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THE BIGGER PICTURE Networks are effective for representing relationships between entities across a
range of disciplines, and network analysis techniques are widely used for understanding various types of
complex networks, e.g., social networks, biological networks, transportation networks. Network analysis
tasks, such as community detection, centrality analysis, and network visualization, play important roles
in many disciplines. Existing network analysis tools, however, lack efficiency in analyzing massive network
data ormay not provide comprehensive analysis functions, which limits their practical applicability. We pre-
sent EasyGraph, an open-source library that supports many network data formats and covers important
functions like structural hole spanner detection and network embedding. Notably, we have optimized
several key functions for enhanced efficiency. We believe that EasyGraph is a powerful tool for dealing
with major analytical tasks in complex networks across various domains.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Networks are powerful tools for representing the relationships and interactions between entities in various
disciplines. However, existing network analysis tools and packages either lack powerful functionality or
are not scalable for large networks. In this descriptor, we present EasyGraph, an open-source network anal-
ysis library that supports several network data formats and powerful network mining algorithms. EasyGraph
provides excellent operating efficiency through a hybrid Python/C++ implementation and multiprocessing
optimization. It is applicable to various disciplines and can handle large-scale networks. We demonstrate
the effectiveness and efficiency of EasyGraph by applying crucial metrics and algorithms to random and
real-world networks in domains such as physics, chemistry, and biology. The results demonstrate that
EasyGraph improves the network analysis efficiency for users and reduces the difficulty of conducting
large-scale network analysis. Overall, it is a comprehensive and efficient open-source tool for interdisci-
plinary network analysis.
INTRODUCTION

A network, which is also known as a graph, is a powerful data

structure for modeling complex relationships and interactions

between entities. The term ‘‘graph’’ refers to the graph of graph

theory in mathematics. We will use both ‘‘network’’ and ‘‘graph’’
This is an open access article und
throughout this descriptor. Vertices or nodes within a graph are

linked together in pairs, facilitating the representation of various

scenarios across disciplines such as sociology, physics, biology,

mathematics, psychology, finance, and computer science.1–6

The concept of a network provides a unifying framework for

exploring and understanding important scientific questions in
Patterns 4, 100839, October 13, 2023 ª 2023 The Authors. 1
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multiple disciplines. Network analysis, which is also called

network science,7 is a critical research methodology for investi-

gating the statistical properties,8,9 topological structures,10,11

and evolution models12,13 of networks that span a wide range

of disciplines. To accelerate research in various disciplines using

network analysis, it is imperative to develop a flexible, functional,

and efficient package that meets the needs of users.

With the increasing size of networks, analyzing massive

network data effectively becomes a major challenge. Addition-

ally, addressing the diverse needs of various disciplines necessi-

tates providing a comprehensive range of functionalities for

network analysis. To address these challenges, many tools

and open-source libraries have been developed, including Net-

workX (https://networkx.org/),14–16 SNAP (http://snap.stanford.

edu/),17–20 igraph (https://igraph.org/),21–24 graph-tool (https://

graph-tool.skewed.de/), Gephi (https://gephi.org/),25–27 Cyto-

scape (https://cytoscape.org/),28,29 and GraphVis (https://

networkrepository.com/graphvis.php).30–33 These tools offer a

range of features and capabilities to support network analysis

for research across a variety of disciplines. Although these tools

and packages cover most functions of network analysis,

including centrality measurement,34–36 influence maximiza-

tion,37,38 community detection,3,39 and basic network character-

istics,40–42 they are limited in terms of several important func-

tions. For example, NetworkX and igraph currently do not

support network embedding. Likewise, graph-tool and SNAP

do not support structural hole identification. However, these

functions have proven to be critical for addressing significant

theoretical problems such as the investigation of gene regulatory

function43 and for many applications such as anomaly detec-

tion44 and friend recommendation,45 as well as molecular prop-

erty prediction.46,47 Therefore, users have to implement the cor-

responding functions for network analysis from scratch. These

limitations may result in diminished research efficiency and diffi-

culty in reproducing and benchmarking the research results.

Furthermore, existing tools and packages support only a limited

number of network formats (e.g., NetworkX supports five types

of network formats, and SNAP only supports two types of

network formats) and are inefficient at performing network anal-

ysis on large-scale networks.48 Particularly, it is time consuming

for some existing tools (such as NetworkX) to execute algorithms

with high computational complexity (such as betweenness cen-

trality calculation) on large-scale networks. Therefore, it is very

difficult for users to carry out experiments and verify the feasi-

bility and validity of their research methods in practical network

settings.

