CoordRegressionNetwork( (resnet): Sequential( (0): Sequential( (0): Sequential( (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) ) (1): InvertedResidual( (conv): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False) (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (2): InvertedResidual( (conv): Sequential( (0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False) (4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (3): InvertedResidual( (conv): Sequential( (0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False) (4): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (4): InvertedResidual( (conv): Sequential( (0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False) (4): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (5): InvertedResidual( (conv): Sequential( (0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False) (4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (6): InvertedResidual( (conv): Sequential( (0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False) (4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (7): InvertedResidual( (conv): Sequential( (0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False) (4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (8): InvertedResidual( (conv): Sequential( (0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (9): InvertedResidual( (conv): Sequential( (0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (10): InvertedResidual( (conv): Sequential( (0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (11): InvertedResidual( (conv): Sequential( (0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False) (4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (12): InvertedResidual( (conv): Sequential( (0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (13): InvertedResidual( (conv): Sequential( (0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False) (4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (14): InvertedResidual( (conv): Sequential( (0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False) (4): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (15): InvertedResidual( (conv): Sequential( (0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False) (4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (16): InvertedResidual( (conv): Sequential( (0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False) (4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (17): InvertedResidual( (conv): Sequential( (0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) (3): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False) (4): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU6(inplace=True) (6): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False) (7): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (18): Sequential( (0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU6(inplace=True) ) ) (1): Conv2d(1280, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (2): DUC( (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (pixel_shuffle): PixelShuffle(upscale_factor=2) ) (3): DUC( (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (pixel_shuffle): PixelShuffle(upscale_factor=2) ) (4): DUC( (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (pixel_shuffle): PixelShuffle(upscale_factor=2) ) ) (hm_conv): Conv2d(32, 9, kernel_size=(1, 1), stride=(1, 1), bias=False) )