY

The robotics revolution is changing what machines can do. Where do humans fit in?

The New Yorker 2017.10

Robot-Proof


Age of Artificial
Intelligence
MIT Press 2017.08

AlphaFold

AlphaFold, software that can predict the 3D shape of proteins, is already changing biology.

Nature 2021.08

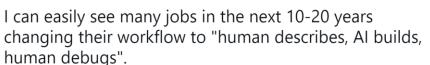
ChatGPT

Ten people (and one non-human) who helped shape science in 2023.

Nature 2023.12

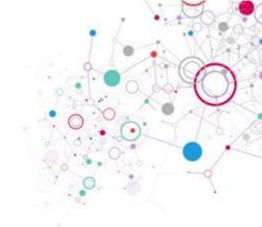
驱动力 | 智能时代 Ⅱ

DALL·E


Noah Smith captured the human-AI dynamic succinctly in his "sandwich" workflow:

"This is a three-step process. First, a human has a creative impulse, and gives the AI a prompt. The AI then generates a menu of options. The human then chooses an option, edits it, and adds any touches they like."

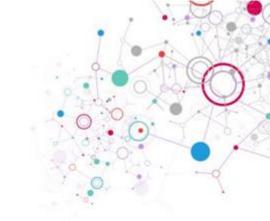
ChatGPT: Optimizing Language Models for Dialogue



智能时代的我们: 人类描述 > AI 构建 > 人类调试

不被 AI 取代的必须: AI 不知道的事情(**专有**),理解 AI 不能理解的东西(**解释性**),制作 AI 还不知道的东西(**创造性**)。

航天学的启示



- ◆ 是**航空技术**而不是"人工飞行"
- ◆ 空气动力学、驾驶舱与仪表盘
- ◆ 技术智能也不应该是"人工的",

应该是增强人类能力的智能

智能时代下的教育

人类增强智能 = 人脑智能 + 技术智能

・基本素养的提升


• 数字素养 (Digital literacy) 、数据素养 (Data literacy) 、人文素养 (Human literacy)

・核心能力的提升

・ 学习能力、问题求解能力、信息获取能力、分析推理能力、决策能力 等等

・综合认知的提升

- 系统性思维 (System thinking) 、数据思维 (Data thinking)
- 设计思维 (Design thinking) 、批判性思维 (Critical thinking)
- 认知敏捷性 (Cognitive agility) 、创业精神 (Entrepreneurship)

写入"十四五"规划和 二〇三五远景目标的重要蓝图 ② Ø 提升全民数字素养与技能行动纲要(印发稿).pdf

提升全民数字素养与技能行动纲要

数字素养与技能是数字社会公民学习工作生活应具备的 数字获取、制作、使用、评价、交互、分享、创新、安全保 障、伦理道德等一系列素质与能力的集合。提升全民数字素 养与技能,是顺应数字时代要求,提升国民素质、促进人的 全面发展的战略任务,是实现从网络大国迈向网络强国的必 由之路, 也是弥合数字鸿沟、促进共同富裕的关键举措。为 深入贯彻落实习近平总书记关于网络强国的重要思想,实施 全民数字素养与技能提升行动,加快数字化发展,建设网络 强国和数字中国,根据《中共中央关于制定国民经济和社会 发展第十四个五年规划和二〇三五年远景目标的建议》和 《中华人民共和国国民经济和社会发展第十四个五年规划 和 2035 年远景目标纲要》,制定本行动纲要。

一、发展形势与重要意义

当前,全球经济数字化转型不断加速,数字技术深刻改变 着人类的思维、生活、生产、学习方式,推动世界政治格局、 经济格局、科技格局、文化格局、安全格局深度变革,全民 数字素养与技能日益成为国际竞争力和软实力的关键指标。 全球主要国家和地区把提升国民数字素养与技能作为谋求 竞争新优势的战略方向, 纷纷出台战略规划, 开展面向国民