To fill these gaps, we designed and implemented EasyGraph

as an ease-of-use toolkit for interdisciplinary network analysis,

computation, and representation of crucial graph properties

covering multiple graph data formats from different disciplines.

EasyGraph is available at https://github.com/easy-graph/Easy-

Graph. We encourage readers to fork this repository, submit

pull requests, and open new issues through theGitHub interface.

We have made EasyGraph an open-source project, and we will

make further improvements based on user needs and feedback

during the development process. EasyGraph is implemented in

Python for ease of access and provides the option for multipro-

cessing and computation on a C++ backend. EasyGraph aims to

accelerate the exploration of significant graph properties and
2 Patterns 4, 100839, October 13, 2023
important applications of graphs from various disciplines. An

overview of the EasyGraph framework is presented in Figure 1.

EasyGraph provides comprehensive functionality support for

network analysis, computation, and representation. Therefore,

it can assist users in different disciplines to comprehend com-

plex phenomena and moderate network functions.

First, based on its strong compatibility, EasyGraph can flexibly

model network data from different domains and support network

data in a variety of formats. For example, the adjacency list

format contains several lines with node labels, where the first

node label is the source node and the other node label(s) is

(are) the target node(s). Existing network analysis libraries only

support a limited set of network formats (e.g., GraphML, GML),

and there is no single library that could cover all mainstream

graph formats across different domains. To fill this gap, we

developed EasyGraph to support more diverse network data for-

mats and achieve enhanced compatibility. We describe the

available formats for network data below.

d GraphML format (http://graphml.graphdrawing.org/): this

format describes a graph using XML tags and includes a

GraphML element with three subelements: graph, node,

and edge. The GraphML element defines a namespace

by adding various XML attributes. The GraphML format is

flexible for specific network data such as hypergraphs

and hierarchical graphs. Therefore, this format can be

widely found in many datasets.

d GML format (https://gephi.org/users/supported-graph-

formats/gml-format/): the full name of this format is Graph

Modeling Language. GML stores network data in a text

format with simple syntax. This format is frequently used

based on its flexibility for storing network data.

d Pickle format: this format contains a serialized byte stream

of a hashable Python object. In this format, Python objects

are preserved as nodes and edges. This format is sup-

ported by EasyGraph, NetworkX, and igraph.

d Pajek format: this is another text format that simplifies the

representation of a graph’s structure in a text document.

Each node has a distinct label, and edges are represented

as pairs of nodes. Pajek also supports weighted graphs.

This format is supported by EasyGraph, NetworkX, and

igraph.

d GraphViz format (https://graphs.grevian.org/example):

this format uses the DOT language to represent graphs.

GraphViz uses standardized syntax to define graphs,

where nodes, edges, and their attributes are covered if

needed. This format is supported by EasyGraph, igraph,

SNAP, and graph-tool.

d UCINET DL format (https://gephi.org/users/supported-

graph-formats/ucinet-dl-format/): this format includes

two subformats, full matrix and edge list. The former is suit-

able for small and dense graphs, and the latter is conve-

nient for large and sparse graphs. Among the aforemen-

tioned network analysis libraries, this format is only

supported by EasyGraph.

d GEXF format: the full name of this format is Graph Ex-

change XML Format. It is a representation format oriented

toward the structure and dynamic evolution of data in com-

plex networks. GEXF is found in many processes of graph
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http://snap.stanford.edu/
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https://graph-tool.skewed.de/
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Figure 1. Framework of EasyGraph
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data reading, writing, and transformation. It is now a

mature and extensive graph format in various real-world

scenarios. Among the aforementioned network analysis li-

braries, this format is only supported by EasyGraph.

Second, EasyGraph encapsulates a massive set of metrics

and algorithms for network analysis and representation for the

study of different disciplines. Among these, representative func-

tions include centrality measurement, community detection,

structural hole spanner (SH spanner) detection,49–53 motif detec-

tion,54–56 and network embedding.57–61 Because EasyGraph in-

tegrates these key functions, users from various domains can

perform the operations they need without having to switch be-

tween tools. Subsequently, this will not only minimize switching

costs but also enhance research efficiency. We highlight one

special function, namely SH spanner detection, below.

In addition to being an important theoretical contribution, the

SH theory offers significant application guidance for various

disciplines.52,62 The SH theory was first proposed in 1992 by

Burt.62 According to Burt, bridging positions play a critical

role in information dissemination through social networks.

The individuals occupying such positions, called SH spanners,

act as brokers among communities, thereby facilitating the flow

of information and communication among different groups. SH

spanner analysis, an important concept frequently used in

network science52,63–65 and innovation studies,66,67 refers to

the identification of individuals or entities within a network

that serve as bridges between separate groups or communities

within the network. SH spanners occupy unique positions that

span the gaps between otherwise disconnected groups, so

the analysis of SH spanners and their connected communities

can provide insights into how information, resources, and influ-

ence flow through a network. Several recent works in different

disciplines have presented novel explorations based on SH
spanner analysis. Li et al.63 studied the role of SHs in informa-

tion diffusion. Saglietto et al.64 reviewed the literature on SHs

utilizing a bibliometric methodology. According to Yang

et al.,65 the shift to firm-wide remote work made it more difficult

for workers who serve as SH spanners to benefit from new

network connections. Lin et al.52 presented the development

of applications for the analysis of SH spanners among enter-

prise settings, information diffusion, software development,

mobile applications, and machine learning tasks. Zaheer

et al.67 found that innovative firms can achieve a performance

boost if they bridge SHs. Ahuja66 described a theoretical frame-

work for studying the influence of SHs on innovation. As indi-

cated above, the study of SH spanner analysis has been widely

applied in different disciplines because SH spanners have a

special location advantage in a network.

In recent years, a growing number of methods and algorithms

have been proposed to detect SH spanners. However, these ap-

proaches are often implemented in different programming lan-

guages or platforms by their authors, and some are not open

source. As a result, users face difficulties in accessing and using

these methods conveniently. To address this issue, EasyGraph

provides a collection of implemented SH spanner detection

methods, including HIS, MaxD, HAM, NOBE, and NOBE_GA,

as well as MaxBlock for information flow-based algorithms and

WeakTie-Local, WeakTie-Bi, ICC, BICC, AP_BICC, Greedy,

and AP_Greedy for network centrality-based algorithms, based

on previous studies.52 By consolidating these methods in

EasyGraph, we aim to provide an effective library for users to un-

derstand the role of SH spanners in network analysis. Our library

includes the most commonly used SH spanner detection

methods, enabling users to choose methods that are well suited

to their particular research requirements. Overall, EasyGraph fills

a gap in the availability of SH spanner detection methods, which

provides users with a unified and reliable solution for their
Patterns 4, 100839, October 13, 2023 3



Figure 2. SH spanner detection methods and

metrics implemented in EasyGraph
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network analysis requirements. Figure 2 presents the imple-

mented metrics and algorithms for SH spanner detection in

EasyGraph.

Finally, EasyGraph utilizes multiprocessing techniques and

hybrid programming to optimize the performance of the algo-

rithms it provides. Specifically, EasyGraph leverages multipro-

cessing techniques to accelerate the computation of some vital

metrics such as closeness centrality, betweenness centrality,

and Burt’s SHmetrics, which could be calculated in a distributed

manner. Furthermore, EasyGraph utilizes hybrid implementa-

tions (i.e., two versions of base network classes are implemented

in Python and C++) to reduce the running time of various

methods for network analysis.

Because it is a dynamically typed language with a lack of

concurrency, Python is relatively slow compared with other

mainstream programming languages, such as C++. Accord-

ingly, most pure Python packages (e.g., NetworkX) may yield

poor computational performance, especially when handling

large-scale data. To alleviate this issue, we implemented multi-

processing optimizations for several commonly used represen-

tative metrics. The computation of these metrics could be

further optimized through multiprocessing because they can

be computed individually and without interdependencies. For

example, all of Burt’s metrics for SH spanners can be optimized

through multiprocessing techniques because each metric is a

property or value of each node that can be calculated

individually.

Although the technology for multiprocessing optimization im-

proves the running speed of various network analysis methods,

many others still suffer from Python’s inherent low efficiency,

particularly for large-scale networks. To address this issue, we

adopted a hybrid implementation strategy that leverages the ef-

ficiency of C++ and the ease of use of Python. Specifically,
4 Patterns 4, 100839, October 13, 2023
EasyGraph utilizes pybind11, which is a

lightweight header-only library that seam-

lessly integrates C++11 and Python, as

a framework for hybrid programming.

EasyGraph has pure C++ implementations

of several important methods (e.g.,

betweenness centrality and closeness

centrality), and it still offers a simple Python

interface for users to call these methods.

Additionally, the base network classes

and their basic operations are imple-

mented in C++. The usage of specific algo-

rithms can be achieved by calling Python

API interfaces. Our intuition is that all

network analysis algorithms are composed

of numerous basic network class opera-

tions (e.g., degree centrality calculation

and finding neighbors). This is why this

type of hybrid approach can make a signif-

icant difference.