华东师范大学·全民数字素养与技能培训基地

引进优质社会人才与资源

面向全民提供数字素养与技能提升教育服务

数字素养框架与标准

(2021)

0. 设备和软件操作

欧洲 委员会

DigComp Framework

(2013)

- 1. 信息和数据素养
- 2. 沟通与协作
- 3. 创造数字内容
- 4. 安全
- 5. 问题解决
- 6. 职业相关的素养

联合国 教科文 组织

Digital
Literacy
Global
Framework

(2018)

(2023.5)

数字素养框架

华东师范大学·全民数字素养与技能培训基地 <2023-05-24 Wed>

目录

1	引言	ſ	2
	1.1	数字时代的教育挑战	2
	1.2	数字化赋能的终身学习	3
	1.3	本文结构与用法	3
2	领域		4
	2.1	[0] 通用数字设备与应用软件	4
		2.1.1 [0.1] 使用智能电子设备	4
		2.1.2 [0.2] 使用通用计算机设备	4
		2.1.3 [0.3] 使用常用应用软件	5
	2.2	[1] 信息与数据	5
		2.2.1 [1.1] 浏览、搜索和筛选信息与数据	5
		2.2.2 [1.2] 分析、比较和评价信息与数据	5
		2.2.3 [1.3] 管理信息与数据	5
	2.3	[2] 沟通与协作	5
		2.3.1 [2.1] 管理数字身份	5
		2.3.2 [2.2] 使用数字技术互动	5
		2.3.3 [2.3] 使用数字技术分享	5
		2.3.4 [2.4] 使用数字技术协同	6
		2.3.5 [2.5] 使用数字公共服务	6

全民数字素养与技能培训基地

"数字素养框架" (2023)