Overall, EasyGraph offers significant ad-
vantages in terms of efficiency, important functions, and ease of

use, making it a valuable tool for network analysis across

different disciplines.

RESULTS

In this section, we present the comparisons between EasyGraph

and other existing network analysis tools to demonstrate our

tool’s superiority in terms of both functional comprehensiveness

and performance enhancement.

Multiple types of network input/output (I/O) and
extensive functions
We investigated the formats of network data supported by exist-

ing network analysis tools, and the results are presented in Ta-

ble 1. We selected representative network analysis tools,

including NetworkX, igraph, SNAP, graph-tool, Gephi, and Cyto-

scape. In Table 1, one can see that there are rich formats avail-

able for representing network data. This may be attributed to the

fact that there is no uniform specification in the processes of data

collection and storage. Additionally, one can see EasyGraph’s

superiority in terms of handling different formats of network

data, which is user friendly for users who possess network

data in different formats.

Because EasyGraph implements both the SH spanner detec-

tion methods and SH-related metrics, we can use these metrics

for fair comparisons among different detection methods. This

enables users in various fields to select suitable algorithms and

accelerate the research process.

A visual representation of the results of different algorithms for

detecting SH spanners is presented in Figure 3, where the nodes

surrounded by pentagrams are the corresponding identified SH

spanners for the Karate Club network. Users can easily capture



Table 1. Comparison of network analysis tools in terms of supporting different network I/O types

Network I/O types

Tools

EasyGraph NetworkX igraph SNAP graph-tool Gephi Cytoscape

Edge List U U U U – U –

GraphML U U U – U U U

GML U U U – U U U

Pickle U U U – U – –

Pajek U U U – – U –

GraphViz U – U U U U –

UCINET DL U – – – – U –

GEXF U – – – – U –

ll
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an overview of the structure of a network and determine whether

an SH spanner detection approach would work.

EasyGraph also implements representative network embed-

ding algorithms, including DeepWalk,58 node2vec,59 LINE,60

and SDNE.61 These network embedding methods58–61 have

been proven to be useful for maintaining inner network proper-

ties by vectorizing networks and their constituents, including no-

des, edges, and subnetworks. It is noteworthy that these

methods use different algorithms to calculate node similarity.
A B

D E

Figure 3. Visualization of SH spanner detection results for the Karate

Visualization of the results for the Karate Club network using different SH span

NOBE_GA, and (F) BICC.
They allow nodes that are similar in an original network to be

close to each other in the low-dimensional representation space.

With vectorized feature representations, various machine

learning tasks associated with networks, including node classifi-

cation, link prediction, community detection, and visualization,

can be performed.

To demonstrate the various capabilities of embeddings gener-

ated by these four algorithms, we applied them to four represen-

tative network datasets, namely CiteSeer, Cora, PubMed, and
C

F

Club network

ner detection algorithms: (A) HIS, (B) MaxD, (C) Greedy, (D) AP_Greedy, (E)

Patterns 4, 100839, October 13, 2023 5



Figure 4. Visualization of the results of algorithms for network embedding using t-SNE for different network datasets

(A–D) Visualization of the CiteSeer dataset using four network embedding algorithms: (A) DeepWalk, (B) node2vec, (C) LINE, and (D) SDNE.

(E–H) Visualization of the Cora dataset using four network embedding algorithms: (E) DeepWalk, (F) node2vec, (G) LINE, and (H) SDNE.

(I–L) Visualization of the PubMed dataset using four network embedding algorithms: (I) DeepWalk, (J) node2vec, (K) LINE, and (L) SDNE.

(M–P) Visualization of the PPI dataset using four network embedding algorithms: (M) DeepWalk, (N) node2vec, (O) LINE, and (P) SDNE.
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PPI. The first three datasets are related to scientific publications,

whereas the last dataset is a toy protein interaction network

from the biology domain. Additional information regarding these

datasets can be found at https://easy-graph.github.io/docs/

reference/easygraph.datasets.html. Figure 4 presents visualiza-

tion results based on different network embedding algorithms on

four datasets using t-distributed stochastic neighbor embedding

(t-SNE).68 The detailed parameter settings used for these algo-

rithms are available in our source code. Notably, in these subfig-

ures, one can clearly see that the embeddings of nodes with the

same labels in the network are closer than those of nodes with

different labels in two-dimensional space. LINE outperforms

other methods on most datasets based on its unique ability to

learn both first-order similarity and second-order similarity simul-
6 Patterns 4, 100839, October 13, 2023
taneously. Additionally, the poor performance of SDNE might be

attributed to the fact that it only takes an adjacency matrix as an

input without considering node features and label information

effectively.