[0] 通用数字设备与应用软件

能力域

「1」信息与数据

「3」创建数字内容

「2」沟通与协作

「4」创建数字工具

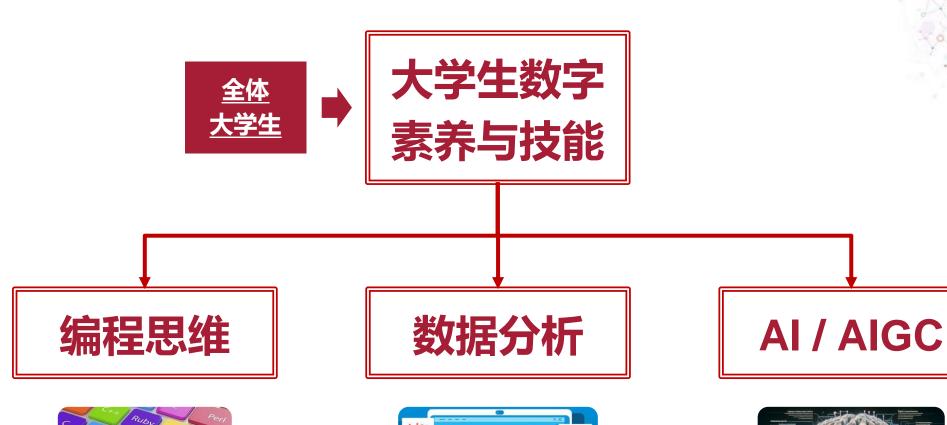
「5」数字安全

「6」数字思维与问题解决

「7」特定职业相关

全民数字素养与技能培训基地

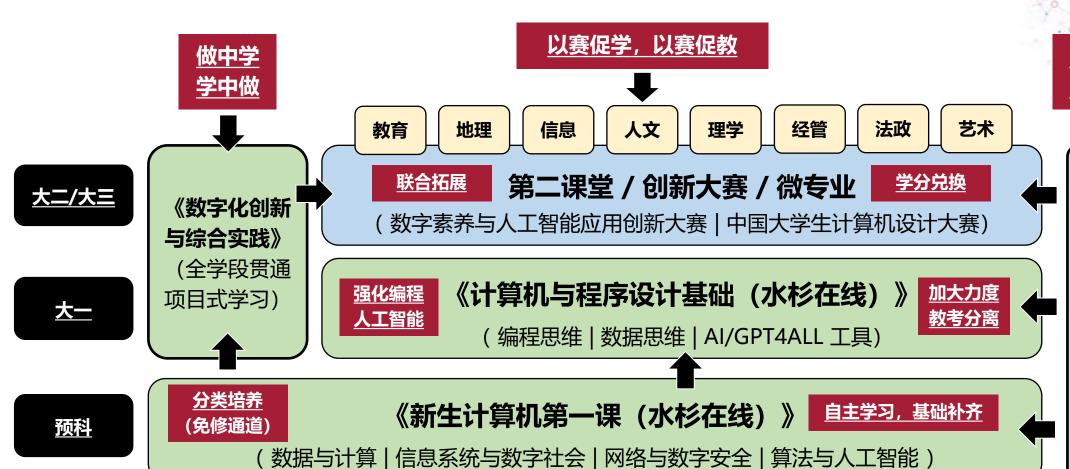
"数字素养框架" (2023)


	0 通用数字设备和应用软件			
[0.1] 使用智能电子设备	操作智能手机、平板电脑、智能家电等智能化设备。			
[0.2] 使用通用计算机设备	操作通用的个人电脑。			
[0.3] 使用常用应用软件	操作常用应用软件,包括办公软件、图形图像工具、通信协同工具等。			
	1 信息与数据			
[1.1] 浏览、搜索和筛选信息	数据 在数字环境中浏览各种信息与数据,根据自身需求搜索有用的信息与数据,在多种格式及媒介的信息与数据中导航。			
[1.2] 分析、比较和评价信息	数据 分析、比较和批判性地评价信息与数据的可信度,对信息和数据进行 综合性的分析以得出相对可信的结论。			
[1.3] 管理信息与数据	在数字环境中组织、存储和使用信息与数据,必要时对它们做结构化 组织、清洗和加工。			
	2 沟通与协作			
[2.1] 管理数字身份	创建和管理自己的一个或多个数字身份,能够保护自己的数字声誉,能够处理 自己的数字身份产生的数据。			
[2.2] 使用数字技术互动	使用数据技术进行沟通和互动。			
[2.3] 使用数字技术分享	使用数字技术与他人分享信息、数据与数字内容,了解引用和注明出处。			
[2.4] 使用数字技术协同	使用数字技术实现多人协同,包括对协同的促进和对协同环境中产生信息、数 据与数字内容的管理。			
[2.5] 使用数字公共服务	定位和使用政府及其他组织提供的数字化公共服务,了解在此过程中保护自身 数字权益的方法。			
[2.6] 网络礼仪	了解数字环境中使用数字技术与互动的行为规范和具体做法;了解并尊重数字 环境中的文化与代际多样性,制定相匹配的沟通策略及规范。			
3 创建数字内容				
[3.1] 创作数字内容	创作和编辑不同格式与媒体形式的数字内容,使用数字工具表达自己的想法。			
[3.2] 数字内容再创作	修改、精炼、整合、改进已有的信息与内容,以创建相关的新内容和新知识。			
[3.3] 版权与许可	理解版权与许可应用于数据、信息和数字内容的原理和实践,保证数字内容的 创建与传播合规合法。			