Performance enhancement of EasyGraph based on
multiprocessing techniques and Python/C++ hybrid
programming
Without losing generalization, we conducted comparisons on

both random networks and real-world networks. All compari-

sons were conducted on a Linux server with an Inter Xeon

CPU E5-2660 v.3 @ 2.60 GHz and 150 GB of RAM. Specifically,

we utilized the classic Erd}os-Rényi random network model69 to

generate random networks with different scales ranging from

https://easy-graph.github.io/docs/reference/easygraph.datasets.html
https://easy-graph.github.io/docs/reference/easygraph.datasets.html


Table 2. Dataset information

Network No. nodes No. edges Avg. degree Density is_directed

ER_10k_u 10,000 20,000 4.0 0.0004 false

ER_50k_u 50,000 100,000 4.0 8:03 10� 5 false

ER_100k_u 100,000 200,000 4.0 4:03 10� 5 false

ER_200k_u 200,000 400,000 4.0 2:03 10� 5 false

ER_10k_d 10,000 20,000 4.0 0.0002 true

ER_50k_d 50,000 100,000 4.0 4:03 10� 5 true

ER_100k_d 100,000 200,000 4.0 2:03 10� 5 true

ER_200k_d 200,000 400,000 4.0 1:03 10� 5 true

wiki-Vote 7,115 103,689 29.1466 0.0020 true

LastFM 7,624 27,806 7.2943 0.0010 false

ca-HepTh 9,877 25,998 5.2644 0.0005 false

p2p-Gnutella04 10,876 39,994 7.3545 0.0003 true

cd-HepPh 12,008 118,521 19.7403 0.0016 false

pgp 39,796 301,498 15.1521 0.0002 true

ca-CondMat 23,133 93,497 8.0834 0.0003 false

email-Enron 36,692 183,831 10.0202 0.0003 false

soc-Epinions1 75,879 508,837 13.4118 8:83 10� 5 true

soc-Slashdot0811 77,360 905,468 23.4092 0.0002 true

email-EuAll 265,214 420,045 3.1676 0.0003 true

web-NotreDame 325,729 1,497,134 9.1925 1:53 10� 7 true

Note that the word starting with ‘‘ER’’ in the first column of this table indicates that the network was generated by the Erd}os-Rényi random network

model. Additionally, the letter ‘‘u’’ at the end of the word indicates that the network is undirected, whereas the letter ‘‘d’’ indicates that the network is

directed. The fourth column name, ‘‘Avg. degree,’’ refers to the value of the average degree of the network.
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10,000 to 200,000 nodes. Additionally, twelve real-world

network datasets from different disciplines were selected. The

details of these datasets are presented in Table 2. We utilized

igraph, which is a representative network analysis library, for

comparison. In terms of time cost, the iteration times of all exper-

iments ranged from 3 for directed networks to 5 for undirected

networks. Please note that when executing the shortest path al-

gorithm and closeness centrality function, we only utilized the

same 1,000 nodes that were sampled for both igraph and

EasyGraph on the real-world networks.

To investigate the advantages of multiprocessing, we selected

different settings for the number of workers for comparison. Four

representative functions implemented in EasyGraph, namely the

local clustering coefficient,70 hierarchy,62 closeness centrality,34

and betweenness centrality71 functions, were examined. The

local clustering coefficient is a metric that characterizes the local

connections of a node for forming a cluster. For example, in the

network of wiki-Vote, this metric refers to how closely Wikipedia

users interact. The hierarchy metric can be used to measure the

ability of nodes to serve as SH spanners. The closeness central-

ity and betweenness centrality are two useful metrics for identi-

fying important nodes in a network.

Figures 5 and 6 present comparative analysis results for

EasyGraph with multiprocessing on random networks and real-

world networks, respectively. The vertical axes in the subfigures

represent different networks, and the horizontal axes represent

the time consumed by the corresponding functions. The bars

with different colors in the figure indicate different settings for

the number of workers. Interestingly, we found that not all
network analysis algorithms would benefit from multiprocessing

optimization techniques. Specifically, the multiprocessing tech-

nique significantly accelerated the calculation of metrics such

as closeness centrality and betweenness centrality, whereas

the calculation efficiency of the local clustering coefficient was

not improved. The improvement of the hierarchy metric by the

multiprocessing technique was inconsistent between random

networks and real-world networks. One possible explanation is

that multiprocessing is most useful when network analysis tasks

can be split into small, independent subtasks that can be

executed in parallel. Therefore, careful consideration of the

trade-off between the benefits and costs of multiprocessing is

necessary. For example, multiprocessing can be utilized to

improve the efficiency of calculating closeness centrality, which

is a key metric for network analysis. By implementing multipro-

cessing, such calculations can be distributed across multiple

cores, thereby reducing computation time. However, the perfor-

mance of multiprocessing for the local clustering coefficient

metric is poor. One possible explanation could be the communi-

cation overhead between multiple processes. Additionally, the

computational efficiency of multiprocessing techniques de-

pends on the structure and characteristics of different networks.