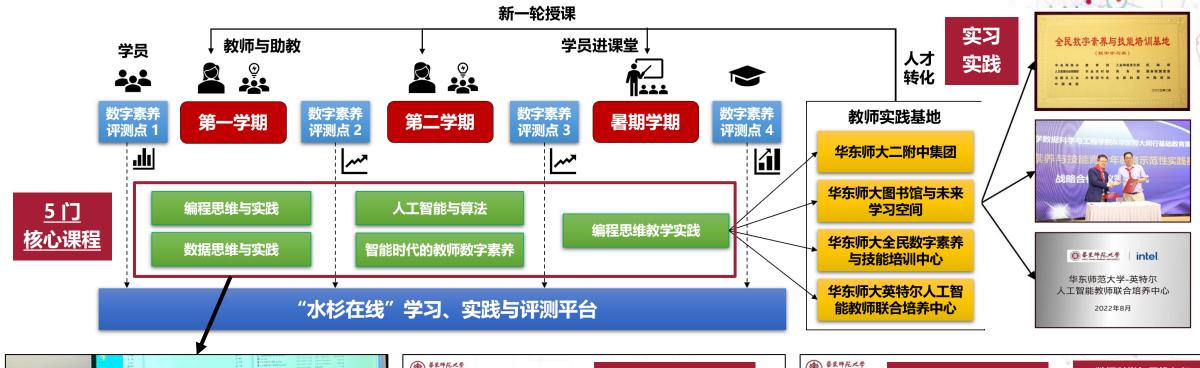
创建与传播合规合法。

	4 构建数字工具		
[4.1] 规划与设计数字工具	理解现实世界和数字世界的需求,设计可实现的、有助于提升数字环 境运作效率的软件工具。		
[4.2] 创建数字工具	规划和创建计算机系统可理解的指令,实现解决问题或完成任务的软件工具。		
[4.3] 管理数字工具	对数字工具的使用者提供持续运营、服务、技术支持和系统维护。		
	5 数字安全		
[5.1] 对数字设备的保护	保护设备与数字内容,理解数字环境中的风险与威胁;了解安全与安保 措施,适当考虑可靠性与隐私。		
[5.2] 对个人数据与隐私的保护	保护数字环境中的个人数据与隐私; 理解使用和分享个人身份信息的安全方式,以保护自己与他人利益不受损害; 能够理解数字服务的"隐私政策",尤其是其个人数据将被如何使用。		
[5.3] 对个人健康与福祉的保护	能够在使用数字技术时,避免其对身心健康造成威胁;能够在数字环境中保护自己与他人利益不受损害(如网络霸凌);了解数字技术对社会福祉与社会融入的作用。		
[5.5] 对环境的保护	了解数字技术及其使用对环境的影响。		
	6 数字思维与问题解决		
[6.1] 解决技术问题	确认和解决操作设备与使用数字环境过程中的技术问题(从故障检测到解 决复杂问题)。		
[6.2] 设计技术解决方案	分析问题和评估需求,评估、选择和运用数字工具形成可行的解决方案以 满足需求;必要时调整和定制数字环境以满足需求。		
[6.3] 创造性地使用数字技术	使用数字工具与技术创造知识、创新流程与产品。		
[6.4] 数字素养提升	理解自己需要在哪些方面提升数字素养;能够支持他人提升数字素养;紧 跟数字化发展潮流寻求自我发展的机会。		
[6.5] 计算思维	将可计算的问题转化为一系列有逻辑顺序的步骤,为人机系统提供解决方 案。		
[6.6] 数据思维	掌握通过数据分析得到结论的原理、方法、工具及其局限性;能够有意识 地设计数据的采集、清洗、统计、分析方案来验证自己的猜想和理论。		

高校落地: 数字时代的大学生应该具备什么?



举措 1: 学生数字素养提升落实方案 (计算机公共课)