To evaluate the advantages of Python/C++ hybrid program-

ming, we considered igraph, which is a network library built on

C/C++ code with Python interfaces, for comparisons of selected

functions for both random networks and real-world networks.

Specifically, we selected six classical functions, namely network

loading, the multisource Dijkstra algorithm,72 betweenness

centrality,71 closeness centrality,34 PageRank centrality,41 and
Patterns 4, 100839, October 13, 2023 7



A B

C D

Figure 5. Advantages of multiprocessing in

EasyGraph for functions on random networks

Comparative analysis of EasyGraph with multipro-

cessing on random networks in terms of functions of

(A) local clustering coefficient, (B) hierarchy,

(C) closeness centrality, and (D) betweenness cen-

trality.
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k-core centrality.73 Network loading refers to the operation of

loading network data and constructing network objects. The

multisource Dijkstra algorithm is used to compute the shortest

path through a set of source nodes in a network. Betweenness

centrality,71 closeness centrality,34 PageRank centrality,41 and

k-core centrality73 are four popular metrics that have been

largely utilized to measure the importance of nodes in networks

from different perspectives. For example, the metric of close-

ness centrality represents the extent to which a node is located

at the center of a network. PageRank centrality is a metric used

to rank a node by quantifying the importance of the nodes linked

to it. K-core centrality is a metric that measures the relative

importance of a node within a network based on k-core decom-

position. Nodes with large core numbers are considered to be

more important than those with lower values.

Figure 7 presents a comparative analysis of EasyGraph with

hybrid programming against igraph on random networks of vary-

ing scales. The vertical axes of all subfigures represent networks

with different sizes, and the horizontal axes represent the time

consumed by the corresponding function. Bars with different

colors indicate the results of EasyGraph and igraph. Figure 7A

reveals that the execution time of the network loading function

in EasyGraph is longer than that of igraph, which can be attrib-

uted to EasyGraph’s consideration of the diversity of node types

during the process of network construction. As a result,

EasyGraph supports arbitrary hashable node types while still

ensuring an acceptable time cost for network loading. In

Figures 7B–7E, EasyGraph outperforms igraph because
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EasyGraph employs a series of optimiza-

tion techniques, including the dirty flag

design pattern,74 a singly linked list data

structure,75 a segment tree data struc-

ture,76,77 and the Radix sorting algorithm.78

Specifically, the dirty flag design pattern74

generally refers to a programming tech-

nique that utilizes a flag to indicate the state

of variables. In EasyGraph, we use a dirty

flag to track the state of variables during

network analysis. Therefore, EasyGraph

writes updated values to memory only

when the states of certain variables

change, which could significantly reduce

data writing operations and unnecessary

overhead. The singly linked list75 is a data

structure used to store information

regarding adjacent nodes in a network. A

singly linked list is advantageous when

there is a need for efficient insertion and

removal operations of nodes. For instance,

network analysis algorithms that require
the dynamic insertion or removal of nodes and edges can be

enhanced by adopting a singly linked list data structure. A

segment tree76,77 is a tree data structure that facilitates querying

on segments of an array. In EasyGraph, we use a segment tree in

Dijkstra’s algorithm to facilitate the identification of the shortest

paths. Additionally, the Radix sorting algorithm78 is used to split

integers into digits and then compare the integers by digits. In

EasyGraph, we utilize this algorithm to optimize the k-core func-

tion.73 In Figure 7F, the performance of EasyGraph is inferior to

that of igraph. This is because calculating the k-core centrality

for random networks involves an additional step of transforming

a singly linked list, which incurs additional running overhead.