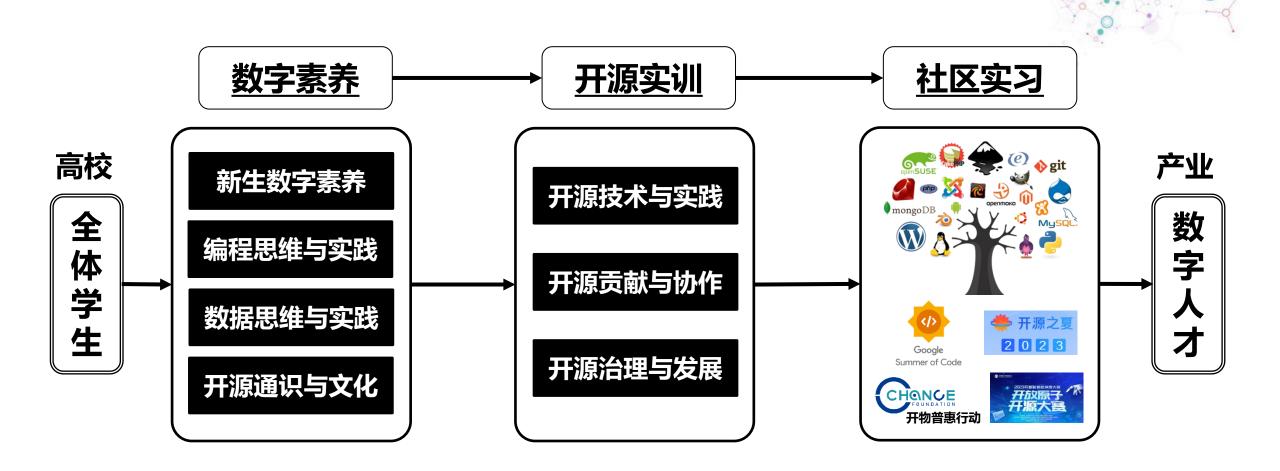


以测带练 以练带学

高数素能分测校字养力级评

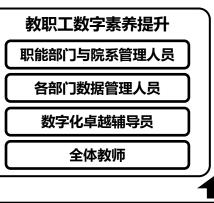
全流程数据驱动

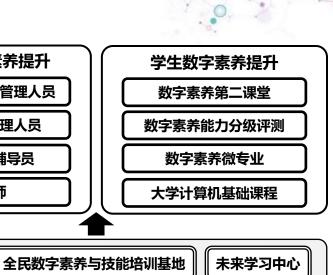
举措 2: 数字素养教育微专业 (1 个学年 / 10 个学分)



- 数据科学与思维入门
- 数据科学的数学基础
- 数据收集与管理 数据探索与预处理
- 数据建模与分析
- 数据科学实践案例

举措 3: 开源对教育模式的变革 — 从数字素养到数字人才




举措 4: 数字化学习平台

教-学-练-测-创-评

标准规范 生产工具

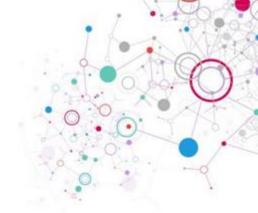
集成学习环境

水杉在线

能力测评能力图谱

测评与诊断

GPT4ALL
API 服务
开源定制
超算基座

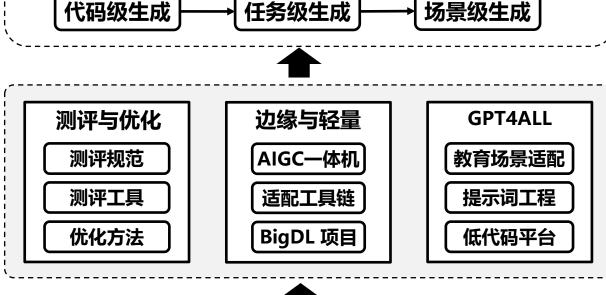

全民社会服务

面向"全民数字素养提升"