Figure 8 presents a comparative analysis of EasyGraph with

hybrid programming against igraph on real-world networks

from different disciplines. In Figure 8A, one can see that the

execution time of network loading in EasyGraph is slower than

that in igraph. This is because EasyGraph adds a small amount

of time overhead in exchange for good compatibility with

different node types. In Figures 8B–8F, EasyGraph outperforms

igraph because it is boosted by a series of optimization tech-

niques, as described above. Furthermore, one can see that the

functions implemented by EasyGraph still maintain an advan-

tage on relatively large-scale networks such as email-EuAll and

web-NotreDame. For example, in terms of analyzing closeness

centrality on the email-EuAll network, EasyGraph saves almost

2,549 s over igraph, as indicated in Figure 8D. Regarding Fig-

ure 8F, the transformation of the singly linked list75 is conducted

during the construction of the network data. Therefore,
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Figure 6. Advantages of multiprocessing in

EasyGraph for functions on real-world net-

works

Comparative analysis of EasyGraph with multipro-

cessing on real-world networks in terms of functions

of (A) local clustering coefficient, (B) hierarchy,

(C) closeness centrality, and (D) betweenness cen-

trality.
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EasyGraph can directly calculate the k-core centrality for each

node without additional transformation overhead.

Although EasyGraph is inferior to igraph in terms of the

network loading function on all networks and k-core centrality

on random networks, EasyGraph improves performance overall

and achieves better compatibility on a series of important

network analysis functions. Therefore, it is a powerful tool that

users can use to perform network analysis tasks.

DISCUSSION

Network analysis is a highly interdisciplinary field that spans

physics, chemistry, biology, mathematics, sociology, com-

puter science, economics, and other disciplines. The universal-

ity of network data in different disciplines has made network

analysis a valuable tool for exploring the commonalities and

unique characteristics of various disciplines. With access to

rich datasets from multiple domains, researchers have found

some general properties, such as scale-free networks8,79 and

small-world networks,9 that exist in various disciplines. Addi-

tionally, network analysis encompasses a number of significant

research problems, including node centrality calculation, com-

munity detection, link prediction, SH spanner detection,

network visualization, and information propagation in net-

works. These key research topics provide guidance and in-

sights into problems in various disciplines. For example, the

study of community detection has found applications in diverse

domains, such as identifying fraud gangs in financial sce-

narios80,81 and public security fields.82 It has also been used
to detect malicious accounts in online so-

cial networks.83,84 Furthermore, research

on SH spanner detection has been applied

to many types of networks, including so-

cial networks, supply chain networks,

and road networks.51,52 Therefore, net-

work analysis tools, such as NetworkX,

igraph, and SNAP, have been developed

and employed for research in different dis-

ciplines. These tools enable users to

explore complex networks, identify impor-

tant structures and features, and gain in-

sights into the underlying dynamics of

these networks.

Although there are numerous tools avail-

able for network analysis, somemight have

limitations that could potentially hinder

their applicability for particular network

data formats or network analysis tasks.

Additionally, some tools might have ineffi-
cient implementations, which could potentially hinder their capa-

bility to utilize available computational resources effectively.

Consequently, such limitations might increase execution time

for large-scale networks. To address these problems, we pro-

posed EasyGraph as an open-source toolkit designed to facili-

tate interdisciplinary network analysis. EasyGraph provides an

easy-to-use interface and supports multiple formats of network

data, which allows users to conduct network analysis rapidly

without being limited by data formats. Furthermore, EasyGraph

implements a range of significant functions for network analysis,

including centrality measurement, community detection, SH

spanner detection, motif detection, and network embedding.

Additionally, EasyGraph has been implemented with hybrid

programming (using Python and C++) and leverages multi-

processing techniques to enhance the efficiency of network

analysis further. We demonstrated the performance benefits of

EasyGraph on large-scale networks from different disciplines.

By overcoming the limitations of existing network analysis tools,

EasyGraph provides a powerful and flexible solution for users

across a range of fields to conduct effective interdisciplinary

network analysis.

Several improvements can be made to our work. First, to

enhance compatibility with different types of networks, we plan

to extend EasyGraph to support bipartite networks,85,86 hetero-

geneous networks,87,88 dynamic networks,89 and higher-order

networks.90,91 We believe that supporting these important but

less frequently used types of networks will help users construct

networks in a more flexible manner. Second, we will continue to

track and implement methods from the latest studies on network
Patterns 4, 100839, October 13, 2023 9
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Figure 7. Advantages of hybrid programming in EasyGraph for functions on random networks

Comparative analysis of EasyGraph with hybrid programming against igraph on random networks for various functions: (A) network loading, (B) multisource

Dijkstra, (C) betweenness centrality, (D) closeness centrality, (E) PageRank centrality, and (F) k-core centrality.
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Figure 8. Advantages of hybrid programming in EasyGraph for functions on real-world networks

Comparative analysis of EasyGraph with hybrid programming against igraph on real-world networks for various functions: (A) network loading, (B) multisource