AI4Coding

的教育大模型架构

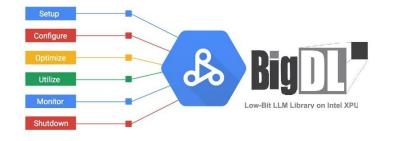
AI4OSS


教育场景

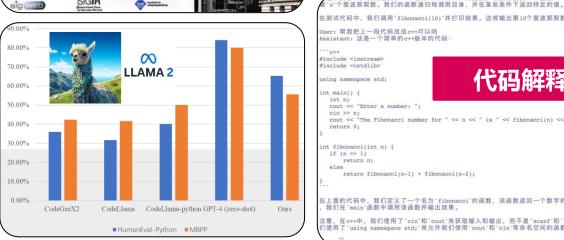
代码级生成 场景级生成 任务级生成

AI4DS

AI4SE


关键技术

基础设施



GPT4ALL 的研究与进展

教育场景 AI 能力域	教	学	练	测	创	评
基础知识 (Al4DL)	教案生成出题组卷知识图谱	・ 自适应学习 ・ 智能助教	・ 个性化练习・ 自动纠错・ 拓展练习	・ 自动批改 ・ 个性化试题 ・ 自动打标签	・ 创意生成・ 项目推荐・ 智能查新	・ 测评大模型 ・ 能力画像
编程技能 (Al4Coding)	・编程知识图谱	・代码助教	• 代码纠错	・ 代码自动出题 ・ 代码自动打标	_	・代码能力评测
工程能力 (AI4SE)	・工程知识图谱	• DevGPT	・ AlOps 助教	・ DevOps 评测	・工程场景生成 ・工程管理 Agent	・工程能力评测
数据分析 (Al4DS)	• 数据科学图谱	• GPT-DB • GPT-GDS	・ 实训数据生成 ・ 分析代码生成	・分析模型评测 ・SQL/GQL生成	・ 数据作品辅助 ・ 数据场景生成	・ SQL/GQL评测
开源协作 (AI4OSS)	・ 开源知识图谱 ・ 开源项目标签	_	・GitOps助教	・开源社区问答	・开源协作机器人	・ 贡献度评价 ・ 开源人才画像
基础设施 (Al4Infra)	・基础代码大模	型、代码大模型	评测、超轻量大榜	莫型 (BigDL) 、教	育场景低代码平台、	大模型一体机

实训一体机

intel digital

实现的时间复杂度为 O(n), 空间复杂度为 O(n)。其中 n 是数组 nums 的长度。

代码解释

在测试代码中,我们调用`fibonacci(10)`并打印结果。这将输出第10个斐波那契数,即55。

ser: 帮我把上一段代码改成c++可以吗 ssistant: 这是一个简单的c++版本的代码

cout << "Enter a number: "; cout << "The Fibonacci number for " << n << " is " << fibonacci(n) << endl;

nt fibonacci(int n) {

DL4ALL

全民数字素养与技能培训基础

在上面的代码中,我们定义了一个名为`fibonacci`的函数,该函数返回一个数字的斐波那契数。然后,我们在`main`函数中调用该函数并输出结果。

注意,在c++中,我们使用了`cin`和`cout`来获取输入和输出,而不是`scanf`和`printf`。同时,我 们使用了`using namespace std;`来允许我们使用`cout`和`cin`等命名空间的函数。

开源人才评价

代码纠错

实施方案:

- 调研和比较传统深度学习方法和大语言模型修复学生
- 调研和部署开源大语言模型并在学术代码数据集上进
- 利用提示工程和指令微调,提升大语言模型修复代码 的准确率和生成提示信息的质量
- 将大语言模型部署至实训平台, 进行效果测试

部分实验结果:

服务层

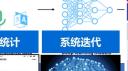
模型	Codefuse- 34B	Codefuse- 34B	Deepseek- 33B	Deepseek- 33B
学习方式	zero-shot	one-shot	zero-shot	one-shot
尝试次数	5	5	1	1
平均修复率	93%	85%	73%	71%

自动出题

实施方案:

- 调研目前主流的大语言模型自动出题的能力,包括GPT-4以及国内外较有代表性的开源大语言模型
- 探索自动出题应用场景更多可能性,包括简单编程题和 复杂项目题
 - 通过指令微调,提升大语言模型在自动出题任务上的准 确性并贴合使用场景, 实现多样化特点

部分实验结果:


模型	合理性	涵盖 知识点	输入输出样例 一致	sample solution 正确	可以减少人工 工作量
Qwen	85. 45%	97. 27%	61.82%	54. 55%	67. 27%
Ernie	72. 60%	90. 41%	50. 68%	54. 79%	56. 16%
Spark	78. 26%	91. 30%	78. 26%	93. 48%	73. 91%
DeepSeek	100%	100%	77. 42%	83. 87%	93. 55%
				98%	96. 00%

zJ	多轮问	答
	ChatGPT	175B
	Qwen	14B
Acto	ChatGLM2	6B
	baichuan	13B

模型	模型参数	bleu4	余弦相似度	最优涉
baichuan	13B	0. 033	0. 728	46
ChatGLM2	6B	0. 033	0. 768	25
Qwen	14B	0.08	0. 803	5
ChatGPT	175B	0. 035	0. 644	17

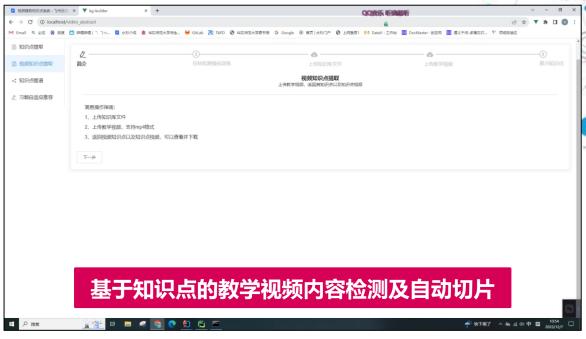
多轮问答				
模型	BLEU1	BLEU2	BLEU3	BLEU4
chatglm2-6b	0. 143	0.0516	0. 0289	0.0198
chatglm3-6b	0. 141	0.0532	0.0296	0.0197
vicuna-13b- v1.5	0. 143	0. 0531	0. 0298	0. 0196
baichuan-13b- chat	0. 157	0.0644	0.0364	0. 0240

Owen-14B-Chat 0.180 0.0815 0.0489 0.0342

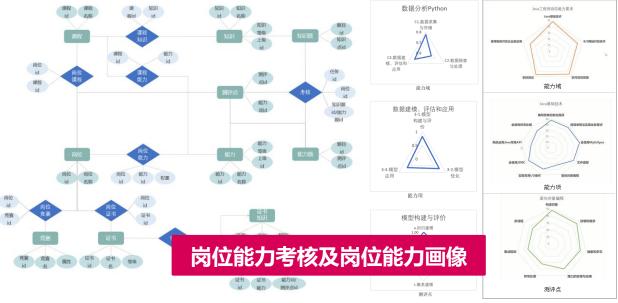
SQL代码生成

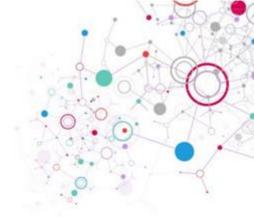
method	easy (163)	medium (298)	hard (114)	extra (90)	all (665
chatglm2-6b	0.160	0.040	0.061	0.000	0.068
baichuan- 13b-chat	0.129	0.067	0.044	0.011	0.071
vicuna-13b- v1.5	0.061	0.017	0.009	0.000	0.024
Qwen-14B- Chat	0.497	0.292	0.263	0.100	0.311


Λ

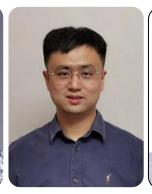

十算机常识问答	
---------	--

计算机常识问答								
英型	无知识库 查询时间	有知识库 查询时间	余弦相似度	BLEU4				
chatglm2-6b	13. 8838	9. 79087	0. 6291	0.0104				
Qwen-14B-Chat	12. 3876	12. 5260	0.6659	0. 0180				
baichuan-13b- chat	16. 0946	15. 2760	0. 6319	0.0085				
vicuna-13b-v1.5	10. 6538	10. 0477	0. 6238	0.0084				
chatg1m3-6b	11.8166	12. 9287	0. 6225	0.0090				