Dijkstra, (C) betweenness centrality, (D) closeness centrality, (E) PageRank centrality, and (F) k-core centrality.
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Table 3. Feature comparisons between EasyGraph and other network analysis libraries

Features Tools EasyGraph NetworkX igraph SNAP graph-tool

Network I/O Edge List U U U U –

GML U U U – U

GraphML U U U – U

Pajek U U U – –

GraphViz U – U U U

Centrality calculation degree U U U U U

betweenness centrality U U U U U

closeness centrality U U U U U

Katz centrality – U U U U

Structural hole spanner detection effective size U U – – –

hierarchy U – – – –

HIS U – – – –

AP_Greedy U – – – –

Community detection Girvan-Newman U U U U U

Louvain – U U U U

label propagation U U U U U

InfoMAP – U U U U

Network visualization matplotlib U U U U U

plotly – – U – –

Cairo – – U – U

GTK+ – – U – U

Network embedding DeepWalk U – – – –

node2vec U – – U –

LINE U – – – –

SDNE U – – – –
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analysis functions so that EasyGraph can continuously serve as

a benchmark platform for users to compare different network

analysis functions. This will enable us to keep pace with new de-

velopments in the field and provide users with state-of-the-art

tools for network analysis. Finally, we will strive to deploy

EasyGraph as a cloud-based web service to help users who

are not familiar with Python programming perform network anal-

ysis easily. By making EasyGraph more accessible to a wider

audience, we hope to encourage more users to leverage the po-

wer of EasyGraph in their work.

Limitations of the study
In this section, we discuss the limitations of EasyGraph. Our goal

is to provide users with a comprehensive view of the available

options for network analysis and highlight the unique features

of EasyGraph.

First, EasyGraph does not currently support some less-popu-

lar functions such as is_isomorphic, LFR_benchmark_graph, and

hypercube_graph, which NetworkX has already implemented.

Therefore, NetworkXmight be a good fit if a user currently wishes

to use these functions. Additionally, we are continuously ex-

panding EasyGraph to provide more algorithm choices. Users

and developers are encouraged to participate in the develop-

ment of EasyGraph.

Second, EasyGraph does not currently focus on functions for

comprehensive visualization, which are provided by Gephi and
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Cytoscape. Network visualization allows users to understand

the intrinsic relationships and structures of network data. There-

fore, we plan to develop an interactive visualization interface that

facilitates data exploration and analysis to derive valuable in-

sights from network data. Gephi and Cytoscape might still be

good choices if a user currently requires network visualization.

Third, in its current design, EasyGraph supports basic types of

networks such as directed and undirected networks and

weighted and unweighted networks, as well as multigraphs.

However, it has not yet incorporated some advanced network

types such as dynamic networks, bipartite networks, heteroge-

neous networks, and higher-order structures. For these types

of networks, specialized packages such as HyperNetX (https://

github.com/pnnl/HyperNetX) for hypergraphs and GraphStream

(https://graphstream-project.org/doc/) for dynamic networks

are more suitable.

Therefore, users are advised to choose appropriate network

analysis toolsaccording to their requirementsand thescaleof their

network datasets. The functions and usage scenarios supported

by EasyGraph as well as other network analysis libraries have

been summarized in Table 3. NetworkX is a promising option for

processing small-scale network data and offers a range of conve-

nient features such as simple plots and algorithm implementa-

tions. The igraph library provides some efficient algorithms and

visualization tools for large-scale network data. The graph-tool li-

brary focuses on the statistical analysis of networks. Gephi and

https://github.com/pnnl/HyperNetX
https://github.com/pnnl/HyperNetX
https://graphstream-project.org/doc/
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Cytoscape both excel at visualization of network data. Notably,

EasyGraph supports more formats of network data than other

tools. It offers important specialized functions suchasSHspanner

detection and graph embedding. For networks that contain more

than thousands of nodes, EasyGraph outperforms other tools on

several important network analysis tasks, including algorithms

for computing the shortest paths, PageRank centrality, between-

ness centrality, closeness centrality, and k-core centrality.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Additional information and requests for resources should be directed to and

will be fulfilled by the lead contact, Yang Chen (chenyang@fudan.edu.cn).

Materials availability

This study did not generate any new materials.

Data and code availability

Source code and package installation instructions can be found at Zenodo

(https://doi.org/10.5281/zenodo.8041952).92 Datasets for network embed-

ding can be constructed from https://zenodo.org/record/8041952,92 and da-

tasets for benchmarking are available at Zenodo (https://zenodo.org/record/

804204293).
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