团队与分工


王伟 (教授) **计算教育学** 开源数字生态

高明 (教授) 知识图谱 基础大模型

胡文心 (教授级高工) **大模型评测** AI4DL

陆雪松 (副教授) 代码大模型 AI4Coding

兰韵诗 (副教授) **计算语言学** AI4OSS

蒲鹏 (高级工程师) **智能运维** AI4DS

刘垚 (副教授) 高性能计算 Al4Infra

张琰彬 (工程师) Al DevOps Al4SE

苏斌 (助理工程师) **数字课本** Al4Infra

相关成果

- Motivating Open Source Collaborations Through Social Network Evaluation: A Gamification Practice from Alibaba, ICSE 2024. (CCF-A
- 2. <u>ErrorCLR: Semantic Error Classification, Localization and Repair for Introductory Programming Assignments</u>. SIGIR 2023. (CCF-A)
- 3. <u>Uncertainty-Aware Self-Training for Low-Resource Neural Sequence Labeling</u>. AAAI 2023. (CCF-A)
- 4. <u>Tat-Seng Chua: Learning Relation Prototype From Unlabeled Texts for Long-Tail Relation Extraction</u>. TKDE 2023. (CCF-A)
- 5. A Neural Network Architecture for Program Understanding Inspired by Human Behaviors. ACL 2023. (CCF-A)
- 6. Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models, ACL 2023. (CCF-A)
- 7. Improving Zero-shot Visual Question Answering via Large Language Models with Reasoning Question Prompts, MM 2023. (CCF-A)
- 8. MWPToolkit: An Open-Source Framework for Deep Learning-Based Math Word Problem Solvers. AAAI. 2022. (CCF-A)
- 9. Multi-task Learning for Paraphrase Generation With Keyword Reconstruction. ACL 2022. (CCF-A)
- 10. Meta-Learning Adversarial Domain Adaptation Network for Few-Shot Text Classification. ACL 2021. (CCF-A)
- 11. On Disambiguating Authors: Collaboration Network Reconstruction in a Bottom-up Manner. ICDE 2021. (CCF-A)
- 12. FlaCGEC: A Chinese Grammatical Error Correction Dataset with Fine-grained Linguistic Annotation. EMNLP 2023. (CCF-B)
- 13. Pass-Tuning: Towards Structure-Aware Parameter-Efficient Tuning for Code Representation Learning. EMNLP 2023. (CCF-B)
- 14. Evaluating and Enhancing the Robustness of Code Pre-trained Models. EMNLP 2023. (CCF-B)
- 15. <u>Temporal Autoregressive Matrix Factorization for High-dimensional Time Series prediction of OSS</u>, TNNLS, 2023. (CCF-B)
- 16. Understanding the Archived Projects on GitHub, SANER 2023. (CCF-B)
- 17. HugNLP: A Unified and Comprehensive Library for Natural Language Processing. CIKM 2023. (CCF –B, Best Demo Paper Award)
- 18. Prompting Large Language Models with Chain-of-Thought for Few-Shot Knowledge Base Question Generation, EMNLP 2023. (CCF B)
- 19. R3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context, EMNLP 2023. (CCF B)
- 20. CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure. EMNLP 2022. (CCF-B)

总结

《数字素养提升宣言》

完整版

提升探索能力与学习能力比掌握静态知识更重要。

参与计算机科学普及教育是提升数字能力的最佳实践。

有趣又实用的课程是成功关键。

用好大众喜闻乐见的数字教育和媒体工具。

构建全民参与的终身学习社会。

关键词版

Learning to learn

Computer Science for all

Next generation digital courses

e-Learning on any platform

Everyone and everywhere